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In this document we review variational inference and describe the variational
approximation used in CAFEH. Then we derive the coordinate ascent updates
for CAFEH-G and CAFEH-S. Finally, we describe how to use stochastic varia-
tional inference to improve speed of CAFEH-S optimization.

1 Variational Inference Review

1.0.1 Problem set up

Given a model p(Y, θ) where Y are observed data and θ are latent variables, we
want to compute the posterior distribution p(θ|Y ). When the exact posterior
distribution is intractable, we can approximate the posterior using variational
inference.

In variational inference, we recast inference as an optimization problem. We
posit a family of distributions Q over the latent variables in the model θ and
find the member of that family that minimizes the KL-divergence to the true
posterior.

q∗(θ) = argminq∈QKL [q(θ)||p(θ|Y )] (1)

When p(θ|Y ) ∈ Q this optimization yields the true posterior distribution.
In practice, we choose Q so that we can efficiently optimize over the parameters
of the family. Specifically it is often useful to choose a family of variational
distributions that factorize over latent variables: q(θ) =

∏
i q(θi).

We can solve this optimization by maximizing the Evidence Lower Bound
(ELBO), which is a lower bound to the marginal data likelihood p(Y |X) =∫
θ
p(Y, θ|X)dθ

ELBO = Eq [ln p(Y, θ|X)] + Eq [ln q(θ)] (2)

It can be shown that optimizing the ELBO with respect to the variational
parameters is equivalent to minimizing the KL divergence in (1) [1].

The ELBO may be equivalently expressed as

ELBO = Eq [p(Y |X, θ)]−KL [q(θ)||p(θ)] (3)

1



1.0.2 Deriving updates

We want to derive the udpate for a variational factor q(z). where z is some
subset of the latent variables in the model. Modifying the logic from [1] consider
decomposing the ELBO

ELBO = Eq(z) [L]− Eq(z) [ln q(z)] + C (4)

Where L are all terms of the ELBO that depend on z, and q(z) is a density
function which satisfies

∫
q(z) = 1. Using Lagrange multipliers to encode this

constraint

d

dq(z)
ELBO =

d

dq(z)

{
Eq(z)

[
Eq(−z) [L]

]
− Eq(z) [ln q(z)] + λEq(z)[1]− 1

}
(5)

= Eq(−z) [L]− ln q(z) + λ (6)

Setting the derivative equal to 0 we find

ln q(z) = Eq(−z) [L] + λ (7)

Recognizing that q(z) must integrate to one and that the normalizing factor
does not depend on z

q∗(z) ∝ exp
{
Eq(−z) [L]

}
(8)

This suggests an approach for deriving our updates: compute Eq(−z) [L] and
identify the parameters for q(z) satisfying (8). Note that in general, identifying
this distribution is not straight-forward. However, for a special class of mod-
els, of which CAFEH is a member, the coordinate-wise optima are exponential
family distributions and their parameters can be computed analytically.

2 CAFEH-G

2.1 Model

For clarity we restat the model. Let Y an N × T matrix of measurements in N
individuals across T phenotypes. Let X be a N ×G matrix of genotypes in N
individuals across G SNPs. The CAFEH model is written as
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Yt ∼ (Xbt, τ
−1
t I) (9)

bt =

K∑
k=1

φkwtkstk (10)

wtk|αtk ∼ N (0, α−1tk ) (11)

stk ∼ Bernoulli(p0k) (12)

φk ∼ Categorical(π0) (13)

αtk ∼ Γ(a0, b0) (14)

τt ∼ Γ(c0, d0) (15)

2.2 Variational Approximation

Let θ = {wtk} ∪ {stk} ∪ {φk} ∪ {αtk} ∪ {τt} denote the set of latent variables.
We select Q to factorize as follows:

q∗(θ) =
∏
k

∏
t

q(wtk|φk, stk)q(stk)q(αtk)
∏
k

q(φk)
∏
t

q(τt) (16)

In particular we choose to a variational family that maintain dependence of
wtk on φk and stk so that we can accurately estimate effect sizes under different
causal configurations. This is similar to the choice made in for the variational
approximations chosen for SuSiE [3] and [2].

