Identification and functional characterisation of a rare *MTTP* variant underlying hereditary nonalcoholic fatty liver disease.

Grove, J.I. et al.

Supporting Information

Supplemental Methods

Table of Primers Used:

Variant	Primer Pair
rs745447480	MTTP-F1: 5'- TCTTAACGGCCTCAGCCTAG
	MTTP-R1: 5'- CAGAGTTACCAGTCATGGACTC
rs1800591	MTTP-F2: 5'- GGCTTGCTAGTGTGCTAATGACAG
	MTTP-R2: 5'- GAGTGACCCTCTTCAGAACCTGC
rs2306986 and rs3816873	MTTP-F5: 5'- AAGGTAGAATAGGGCAGGGGTCC
	MTTP-R5: 5'- CTAATCTCAGTTGGATCATTTCAGTCTC
rs3792683	MTTP-F6: 5'- GTTACAGGTAGAGAACATGCTGACATG
	MTTP-R6: 5'- CCTCCATGGTACAGTGGTGCAC
rs2306985	MTTP-F7: 5'- CAGTCACAGAGTCCTACCCAGG
	MTTP-R7: 5'- GAGACTGCTGTCATCACAACTCTGTG
rs738409	PNPLA3-6R: 5'- CAGCTGTGGCTACTCTGTCTG
	PNPLA3-4F: 5'-TGGAGAAAGCTTATGAAGGATCAG
rs1260326	GCKR-2F: 5'- GGGTCTTAGGGTACCTGCTCAGAGG
	GCKR-2R: 5'- GGTAACCCATGACCTTGCCCAGC
rs58542926	TM6SF2-2F: 5'- CCAAAATGTTGGGATTACAGG
	TM6SF2-2R: 5'- ACAGATGTCCAGCAGGGTTC

Genotyping: For analysis of *MTTP* alleles in family members, the sequence of PCR products generated using the primers listed was determined using Sanger sequencing. PCR-RFLP genotyping of Indian cohort for rs745447480 used primers *MTTP*-F1 and *MTTP*-R1 followed by restriction digestion with Hpy166II. PCR-RFLP was used for genotyping rs738409 (FokI), rs58542926 (MspI) and rs58542926 (Hpy188I).

Table of Antibodies Used:

Antibody	Source
MTTP	Abcam
OCT3/4	Santa Cruz Biotechnology
NANOG	R&D Systems
MESP1	Abcam
GATA-4	R&D Systems
Nestin	Merck
SOX2	Novus Biologicals
ALB	R&D Systems
CYP2A6	OriGene Technologies
A1AT	Abcam
GST-pi	Enzo Life Sciences
Donkey Anti-Mouse AF 488 (1/400 dilution)	Invitrogen
Donkey Anti-Rabbit AF 647 (1/400 dilution)	Invitrogen
Donkey Anti-Goat AF 647 (1/400 dilution)	Invitrogen

Microscopy: Cells were fixed in 4% paraformaldehyde (PFA; VMR) for 20 min at 4°C. Fixed cells were stained with 0.5 µg/ml DAPI (Sigma), 5 µg/ml Hoechst 33342 (Invitogen) in 1% FBS-PBST for 5 min to counter-stain nuclei, or 30µM Nile Red in methanol (Invitrogen) for 15min in the dark or Oil-Red-O. For immunocytochemistry, blocking and membrane permeabilization of fixed cells was done using 10% foetal bovine serum (FBS; Gibco) and 0.1% TritonX-100 (Thermo Scientific) in PBS (Gibco) for 30min. Cells were incubated overnight at 4°C in a combination of primary antibodies diluted in 1% FBS-PBST solution. The next day, cells were incubated with fluorescent-labelled secondary antibodies for 1h at ambient temperature, followed by nuclei-counterstaining using 0.5 µg/ml DAPI (Sigma) in 1% FBS-PBST for 5min. Images were acquired using the Operetta high content image analyser and analysed with Columbus system (both PerkinElmer).

Supplemental Tables

Supplemental Table 1. Clinical characteristics of other individuals investigated.

