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Supplementary Material 1: Pathological examination

In the pathology, a distorted (micro)architecture of liver tissue was the common feature of the
included lesions. Histomorphology often combined with (immuno)histochemistry served the final
diagnosis. Hepatocellular lesions with loss of portal tracts, cell atypia, thick trabeculae (loss of
reticulin fibers), pseudoglandular transformation, isolated small arterial branches, and capillarization
of the sinusoidal areas (CD34 positive) with supportive immunohistochemistry (glypican-3, glutamine
synthetase, HSP-70), were classified as HCC (1). Cases where the reticulin fibers were maintained, the
pseudoglandular transformation and the cell atypia were absent or minimal, and the
immunohistochemistry (glypican-3, HSP-70) was negative, were classified as HCA (1). Lesions
composed of non-organoid arranged glandular structures, localized at the periphery of the second-
order bile ducts with an expression of keratin 7 and 19, were classified as iCCA, either conventional
or cholangiolocarcinoma (2). Non-neoplastic lesions, composed of hyperplastic hepatocellular
nodules separated by fibrotic septa, creating a microscopic image of “localized cirrhosis” and often
centrally a scar, were classified as FNH. Glutamine synthetase showed the pathognomonic “map-like”

pattern of immunohistochemical expression (anastomosing groups of positively stained hepatocytes

(3)).



Supplementary Material 2: Radiomics feature extraction

This supplementary material is similar to (4, 5), but details relevant for the current study are
highlighted.

A total of 564 radiomics features were used in this study. All features were extracted using
the defaults for MRI scans from the Workflow for Optimal Radiomics Classification (WORC) (6), which
internally uses the PREDICT (7) and PyRadiomics (8) feature extraction toolboxes. An overview of all
features is depicted in Supplementary Table S2. For details on the mathematical formulation of the
features, we refer the reader (9). More details on the extracted features can be found in the
documentation of the respective toolboxes, mainly the WORC documentation (10).

For MRI scans, the images are by default normalized in WORC as the scans do not have a
fixed unit and scale, contrary to e.g. computed tomography (Hounsfield units). Normalization is
performed using z-scoring, i.e., subtracting the mean and dividing by the standard deviation. As the
datasets used in this study exhibit substantial heterogeneity in the acquisition protocols, the mean
and standard deviation were computed based on the segmentation of the regions of interest (ROls),
i.e., the lesions, and not on the full image, as the latter is more sensitive to acquisition variations. The
images were not resampled, as this would result in interpolation errors, especially in the axial
direction due to the substantial differences in slice thicknesses. The code to extract the features has
been published open-source (11).

The features can be divided in several groups. Thirteen intensity features were extracted
using the histogram of all intensity values within the ROIls and included several first-order statistics
such as the mean, standard deviation and kurtosis. These describe the distribution of intensities
within the lesion. Thirty-five shape features were extracted based only on the ROI, i.e. not using the
image, and included shape descriptions such as the volume, compactness and circular variance.
These describe the morphological properties of the lesion. Nine orientation features were used,
describing the orientation of the ROI, i.e. not using the image. Lastly, 507 texture features were

extracted using Gabor filters (156 features) (9), Laplacian of Gaussian filters (39 features) (9), vessel



(i.e. tubular structures) filters (39 features) (12), the Gray Level Co-occurrence Matrix (144 features)
(9), the Gray Level Size Zone Matrix (16 features) (9), the Gray Level Run Length Matrix (16 features)
(9), the Gray Level Dependence Matrix (14 features) (9), the Neighbourhood Grey Tone Difference
Matrix (5 features) (9), Local Binary Patterns (39 features) (13), and Local Phase filters (39 features)
(14, 15). These features describe more complex patterns within the lesion, such as heterogeneity,
presence of blob-like structures, and presence of line patterns.