We optimize the ELBO via coordinate ascent, iteratively updating each
q(w|φ, s), q(φ), q(s), q(α) and q(τ), while holding the others fixed. Note, that
while we have not specified a parametric form for the factors of the variational
distribution, the model and factorization imply the optimal form of each varia-
tional factor:

q∗(stk) ∼ Bernoulli(γtk)

q∗(φk) ∼ Categorical(πk)

q∗(αtk) ∼ Γ(atk, btk)

q∗(τt) ∼ Γ(ct, dt)

q∗(wtk|φk = i, stk = 1) ∼ N (µtki, σ
2
tki)

(17)

{µ, σ2, γ, π, a, b, c, d} (omitting subscripts) are variational parameters that
we optimize over. We provide the full updates and their derivation below.
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2.3 Evidence Lower Bound (ELBO)

ELBO = Eq(θ) [ln p(Y|θ)]−KL [q(θ)||p(θ)] (18)

= Eq(θ)

[∑
t

lnN (Yt|bt, τ−1I)

]
−
∑
t,k

Eq(stk,αtk,φk) [KL [q(wtk|stk, φk)||p(wtk|αtk)]]

−
∑
t,k

KL [q(stk)||p(stk)]−
∑
t,k

KL [q(αtk)||p(αtk)]

−
∑
k

KL [q(φk)||p(φk)]−
∑
t

KL [q(τt||p(τt)]

(19)

2.3.1 Expected conditional

Eq(θ)
[
lnN (Yt|Xbt, τ

−1I)
]

=

− M

2
ln 2π +

M

2
〈ln τt〉 −

〈τt〉
2

[
YT
t Yt − 2YT

t 〈Xbt〉 −
〈
bTt X

TXbt
〉]
(20)

The expectation of bt is

〈bt〉 =
∑
k

(πk ◦ µtk)γtk (21)

Letting di = eTi X
TXei and 〈btk〉 = (πk ◦ µtk)γtk and noting s2tk = stk we

can get a nice expression for the quadratic term

〈
bTt X

TXbt
〉

=

〈(∑
k

φkwtkstk

)T
XTX

(∑
k

φkwtkstk

)〉
(22)

=
∑
k

〈
w2
tkstkdφk

〉
+
∑
k 6=j

〈
wtkstkφ

T
k

〉
XTX 〈φjwtjstj〉 (23)

=
∑
k,i

(µ2
tki + σ2

tki)γtkπkidi + 〈bt〉T XTX 〈bt〉 −
∑
k

||X 〈btk〉 ||2

(24)

2.3.2 KL computations

To compute the ELBO and coordinate ascent updates, we need to compute
E [KL [q(w|φ, s)||p(w|α)]], where expectations are taken over q(α), q(stk) and/or
q(φk) depending on the setting. s and φ appear linearly, while α does not. Here
we write the expectation of the KL divergence w.r.t α in terms of the the KL
of the expectation plus a positive correction.
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〈
KL

[
N (µ, σ2) ||N (0, α−1) (25)

=

〈
1

2

[
αµ2 + σ2α− 1− lnσ2 − lnα

]〉
(26)

=
1

2

[
〈α〉µ2 + σ2 〈α〉 − 1− lnσ2 − 〈lnα〉

]
(27)

=
1

2

[
〈α〉µ2 + σ2 〈α〉 − 1− lnσ2 − ln 〈α〉

]
+

1

2
(ln 〈α〉 − 〈lnα〉)

(28)

= KL
[
N (µ, σ2)||N (0, 〈α〉−1)

]
+

1

2
(ln 〈α〉 − 〈lnα〉) (29)

2.3.3 Residualized likelihood

As we write our variational updates it will be useful to define rtk = Yt−Xbt +
Xbtk where btk = φkwtkstk. That is, rtk is the residual with all but the k-th
component removed. The conditional likelihood may be written

N (Yt|Xbt, τ
−1
t ) = N (rtk|Xbtk, τ

−1
t ) (30)

Then, when considering updates for a particular component k, we can write
the ELBO as

ELBO = Eq(θ)

[∑
t

−τt
2

[
−2rTtkXbtk + bTtkX

TXbtk
]
]

]
−KL [q(θ)||p(θ)] (31)

2.4 Coordinate Ascent updates

2.4.1 Update for q∗(wtk|φk = i, stk = 1

Where xi is the ith column of X, the genotypes at SNP i.

q∗(wtk|stk = 1, φk = i) (32)