MTTP genotype ¹ : MTP residue 564 (variant=T)	Sex	Liver Disease Diagnosis (method)	T2D	BMI	Hypertension	Liver biochemistry (LFTs) & lipid blood analyses at diagnosis
IT	М	NASH (USS)	х	<25	х	Elevated ALT, Elevated lipids TE<7.9kPa CAP>302
IT	М	FL (USS)	x	<25	х	Normal LFTs, Normal Lipids;
IT	М	FL (USS)	х	<30	х	Elevated ALT, Elevated lipids TE<7.9kPa CAP>302
IT	F	healthy (USS)	x	<25	x	Normal LFTs, Normal Lipids TE<7.9kPa CAP<302
IT	М	healthy (TE)	x	<30	х	Normal Lipids; TE<7.9kPa
IT	М	healthy (USS)	x	<25	х	Normal LFTs, Normal lipids,
IT	F	healthy (USS)	x	<25	х	Normal LFTs, Normal lipids, TE<7.9kPa CAP<302
IT	F	healthy (USS)	х	<25	х	Normal LFTs, Normal Lipids;
I T ²	F	healthy (USS)	x	<25	x	Normal LFTs, Normal lipids, TE<7.9kPa CAP<302
I T ²	М	healthy (USS)	x	<30	х	Normal LFTs, Normal lipids, TE<7.9kPa CAP<302
IT	М	healthy (USS)	x	<30	х	Normal LFTs (ALT=14), Normal lipids, TE<7.9kPa CAP<302
IT	F	FL (USS)	х	<25	х	Normal LFTs, Elevated lipids, TE<7.9kPa CAP>302
		healthy (USS)				Recovered. TE<7.9kPa CAP<302
IT	М	FL (USS)	x	<30	х	Normal LFTs, Normal Lipids
		healthy (USS)				Recovered.
 ³	N /		~	<25	v	TE<7.9kPa CAP<302
	Μ	FL (USS) healthy (USS)	x	~25	х	Normal LFTs, Normal Lipids Recovered. TE<7.9kPa CAP<302
I I ³	F	healthy (USS)	x	<25	x	Normal LFTs, Normal lipids,
			^	~25	^	TE<7.9kPa CAP<302
 ³	F	healthy (USS)	x	<30	х	Normal LFTs, Normal Lipids
	1		1	1		

¹*MTTP* I564T novel variant (mutant allele nucleotide C results in threonine residue 564 (T)); ² likely heterozygote as parent was MTP564-TT. F: female; M: male; USS: abdominal ultrasonographic steatosis score; NASH: non-alcoholic steatohepatitis; FL: fatty liver; T2D: Type 2 diabetes mellitus; LFTs: liver function tests; ALT: alanine transaminase U/L; TE: transient elastography; CAP: Controlled Attenuation Parameter dB/m. Further clinical details are available upon request to the corresponding author.

Supplemental Table 2. MTTP genotyping

Family member	MTTP p.I564T rs745447480 (T>C)	PNPLA3 p.I148M rs738409 (C>G)	TM6SF2 p.E167K rs58542926 (C>T)	MTTP -493 rs1800592 (G>T)	MTTP p.I128T rs3816873 (T>C)	MTTP Q297H rs2306985 (G>C)
ВŶ	I T (TC)	M M (GG)	<mark>Е К</mark> (СТ)	TT	T T (CC)	H H (CC)
CŶ	T T (CC)	I M (CG)	E E (CC)	TT	T T (CC)	H H (CC)
Dď	T T (CC)	I M (CG)	E E (CC)	TT	T T (CC)	Н Н (СС)
E♂	I T (TC)	I M (CG)	E E (CC)	TT	х	Н Н (СС)
Fď	F of TT (CC) I M (CG) E K		<mark>Е К</mark> (СТ)	TT	T T (CC)	Н Н (СС)
Gơ	Х	x x		Х	х	Х
Ηď	T T (CC)	I M (CG)	<mark>Е К</mark> (СТ)	TT	T T (CC)	Х
١Ŷ	I I (TT)	I M (CG)	E E (CC)	TG	T T (CC)	H H (CC)
J Ç -	T T (CC)	I M (CG)	E E (CC)	TT	T T (CC)	H H (CC)
КŶ	I T (TC)	I M (CG)	<mark>Е К</mark> (СТ)	TG	х	H H (CC)
LŶ	T T (CC)	I M (CG)	E E (CC)	TT	T T (CC)	H H (CC)
М♂	II (TT)	II (CC)	<mark>Е К</mark> (СТ)	TG	I T (TC)	Q H (GC)
Nơ	I T (TC)	I M (CG)	<mark>Е К</mark> (СТ)	TG	х	<mark>Q H</mark> (GC)
0 ơ	I T (TC)	II (CC)	<mark>Е К</mark> (СТ)	TT	I T (TC)	<mark>Q H</mark> (GC)
Q♂	I T (TC)	M M (GG)	EE(CC)	TG	I T (TC)	H H (CC)