Most of the texture features include parameters to be set for the extraction. The values of
the parameters that will result in features with the highest discriminative power for the classification
at hand (i.e., malignant versus benign) are not known beforehand. Including these parameters in the
workflow optimization, see Supplementary Material 3, would lead to repeated computation of the
features, resulting in a redundant increase in computation time. Therefore, alternatively, these
features are extracted at a range of parameters as is default in WORC. The hypothesis is that the
features with high discriminative power will be selected by the feature selection methods and/or the
machine learning methods as described in Supplementary Material 3. The parameters used are
described in Supplementary Table S2.

The variations in the slice thickness due to the heterogeneity in the acquisition protocols may
cause feature values to be dependent on the acquisition protocol. Moreover, the slice thickness is
substantially larger than the pixel spacing. Hence, extracting robust 3D features may be hampered by
these variations, especially for low resolutions. To overcome this issue, all features were extracted
per 2D axial slice and aggregated over all slices, which is default in WORC. Afterwards, several first-
order statistics over the feature distributions were evaluated and used in the machine learning

approach.



Supplementary Material 3: Radiomics decision model creation

This appendix is similar to (4, 5), but details relevant for the current study are highlighted.

The Workflow for Optimal Radiomics Classification (WORC) toolbox (6) makes use of
automated machine learning to create the optimal performing workflow from a variety of algorithms.
Besides deciding whether to use an algorithm, most algorithms require hyperparameters, i.e.,
parameters that need to be set before the actual learning step, to be tuned to enhance the
performance. WORC defines a workflow as a specific sequential combination of algorithms and their
respective hyperparameters. In WORC, the radiomics workflow is split into the following
components: image and segmentation preprocessing, feature extraction, feature and sample
preprocessing, and machine learning. For each component, a collection of algorithms and their
associated hyperparameters is included. Given this search space, WORC uses automated machine
learning to find the optimal solution. The code to use WORC for creating the decision models in this
specific study has been published open-source (11).

The workflows could be constructed from the following default search space in WORC, which
components can only be combined in the order listed below:

1. Features selection: a group-wise search, in which specific groups of features (i.e., intensity,
shape, and the subgroups of texture features as defined in Supplemental Material 2 and
Supplementary Table S2) are selected or deleted. To this end, each feature group had an on/off
variable which is randomly activated or deactivated, which were all included as hyperparameters
in the optimization.

2. Feature imputation: when a feature could not be computed, e.g. a lesion is too small for a
specific feature to be extracted, a feature imputation algorithm is used to estimate replacement
values for the missing values. Strategies for imputation included 1) the mean; 2) the median; 3)

the mode; 4) a constant (default: zero); and 5) a nearest neighbor approach.



Feature selection: a variance threshold, in which features with a low variance (<0.01) are
removed. This method was always used, as this serves as a feature sanity check with almost zero
risk of removing relevant features.

Feature scaling was performed to make all features have the same scale, as otherwise the
machine learning methods may focus only on those features with large values. This was done
through z-scoring, i.e., subtracting the mean value followed by division by the standard
deviation, for each individual feature. A robust version of z-scoring was used, in which outliers,
i.e., values below the 5th percentile or above the 95th percentile, were excluded from computing
the mean and variance.

Feature selection: optionally, the RELIEF method (16), which ranks the features according the
differences between neighboring samples. Features with more differences between neighbors of
different classes (i.e., malignant versus benign) are considered higher in rank.

Feature selection: optionally, features are selected by training a machine learning model and
selecting features that are regarded important by the model. Hence the used model should be
able to give the features an importance weight. Included model choices are LASSO, logistic
regression, and a random forest.

Dimensionality reduction: optionally, principal component analysis (PCA) is used, in which either
only those linear combinations of features were kept which explained 95% of the variance in the
features or a limited number of components (between 10 — 50).

Feature selection: optionally, individual feature are selected through univariate testing. To this
end, for each feature, a Mann-Whitney U test was performed to test for significant differences in
distribution between the labels (i.e., malignant versus benign). Afterwards, only features with a
p-value above a certain threshold were selected.