∝ exp
{〈

lnN (rtk|wtkxi, τ−1t I)
〉

+ 〈ln p(wtk|αtk)〉
}

(33)

∝ exp
{
〈τt〉
2

(
−2 〈rtk〉T xiwtk + diw

2
tk

)
+
〈αtk〉

2
(w2

tk)

}
(34)

Completing the square we find

σ2
tki = (di 〈τt〉+ 〈αtk〉)−1 (35)

µtki = σ2
tki 〈τt〉 〈rtk〉

T
xi (36)

q∗(wtk|φk = i, stk = 1) = N (wtk|µtki, σ2
tki) (37)
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2.4.2 Update for q∗(wtk|φk, stk = 0)

q∗(wtk|stk = 1, φk = i)

∝ exp
{〈

lnN (rtk|0, τ−1t I)
〉

+ 〈ln p(wtk|αtk)〉
}

∝ exp
{
〈αtk〉

2
(w2

tk)

} (38)

q∗(wtk|stk = 0, φk = i) = N (w + tk|0, 〈αtk〉−1) ∀i ∈ {1, . . . , N} (39)

2.4.3 Update for q∗(stk)

q∗(stk) ∝ exp {
〈
lnN (rtk|Xφkwtk, τ−1t I)

〉
1(stk = 1)

+ 〈KL [q(wtk, αtk|stk = 1, φk)||p(wtk, αtk)]〉1(stk = 1)

+ ln p0k1(stk = 1)〈
lnN (rtk|0, τ−1t I)

〉
1(stk = 0)

+ 〈KL [q(wtk, αtk|stk = 0, φk)||p(wtk, αtk)]〉1(stk = 0)

+ ln(1− p0k)1(stk = 0)

(40)

Grouping terms where stk = 1 and stk = 0 we can write

q∗(stk) ∝ exp {(a+ ln p0k)1(stk = 1) + (b+ ln(1− p0k))1(stk=0)} (41)

a =− 〈τt〉
2

[
−2 〈rtk〉T X(πk ◦ µtk) +

∑
i

(µ2
tki + σ2

tki)πki

]
−
∑
i

πki 〈KL [q(wtk, αtk|stk = 1, φk = i)||p(wtk, αtk]〉
(42)

b =− 〈KL [q(wtk, αtk|stk = 0)||p(wtk, αtk]〉 = −1

2
(ln 〈α〉 − 〈lnα〉) (43)

Setting γtk = eap0k
eap0k+eb(1−p0k)

q∗(stk) = Bernoulli(stk|γtk) (44)
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2.4.4 Update for q∗(αtk)

q∗(αtk) ∝ exp
{〈

lnN (wtk|0, α−1tk ) ln p(αtk)
〉}

∝ exp
{

1

2
lnαtk −

αtk
2

〈
w2
tk

〉
+ (a0 − 1) lnαtk − b0αtk

}
∝ exp

{(
a0 +

1

2
− 1

)
lnαtk −

(
b0 +

〈
w2
tk

〉
2

)
αtk

}

∝ exp
{(

a0 +
1

2
− 1

)
lnαtk −

(
b0 +

∑
i πki(µ

2
tki + σtki)

2

2

)
αtk

}
(45)

Let a = a0 + 1
2 and b = b0 +

∑
i πki(µ

2
tki+σtki)

2

2

q∗(αtk) = Γ(αtk|a, b) (46)

2.4.5 Update for q∗(φk)

q∗(φk) ∝
∑
i

ρki1(φk = i) (47)

ρki =
〈
lnN (rtk|stkwtkxi, τ−1I

〉
−〈KL[q(wtk, αtk|φk = i) || p(wtk|αtk)]〉+ lnπ0ki

(48)

ρki =− 〈τt〉
2

[
−2 〈rtk〉T xiµtkγtk + γtk(µ2

tki + σ2
tki)
]

− 〈KL[q(wtk, αtk|stk = 1, φk = i) || p(wtk|αtk)]〉 γtk
− 〈KL[q(wtk, αtk|stk = 0, φk = i) || p(wtk|αtk)]〉 (1− γtk) + lnπ0ki

(49)

Then

πki =
eρi∑
i e
ρik

(50)

2.4.6 Update for q∗(τt)

ln q∗(τt) ∝
〈
N (β̂t|Xbt, τ

−1
t I) + ln p(τt)