Family pedigree showing relationship between family members is available on request from the corresponding author. The genotype allele is shown in parentheses; light grey indicates heterozygote; dark grey indicates homozygous for effect allele. Blue letters are amino acids encoded. For E98D rs2306986 (C): all tested were GG; For N166S rs3792683 (G): all tested were AA. X = not determined.

Supplemental Table 3. Characteristics of study participants included in meal response analysis.

Family r studied	nember	Matched he	ealthy	Matched NAFLD patient		
Person ID- Family	Description	Person ID- Healthy Volunteer	Description	Person ID- NAFLD case	Description	
F	ہ BMI <25,		് BMI <30,	2	BMI ≥30, NASH + fibrosis PNPLA3-IM TM6SF2-EK	
•	cirrhosis, PNPLA3-IM TM6SF2-EK	1	PNPLA3-IM TM6SF2-EE	3	് BMI <30, NASH + fibrosis PNPLA3-IM TM6SF2-KK	
J	♀ BMI <25, MTP564-TT healthy transplanted PNPLA3-IM TM6SF2-EE	4	ې BMI <30, PNPLA3-MM TM6SF2-EE	5	♀ BMI <30, NASH no fibrosis, PNPLA3-II TM6SF2-EE	
к	♀ BMI <25, MTP564-IT fatty liver PNPLA3-IM TM6SF2-EK	6	♀ BMI <30, PNPLA3-II TM6SF2-EE	7	♀ BMI ≥30, NASH + fibrosis, PNPLA3-MM TM6SF2-EE	
м	ہ BMI <30, MTP564-II healthy PNPLA3-II TM6SF2-EK	8	ہ BMI <30, PNPLA3 CC TM6SF2 CT	9	d BMI ≥30, NASH + fibrosis, diabetic PNPLA3-II TM6SF2-EE	
Q	ہ BMI <25, MTP564-IT healthy PNPLA3-MM TM6SF2-EE	10	ہ BMI <30, PNPLA3-II TM6SF2-EE	11	o [*] BMI ≥30, NASH + fibrosis PNPLA3-MM TM6SF2-EK	

Participants were gender matched to family members and age matched within 9 years. Patients had NAFLD diagnosis on liver biopsy. Skin biopsy samples from participants J and 1 were used to derive cell lines used for analysis. *MTTP* mutation C encodes MTP-564T. *PNPLA3* C>G rs738408 and *TM6SF2* C>T rs58542926 genotype is shown. *PNPLA3* G is the effect allele encoding 148M; *TM6SF2* T is the effect allele encoding 167K. Bold indicates homozygous effect alleles. **Supplemental Table 4.** All RNA-seq and CHIP-seq Sample Search Space (ARCHS4) tissue type and cell type predictions for hIPSC-derived hepatocyte-like cells.