Resampling: optionally, a various resampling strategy could be used, which are used to overcome
class imbalances and reduce overfitting on specific training samples. These included various

methods from the imbalanced-learn toolbox (17): random over-sampling, random under-



sampling, near-miss resampling, the neighborhood cleaning rule, ADASYN, and SMOTE (regular,
borderline, Tomek and the edited nearest neighbors variant).

10. Machine learning: lastly, a machine learning method is used to determine a decision rule to
distinguish the classes. Methods included were; 1) logistic regression; 2) support vector
machines; 3) random forests; 4) naive Bayes; 5) linear discriminant analysis; 6) quadratic
discriminant analysis; 7) AdaBoost (18); and 8) extreme gradient boosting (19).

By default in WORC, all model construction and optimization was performed on the training
set in order to prevent overfitting on the test dataset. To prevent overfitting on the training dataset,
a 5x random-split stratified cross-validation (20, 21) was performed within the training dataset as
well, using 85% for model training and 15% for model validation, see Supplementary Figure S1.

WORC states the radiomics workflow as a combined algorithm selection and hyperparameter
optimization problem (CASH), as algorithm selection and hyperparameter optimization are often not
independent (22). Within the training dataset, CASH optimization is performed by testing thousand
pseudo-randomly generated radiomics workflows from the above search space. These are trained on
the five training datasets in the 5x random-split training-validation cross-validation, and ranked
according to their mean performance on the five validation datasets. As performance metric, the

weighted F1l-score is used, which is the harmonic average of the precision and recall.

Using only the single workflow that on average performs best on the validation datasets may
result in poor generalization due to overfitting on the validation datasets. Hence, an ensemble was
constructed by combining the workflows that perform best on the validation datasets. Ensembling

was done using the default of WORC by averaging the posteriors of the 100 best workflows.

The following pseudo code illustrates the algorithm of WORC:

- For each 100x random-split training-test cross-validation iteration:

- Do: Construct the training dataset by randomly selecting 80% of the patients.



- Do: On this training dataset, define 5x random-split cross-validation splits, selecting in
each iteration 85% of the patients for training and 15% for validation.
- Do: Pseudo-randomly sample 1,000 workflows from the search space.
- For each of the 1,000 sampled workflows:
= Do: Train the workflow on the five training datasets in the 5x random-split cross-
validation.
= Do: Compute the mean weighted Fl-score on the corresponding five validation
datasets in the 5x random-split cross-validation.
- Do: Rank the 1,000 workflows, retrain the best 100 workflows on the full training dataset
and combine them in an ensemble.

|II

- Do: Evaluate “the model”, i.e., the ensemble of the best 100 workflows as trained on the
training dataset, on the test dataset, i.e., the remaining 20% of the patients that were
not included in the training dataset.

The largest experiments in this study consists of executing 500,000 workflows (1,000 pseudo-
randomly generated workflows, times a 5x train-validation cross-validation, times 100x train-test
cross-validation for the internal validation), which can be parallelized. The computation time of
training or testing a single workflow is on average less than a second, depending on the size of the
dataset both in terms of samples (i.e. patients) and features. The largest experiment in this study;, i.e.
the internal validation on dataset A, had a computation time of approximately 24 hours on a 32 CPU
core machine. The contribution of the feature extraction to the computation time was negligible.

The code for the radiomics feature extraction and model creation, including more details, has

been published open-source (11).
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Supplementary Figure S1. Visualization of evaluation setups. (A) The 100x random-split cross-validation used in the
internal validation; (B) and the 1,000x bootstrap resampling in the external validations. Both include an internal random-

split cross-validation within the training dataset for the model optimization.
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Supplementary Table S1. Overview of univariate testing of radiomics features. Per dataset (A, B, and C), the statistical
significance of the difference between the malignant and benign lesions was assessed using a Mann-Whitney U test for
continuous variables, and a Chi-square test for discrete variables. Only the features that showed statistically significant
differences in dataset A are include. All p-values were corrected for multiple testing by multiplying the p-values with the
total number of tests (564). Statistically significant p-values and names of that showed statistically significant differences in
all three datasets are given in bold.