〉
∝ 1

2
ln τt −

τt
2

〈
(β̂t −Xbt)

T (β̂t −Xbt)
〉

+ (c0 − 1) ln τt − d0τt
(51)

Let c = c0 + 1
2 and d = d0 +

〈(β̂t−Xbt)
T (β̂t−Xbt)〉
2

q∗(τt) = Γ(τt|c, d) (52)
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3 CAFEH-S model

CAFEH-S has an identical prior on the effect sizes bt as CAFEH-G, however
the likelihood is written in terms of summary statistics using the RSS likelihood
[4]. β̂t are the vector of effect sizes for marginal linear regression of G SNPs in
phenotype t. R is an LD matrix containing the pairwise correlation of SNPs. S
is a diagonal matrix where S2

ii = β2/nti + ŝ2 + ti. nti and ŝti are the sample
size and standard errors for the corresponding tests.

β̂t ∼ (SRS−1bt, SRS) (53)

bt =

K∑
k=1

φkwtkstk (54)

wtk|αtk ∼ N (0, α−1tk ) (55)

stk ∼ Bernoulli(p0k) (56)

φk ∼ Categorical(π0) (57)

αtk ∼ Γ(a0, b0) (58)

3.1 Evidence Lower Bound (ELBO)

We write the ELBO, lumping terms that are constant w.r.t the variational
parameters into a constant C. Letting

D = S−1RS−1

ELBO = Eq

[∑
t

lnN (β̂t|SRS−1bt, SRS)

]
−KL [q||p] (59)

= Eq

[∑
t

−1

2

(
−2β̂Tt S

−2bt + bTt Dbt

)]
−KL [q||p] + C (60)

3.1.1 Residualized likelihood

Our coordinate ascent updates are performed by updating one component while
holding all other components and fixed. It will be convenient to rewrite the
likelihood in terms of the residual with all but one component removed

btk = wtkskφk (61)

b−tk =
∑
j 6=k

btj (62)

rtk = β̂t − SRS−1b−tk (63)

So that

N (β̂t|SRS−1bt, SRS) = N (rtk|SRS−1btk, SRS) (64)
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Notice that the term rTtk(SRS)−1rtk does not depend on component k. For
the purpose of optimization of the variational parameters of component k we
may write the ELBO

ELBO = Eq

[∑
t

−1

2

(
−2rTtkS

−2bt + bTt Dbt
)]
−KL [q||p] + C (65)

3.2 Coordinate Ascent updates

3.2.1 Update for q∗(wtk|φk, stk = 1)

With di = Dii

q∗(wtk|stk = 1, φk = i) ∝
exp

{〈
lnN (rtk|SRS−1btk, SRS) + lnN (wtk|0, αtk)

〉}
exp

{
−1

2

[
−2 〈rtk〉T S−2eiwtk + diw

2
tk + 〈αtk〉w2

tk

]} (66)

Completing the square we arrive at

σ2
tki = (di + 〈α〉)−1

µtki = σ2
tki 〈rtk〉

T
S−2ei

q∗(wtk|φk = i, stk = 1) = N (wtk|µtki, σ2
tki)

(67)

3.2.2 Update for q∗(wtk|φk, stk = 0)

q∗(wtk|stk = 0, φk = i) ∝ exp
{
−1

2
〈αtk〉w2

tk

}
(68)

It follows that

q∗(wtk|φk, stk = 0) = N (wtk|0, 〈αtk〉−1) (69)

3.2.3 Update for q∗(stk)

We group terms of the ELBO where stk = 1:

a = Eq|stk=1

[
logN (rtk|SRS−1btk, SRS)

]
+Eq(wtk,φk,stk=1) [log p(wtk|αtk)]

+Eq(φk) [H(q(wtk|stk = 1, φk)] + log p0k + C

(70)
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Evaluates to

a = −1

2

(
−2 〈rtk〉T S−2(πk ◦ µtk) +

∑
i

(µ2
tki + σ2

tki)diπki

)
+Eq(wtk,φk,stk=1) [log p(wtk|αtk)]

+Eq(φk) [H(q(wtk|stk = 1, φk)] + log p0k + C

(71)

And stk = 0:

b = Eq|stk=0

[
logN (rtk|SRS−1b, SRS)