		MTP564-II wild type hIPSC derived hepatocyte-like cells				MTP564-TT variant	t hIPSC deriv	ed hepatocyte	e-like ce	ells	
In	dex	Name	P-value	Adjusted P- value	Odds ratio	Combined Score	Name	P-value	Adjusted P- value	Odds ratio	Combined Score
	1	Liver (bulk tissue)	6.662e-163	7.194e-161	2.72	1017.19	Liver (bulk tissue)	2.363e-171	2.552e-169	2.74	1075.07
	2	Hepatocyte	3.025e-118	1.633e-116	2.44	661.17	Hepatocyte	4.413e-123	2.383e-121	2.45	689.05
uo	3	Small intestine (bulk tissue)	1.268e-78	4.564e-77	2.15	385.83	Small intestine (bulk tissue)	4.644e-82	1.672e-80	2.16	403.60
Prediction	4	Gastric epithelial cell	9.568e-70	2.583e-68	2.08	330.09	Ileum (bulk tissue)	4.053e-68	1.094e-66	2.04	316.85
e Pre	5	Ileum (bulk tissue)	4.833e-67	1.044e-65	2.05	313.59	Lung (bulk tissue)	1.365e-61	2.948e-60	1.99	278.23
Type	6	Lung (bulk tissue)	5.792e-58	1.042e-56	1.97	259.88	Gastric epithelial cell	1.754e-59	3.158e-58	1.97	266.04
Tissue	7	Colon (bulk tissue)	1.893e-53	2.921e-52	1.93	234.18	Colon (bulk tissue)	2.340e-53	3.610e-52	1.91	231.44
Ţ	8	Gastric tissue (bulk)	4.762e-46	6.428e-45	1.85	193.58	Gastric tissue (bulk)	3.668e-47	4.952e-46	1.85	197.74
	9	Omentum	3.685e-39	4.422e-38	1.78	157.60	Omentum	6.260e-45	7.512e-44	1.83	185.93
	10	Amniotic fluid	1.454e-23	1.570e-22	1.59	83.40	Skin (bulk tissue)	5.090e-28	5.497e-27	1.63	102.71
	1	HEPG2	9.067e-83	1.133e-80	2.16	407.91	HEPG2	1.419e-75	1.774e-73	2.08	358.54
	2	HUH7	5.774e-52	3.609e-50	1.90	223.63	HUH7	5.473e-42	3.421e-49	1.87	216.27
_	3	НЕРЗВ	1.702e-41	7.091e-40	1.79	168.03	НЕРЗВ	9.101e-42	3.754e-40	1.78	167.99
ictior	4	CFPAC1	1.049e-38	3.278e-37	1.76	153.90	CFPAC1	2.518e-38	7.870e-37	1.74	150.72
Prediction	5	CAPAN1	5.244e-36	1.311e-34	1.73	140.51	MCF10	2.035e-33	5.088e-32	1.69	126.93
	6	A549	1.156e-29	2.409e-28	1.65	110.23	CAPAN1	3.661e-32	7.626e-31	1.67	121.00
Cell Type	7	BXPC3	7.111e-28	1.270e-26	1.63	102.00	A549	7.477e-32	1.335e-30	1.67	119.54
	8	MCF10	2.724e-25	4.257e-24	1.60	90.38	BXPC3	4.377e-27	6.840e-26	1.61	97.69
	9	RT4	1.230e-23	1.709e-22	1.58	83.09	RT4	1.444e-24	2.006e-23	1.58	86.55
	10	HT29	2.676e-22	3.345e-21	1.56	77.31	HNSCC	1.740e-23	2.175e-22	1.56	81.86

Supplemental Table 5. Gene set analysis showing terms for all genes differentially expressed between MTP564-II wild type and MTP564-TT variant hIPSC-derived hepatocyte-like cells.

source	term_name	term_id	adjusted_p_value	negative_log10_of_adjusted_p_value
REAC	Extracellular matrix organization	REAC:R-HSA-1474244	4.87E-07	6.312667258
GO:CC	extracellular matrix	GO:0031012	2.85941E-06	5.543723748
REAC	Degradation of the extracellular matrix	REAC:R-HSA-1474228	2.43072E-05	4.614264431
GO:BP	extracellular matrix organization	GO:0030198	0.000831626	3.080071732
GO:BP	extracellular structure organization	GO:0043062	0.000894227	3.048552438
REAC	Collagen formation	REAC:R-HSA-1474290	0.003136295	2.503583115
GO:BP	digestion	GO:0007586	0.004959299	2.304579689
GO:CC	collagen-containing extracellular matrix	GO:0062023	0.00516165	2.287211438
KEGG	Protein digestion and absorption	KEGG:04974	0.006978005	2.156268728
REAC	Collagen biosynthesis and modifying enzymes	REAC:R-HSA-1650814	0.014030082	1.852939779
KEGG	ECM-receptor interaction	KEGG:04512	0.014057765	1.852083733
REAC	ECM proteoglycans	REAC:R-HSA-3000178	0.016110075	1.792902441
TF	Factor: slug; motif: NRCAGGTGCR; match class: 1	TF:M12259_1	0.027606305	1.558991718

Supplemental Table 6. Gene set analysis showing terms for genes upregulated in MTP564-II wild type hIPSC derived hepatocyte-like cells compared to MTP564-TT variant hIPSC-derived hepatocyte-like cells.