Feature name p-value A p-value B p-value C
tf_kurtosis_sigmal 9.26x1010 1.80x10> 1.00
tf_mean_sigmal 1.06x108 1.27x10* 1.00
tf_LBP_std_R3_P12 3.19x10°8 8.60x10* 1.00
tf_LBP_quartile_range_R8_P24 1.56x107 0.0026 7.77x103
tf_peak_sigmal 2.74x107 0.0028 1.00
tf_median_sigmal 8.27x107 0.0035 1.00
tf_LBP_skewness_R8_P24 1.33x10¢ 0,0067 2,16x104
tf_LBP_kurtosis_R8_P24 1.51x10°% 0.013 9.44x10°5
tf_LBP_mean_R8_P24 1.53x106 0.014 2.20x10
tf_LBP_skewness_R15_P36 5.18x10°5 0.13 8.70x10
tf_LBP_mean_R15_P36 6.18x10°5 0.14 9.92x104
tf_mean_sigmal0 8.40x10% 0.94 1.00
tf_LBP_kurtosis_R15_P36 9.02x10° 0.19 4.75x10*
tf_LBP_median_R3_P12 1.29x104 0.086 0.27
sf_area_min_2D 2.29x10*4 0.67 1.00
tf_Gabor_std_F0.2_A0.79 3.65x10* 6.42x10°5 0.50
tf_Gabor_kurtosis_F0.05_A0.79 6.24x104 1.00 1.00
tf_LBP_skewness_R3_P12 8.44x10* 0.28 0.17
tf_Gabor_quartile_range_F0.2_A0.79 0.001 9.71x105 0.11
tf_median_sigmal0 0.001 0.51 1.00
tf_Gabor_quartile_range_F0.2_A1.57 0.001 3.79x103 1.00
tf_Gabor_max_F0.2_A0.79 0.004 2.26x10* 0.24
tf_Gabor_std_F0.2_A0.0 0.006 0.001 0.18
tf_Gabor_std_F0.2_A1.57 0.008 0.002 1.00
tf_Gabor_range_F0.2_A0.79 0.008 6.92x10 0.69
tf_Gabor_quartile_range_F0.2_A2.36 0.009 6.92x10 0.12
tf_LBP_mean_R3_P12 0.012 1.00 0.45
tf_kurtosis_sigmal0 0.012 0.73 1.00
tf_std_sigmal 0.014 0.44 1.00
tf_LBP_std_R15_P36 0.015 1.00 0.002
tf_Gabor_max_F0.2_A1.57 0.015 0.001 1.00
tf_Gabor_median_F0.5_A0.0 0.015 1.00 1.00
sf_area_avg_2D 0.015 0.010 1.00
tf_Gabor_min_F0.2_A0.79 0.017 0.005 1.00
tf_LBP_std_R8_P24 0.019 1.00 8.80x10
tf_LBP_quartile_range_R15_P36 0.020 1.00 0.084
tf_Gabor_quartile_range_F0.2_A0.0 0.020 5.80x10* 0.090
sf_area_max_2D 0.023 0.011 1.00
sf_shape_Flatness 0.038 1.00 1.00




of _ COM_y

tf_Frangi_inner_energy_SR(1.0. 10.0)_SS2.0
tf_GLDM_SmallDependenceHighGrayLevelEmphasis
tf_max_sigmal0

tf_Frangi_edge_energy SR(1.0. 10.0)_SS2.0
tf_Frangi_full_energy SR(1.0. 10.0)_SS2.0

0.038
0.042
0.046
0.046
0.049
0.049

0.69
0.033
0.020

1.00
0.081
0.081

1.00
1.00
1.00
1.00
1.00
1.00

*Abbreviations: tf: texture feature; sf: shape features; of: orientation feature.
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Supplementary Table S2. Overview of the 564 radiomics features used in this study. GLCM features were calculated in four different directions (0, 45, 90, 135 degrees) using 16 gray levels and pixel distances of 1 and
3. LBP features were calculated using the following three parameter combinations: 1 pixel radius and 8 neighbours, 2 pixel radius and 12 neighbours, and 3 pixel radius and 16 neighbours. Gabor features were
calculated using three different frequencies (0.05, 0.2, 0.5) and four different angles (0, 45, 90, 135 degrees). LoG features were calculated using three different widths of the Gaussian (1, 5 and 10 pixels). Vessel
features were calculated using the full mask, the edge, and the inner region. Local phase features were calculated on the monogenic phase, phase congruency and phase symmetry.