]
+Eq(wtk,φk,stk=0) [log p(wtk|αtk)] +

Eq(φk) [H(q(wtk|stk = 0, φk)] + log(1− p0k) + C

(72)

Evaluates to

b = 0

+Eq(wtk,φk,stk=0) [log p(wtk|αtk)]

+Eq(φk) [H(q(wtk|stk = 0, φk)] +

log(1− p0k) + C

(73)

q∗(stk) ∝ exp {a1(stk = 1) + b1(stk = 0)} =⇒ γtk =
ea

ea + eb
(74)

3.2.4 Update for q∗(φk)

Grouping terms where φk = i

ai = Eq|φk=i

[
logN (rtk|SRS−1btk, SRS)

]
+Eq(wtk,stk|φk=i) [p(wtk|αtk)]

+Eq(stk) [H(q(wtk|stk, φk = i)]

(75)

ai = −1

2

[
−2 〈rtk〉T S−2eiµtkiγtk + γtk(µ2

tk + σ2
tki)di

]
+Eq(wtk,stk|φk=i) [p(wtk|αtk)]

+Eq(φk) [H(q(wtk|stk, φk = i)]

(76)

q∗(stk) ∝ exp

{∑
i

ai1(φk = i)

}
=⇒ πki =

eai∑
i e
ai

(77)
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3.3 Stochastic Variational Inference

3.3.1 Monte-Carlo estimate of the ELBO

Recall the ELBO for CAFEH-S

ELBO = Eq

[∑
t

−1

2

(
−2rTtkS

−2bt + bTt Dbt
)]
−KL [q||p] + C (78)

The CAFEH-S updates, (equivalently, evaluating the gradient of the ELBO),

require the repeated evaluation of 〈rtk〉 = β̂t − SRS−1 〈b−tk〉. This involves a
matrix-vector multiplication that grows with the number of SNPs, and causes
CAFEH-S to be slow to run with a large number of variants.

We propose using a Monte-Carlo estimate for the expectation over q(φ).
Rather than averaging over all SNPs, and incurring the expensive matrix-vector
multiplication, we sample SNPs. We write btk(φk) to emphasize the dependence
of btk on φk.

Eq(φk)

[
Eq(−φk)btk(φk)

]
≈ 1

L

L∑
l=1

Eq(−φk)btk(z
(l)
k ) = b̃tk (79)

Where z
(1)
k , . . . , z

(L)
k are iid samples from Categorical(πk), the current set-

ting of q(φk). This approximation yields a noisy but unbiased estimate of the
ELBO, satisfying the core requirement for performing stochastic optimization.

Importantly for moderate choice of L, LK << G. Thus, b̃t is sparse and
SRS−1b̃tk can be computed quickly.

3.3.2 Stochastic Variational Inference

For models where all the complete conditionals are an exponential family, coor-
dinate ascent on stochastic estimates of the ELBO is stochastic gradient ascent
(in the natural parameter space) [cite]. In short, we can use the same updates
as above, replacing expectations over q(φk) with their Monte-Carlo estimate, to

compute λ̂ an intermediate estimate of our variational parameter λ. We update
our estimate of λ as a weighted average of our old estimate and the intermediate
estimate

λ(t+1) = (1− ρt)λt + ρtλ̂t (80)

Where t indicates iteration, and ρt are weights. When the sequence (ρt)
∞
t=1

satisfy the Robbins Monro conditions
∑
ρt =∞ and

∑
ρ2t <∞, the stochastic

optimization is guaranteed to converge to a local optimum.
We note that for well behaved causal components, where q(φk) places most

of its mass on a set of tightly linked SNPs, the Monte-Carlo estimate will be
very close to the true expectation.

11



References

[1] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference:
A review for statisticians. Journal of the American statistical Association,
112(518):859–877, 2017.

[2] Michalis Titsias and Miguel Lázaro-Gredilla. Spike and slab variational
inference for multi-task and multiple kernel learning. Advances in neural
information processing systems, 24:2339–2347, 2011.

[3] Gao Wang, Abhishek Sarkar, Peter Carbonetto, and Matthew Stephens. A
simple new approach to variable selection in regression, with application
to genetic fine mapping. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 82(5):1273–1300, 2020.

[4] Xiang Zhu and Matthew Stephens. Bayesian large-scale multiple regression
with summary statistics from genome-wide association studies. The annals
of applied statistics, 11(3):1561, 2017.

12