source	term_name	term_id	adjusted_p_value	negative_log10_of_adjusted_p_value
GO:CC	midbody	GO:0030496	0.014234541	1.846656538
REAC	Resolution of Sister Chromatid Cohesion	REAC:R-HSA-2500257	0.018667177	1.728921362
REAC	Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal	REAC:R-HSA-141444	0.023621746	1.626688011
REAC	Amplification of signal from the kinetochores	REAC:R-HSA-141424	0.023621746	1.626688011
GO:CC	spindle	GO:0005819	0.026656468	1.5741974

Supplemental Table 7. Gene set analysis showing terms for genes upregulated in MTP564-TT variant hIPSC derived hepatocyte-like cells compared to MTP564-II wild type hIPSC-derived hepatocyte-like cells.

source	term_name	term_id	adjusted_p_value	negative_log10_of_adjusted_p_value
REAC	Extracellular matrix organization	REAC:R-HSA-1474244	0.000145038	3.838517822
REAC	Degradation of the extracellular matrix	REAC:R-HSA-1474228	0.000353562	3.451534414
REAC	ECM proteoglycans	REAC:R-HSA-3000178	0.002952027	2.529879617
GO:BP	extracellular matrix organization	GO:0030198	0.008885339	2.051326005
GO:BP	extracellular structure organization	GO:0043062	0.009318155	2.030670061
HP	Abnormal cardiovascular system physiology	HP:0011025	0.014922899	1.826146793
KEGG	ECM-receptor interaction	KEGG:04512	0.01921473	1.71636572
KEGG	Focal adhesion	KEGG:04510	0.027077396	1.567393098
WP	Focal Adhesion	WP:WP306	0.030961443	1.509178802
HP	Osteoporosis	HP:0000939	0.038409054	1.415566389
HP	Abnormality of skin physiology	HP:0011122	0.043372457	1.362785975
HP	Abnormality of humoral immunity	HP:0005368	0.043717346	1.35934621
HP	Abnormal vascular physiology	HP:0030163	0.04508747	1.345944131

Supplemental Figures

Supplementary Figure 1. Serum cholesterol levels and free fatty acid levels in study participants. Participants grouped according to age and gender matching with family member (Fig. 1a and Supplemental Table 3). Genes are shown in parentheses where participant is homozygous for other effect alleles: *PNPLA3* rs738409; *TM6SF2* rs58542926). **A** Fasting cholesterol. **B** Cholesterol level approx. 2h after eating standard study meal. **C** Free fatty acid levels in males. **D** Free fatty acid levels in females. NAFLD= non-alcoholic fatty liver disease; HV=healthy volunteer; FL=fatty liver. *PNPLA3* (rs738409) variant homozygotes (148-MM) and *TM6SF2* (rs58542926) variant homozygotes (128-KK) are indicated.

Supplementary Figure 2. Lipoprotein-associated triglyceride levels in study participants before and after a fatty meal. Participants are described in Supplemental Table 1. A Serum VLDL-triglycerides in MTP564-IT family member K and matched control participants: 6 (HV) and 7 (NAFLD patient). B Chylomicron-triglycerides in participants K, 6 and 7. C VLDL-triglyceride in MTP564-II (wild type) family member M and matched control participants: 8 (HV) and 9 (NAFLD patient). D Chylomicron-triglycerides in participants M, 8 and 9. E VLDL-triglycerides in MTP564-IT family member Q and matched control participants: 10 (HV) and 11 (NAFLD patient). F Chylomicron-triglycerides in participants Q, 10 and 11. *PNPLA3* (rs738409) variant homozygote (148-MM) is indicated. HV=healthy volunteer; NAFLD=non-alcoholic fatty liver disease.