Histogram LoG Vessel GLCM (MS) Gabor NGTDM LBP

(13 features) (13*3=39 features) (12*3=39 features) (6*3*4*2=144 features) (13*4*3=156 features) (5 features) (13*3=39 features)
min min min contrast (normal, MS mean + std) min busyness min

max max max dissimilarity (normal, MS mean + std) max coarseness max

mean mean mean homogeneity (normal, MS mean + std) mean complexity mean
median median median angular second moment (ASM) (normal, MS mean +std) median contrast median

std std std energy (normal, MS mean + std) std strength std
skewness skewness skewness correlation (normal, MS mean + std) skewness skewness
kurtosis kurtosis kurtosis kurtosis kurtosis
peak peak peak peak peak

peak position peak position peak position peak position peak position
range range range range range
energy energy energy energy energy
quartile range quartile quartile quartile range quartile range
entropy entropy entropy entropy entropy
GLSZM GLRM GLDM Shape Orientation Local phase
(16 features) (16 features) (14 features) (35 features) (9 features) (13*3=39 features)
Gray Level Non Uniformity Gray Level Non Uniformity Dependence Entropy compactness (mean + std) theta_x min

Gray Level Non Uniformity Normalized Gray Level Non Uniformity Normalized Dependence Non-Uniformity radial distance (mean + std) theta_y max

Gray Level Variance Gray Level Variance Dependence Non-Uniformity roughness (mean + std) theta_z mean

High Gray Level Zone Emphasis High Gray Level Run Emphasis Normalized convexity (mean + std) COM index x median
Large Area Emphasis Long Run Emphasis Dependence Variance circular variance (mean + std) COM index y std

Large Area High Gray Level Emphasis Long Run High Gray Level Emphasis Gray Level Non-Uniformity principal axes ratio (mean + std) COM index z skewness
Large Area Low Gray Level Emphasis Long Run Low Gray Level Emphasis Gray Level Variance elliptic variance (mean + std) COM x kurtosis

Low Gray Level Zone Emphasis Low Gray Level Run Emphasis High Gray Level Emphasis solidity (mean + std) COMy peak
SizeZoneNonUniformity RunEntropy Large Dependence Emphasis area (mean, std, min + max COMz peak position
SizeZoneNonUniformityNormalized RunLengthNonUniformity Large Dependence High Gray Level volume (total, mesh, volume) range
SmallAreaEmphasis RunLengthNonUniformityNormalized Emphasis elongation energy
SmallAreaHighGrayLevelEmphasis RunPercentage Large Dependence Low Gray Level flatness quartile
SmallAreaLowGrayLevelEmphasis RunVariance Emphasis least axis length entropy
ZoneEntropy ShortRunEmphasis Low Gray Level Emphasis major axis length

ZonePercentage ShortRunHighGrayLevelEmphasis Small Dependence Emphasis minor axis length

ZoneVariance

ShortRunLowGrayLevelEmphasis

Small Dependence High Gray Level
Emphasis
Small Dependence Low Gray Level
Emphasis

maximum diameter 3D
maximum diameter 2D (rows,
columns, slices)

sphericity

surface area

surface volume ratio

*Abbreviations: COM: center of mass; GLCM: gray level co-occurrence matrix; MS: multi slice; NGTDM: neighborhood gray tone difference matrix; GLSZM: gray level size zone matrix; GLRLM: gray level run length

matrix; LBP: local binary patterns; LoG: Laplacian of Gaussian; std: standard deviation.