Supplementary Figure 3. Lipoprotein-associated cholesterol levels in study participants before and after a high fat meal. Participants are described in Supplemental Table 1. A VLDL-associated cholesterol levels in MTP564-TT family member F with cirrhosis and matched control participants: 1 (HV), 2 and 3 (NAFLD patients). B Chylomicron-associated cholesterol in participants F, 1, 2 and 3. C VLDL-cholesterol in MTP564-TT family member J with liver transplantand matched control participants: 4 (HV) and 5 (NAFLD patient). D Chylomicron-associated cholesterol in participants J, 4 and 5. E VLDL-associated cholesterol levels in MTP564-IT family member K with NAFLD and matched control participants: 6 (HV) and 7 (NAFLD patient). F Chylomicron-associated cholesterol in participants K, 6 and 7. G VLDL-associated cholesterol levels in MTP564-II (wild type) family member M and matched control participants 8 (HV) and 9 (NAFLD patient). H Chylomicron-associated cholesterol in participants M, 8 and 9. I VLDL-associated cholesterol levels in MTP564-IT family member Q and matched control participants 10 (HV) and 11 (NAFLD patient). J Chylomicron-associated cholesterol in participants Q, 10 and 11.

TM6SF2 (rs58542926) variant homozygote (128-KK) and *PNPLA3* (rs738409) variant homozygotes (148-MM) are indicated. HV=healthy volunteer; NAFLD=non-alcoholic fatty liver disease.

Supplementary Figure 4 Blood biomarker levels in family members after consuming a fatty meal. A Fasting blood glucose. B Insulin levels.

PNPLA3 (rs738409) variant homozygotes (148-MM) and *TM6SF2* (rs58542926) variant homozygotes (128-KK) are indicated. HV=healthy volunteer; NAFLD=non-alcoholic fatty liver disease.

	200µm	B D0 D14	200μm D5 D7 D7 D46 D22 D46
С	MTTP ^(WT/WT)	MTTP ^(VAR/VAR)	E MTTP ^(WT/WT)
	200µт		
D	MTTP ^(WT/WT)	MTTP ^(VAR/VAR)	
	DCT3/4	OCT3/4	$\mathbf{F} \qquad \underbrace{MTTP^{(VAR/VAR)}}_{\frac{1}{2}} \underbrace{\mathbf{F}}_{\frac{1}{2}} \underbrace{\mathbf{F}}_{$
	DAPI	DAPI	B B

Supplementary Figure 5. Characteristics of hiPSCs derived from donor skin biopsy. **a**, Light microscopy showing representative skin biopsy fibroblast outgrowth at day 9, 17, 28 and 32. **b**, Light microscopy showing representative images of fibroblast reprogramming at day 0, 5, 7, 14, 22 and 46 post viral transduction. Red arrows indicate emerging hIPSC colonies. **c**, Light microscopy showing representative pictures of reprogrammed *MTTP*^(WT/WT) and *MTTP*^(VAR/VAR) hIPSC cultures. **d**, Immunocytochemistry showing expression of pluripotency markers in *MTTP*^(WT/WT) and *MTTP*^(VAR/VAR) hiPSCs. **e**, Karyotype of *MTTP*^(WT/WT). **f**, Karyotype of *MTTP*^(VAR/VAR) hiPSCs.

Supplementary Figure 6. Differentiation of *MTTP*(*WT*/*WT*) **and** *MTTP*(*VAR*/*VAR*) **hiPSCs into multiple germ layers. A** Expression of mesodermal genes following mesoderm differentiation of *MTTP*(*WT*/*WT*) and *MTTP*(*VAR*/*VAR*) hiPSCs by immunocytochemistry with MESP1, GATA4 and DAPI staining. **B** Expression of ectoderm genes following ectoderm differentiation of *MTTP*(*WT*/*WT*) and *MTTP*(*VAR*/*VAR*) hiPSCs by immunocytochemistry with Nestin, SOX2 and DAPI staining.

Supplementary Figure 7. Differentiation of *MTTP*(*WT*/*WT*) **and** *MTTP*(*VAR*/*VAR*) **hiPSCs into mature HLCs. A** Representative light microscopy images of *MTTP*(*WT*/*WT*) and *MTTP*(*VAR*/*VAR*) hiPSCs as they differentiate into HLCs including undifferentiated cells (Day 0), definitive endoderm (Day 3), foregut endoderm (Day 7), hepatoblast (Day 11) and 'hepatocytes' (Day 21). B Immunocytochemistry showing expression of hepatocyte markers in *MTTP*(*WT*/*WT*) and *MTTP*(*VAR*/*VAR*) hiPSC derived HLCs. **C** Light microscopy of Oil-Red-O stained *MTTP*(*WT*/*WT*) and *MTTP*(*VAR*/*VAR*) HLCs.