
Supplementary Materials and Methods 
 
Ethics statement. All human research was approved by the relevant institutional review 
boards and conducted according to the Declaration of Helsinki. All participants provided 
written informed consent. 
 
Study-level analyses. Individuals were assayed with a range of GWAS genotyping arrays, 
with sample and SNV quality control undertaken within each study (Tables S2 and S3). 
Samples were pre-phased and imputed up to reference panels from the 1000 Genomes 
Project (phase 1, March 2012 release; phase 3, October 2014 release)1,2, Haplotype 
Reference Consortium3, or population-specific whole-genome sequencing4–6 (Table S3). 
SNVs with poor imputation quality (r2<0.3 or info<0.4) and/or minor allele count <5 were 
excluded from downstream association analyses (Table S3). Association with GDM was 
evaluated in a regression framework, under an additive model in the dosage of the minor 
allele, with adjustment for principal components and other study-specific covariates to 
minimize the population stratification effects (Table S3). Phenotype definition and covariate 
adjustments were not harmonised between GWAS because of differences in individual 
study design and availability of non-genetic risk factor information. Analyses accounted for 
structure (population stratification and/or familial relationships) by: (i) excluding related 
samples and adjustment for principal components derived from a genetic relatedness 
matrix (GRM) as additional covariates in the regression model; or (ii) incorporating a 
random effect for the GRM in a mixed model (Table S3). Allelic effects and corresponding 
standard errors that were estimated from a linear (mixed) model were converted to the log-
odds scale7. Study-level association summary statistics (p-values and standard error of allelic 
effects) were corrected for residual structure by means of genomic control8 if the inflation 
factor was >1 (Table S3). 
 
Trans-ancestry meta-analyses. To account for the different reference panels used for 
imputation across GWAS, we restricted our analyses to autosomal bi-allelic SNVs from the 
1000 Genomes Project reference panel (phase 3, October 2014 release)1 that are also 
present in the Haplotype Reference Consortium reference panel3. We considered only those 
SNVs with MAF >0.5% in haplotypes in at least one of the five ancestry groups represented 
in the 1000 Genomes Project (phase 3, October 2014 release).  
 Our primary trans-ancestry analysis utilised meta-regression, implemented in the 
MR-MEGA software, which allows for allelic effect heterogeneity between GWAS that is 
correlated with ancestry9. We first constructed a distance matrix of mean effect allele 
frequency differences between each pair of GWAS across a subset of SNVs reported in all 
studies. We implemented multi-dimensional scaling of the distance matrix to obtain three 
principal components that defined axes of genetic variation to separate GWAS from the five 
ancestry groups (Figure S1). For each SNV, we then modelled allelic log-ORs across GWAS in 
a linear regression framework, weighted by the inverse of the variance of the effect 
estimates, incorporating the three axes of genetic variation as covariates. Under this model, 
we tested for association with GDM allowing for allelic effect heterogeneity between GWAS 
that is correlated with ancestry. We corrected the meta-regression association p-values for 
inflation due to residual structure between GWAS using genomic control adjustment. We 
considered only those SNVs reported ≥50% of the total effective sample size in downstream 
analyses. 



 For each SNV, we also conducted fixed-effects meta-analysis across GWAS under an 
inverse-variance weighting of allelic log-ORs using GWAMA10. We corrected standard errors 
of the resulting effect estimates for inflation due to residual structure between GWAS by 
genomic control adjustment.  
 
Defining GDM loci. We identified lead SNVs attaining genome-wide significant evidence of 
association (p<5x10-8) in the trans-ancestry meta-regression that were separated by at least 
500kb. Loci were defined by the genomic interval mapping 500kb up- and downstream of 
each lead SNV. 
 
Assessing evidence for multiple distinct association signals at GDM loci. Each GWAS was 
first assigned to one of the ancestry groups (Table S2) represented in the 1000 Genomes 
Project reference panel (phase 3, October 2014 release)1. Haplotypes in the panel that were 
specific to that ancestry group were used as a reference for LD between SNVs across loci for 
the GWAS in approximate conditional analyses implemented in GCTA11. For each locus, we 
applied GCTA to each GWAS to condition on the lead SNV at the locus, using the study-level 
association summary statistics and matched LD reference. Allelic log-ORs from the 
approximate conditional analyses across GWAS were modelled in the trans-ancestry meta-
regression framework implemented in MR-MEGA9, incorporating the three axes of genetic 
variation as covariates, and weighted by the inverse of the variance of the effect estimates. 
The meta-regression association p-values were corrected for inflation due to residual 
structure between GWAS by using the same genomic control adjustment as in the 
unconditional analysis. If no SNVs attained genome-wide significant (p<5x10-8) evidence of 
residual GDM association in the meta-regression, we concluded that there was a single 
association signal at the locus.  
 
Ancestry-specific meta-analyses. We aggregated association summary statistics across 
GWAS from the same ancestry group via fixed-effects meta-analysis based on inverse-
variance weighting of allelic log-OR to obtain effect size estimates using GWAMA10. We 
corrected association p-values and standard errors of allelic effects from each ancestry 
group for residual inflation due to structure between GWAS by genomic control adjustment 
if the inflation factor was >1. We estimated the mean effect allele frequency across GWAS 
from each ancestry group, weighted by the effective sample size of the study. 
 
Investigating the source of heterogeneity in allelic effects on GDM. We extended the meta-
regression model implemented in the MR-MEGA software to investigate the impact of 
ancestry and the use of a universal blood-based test to define GDM status on heterogeneity 
in allelic effects on GDM at lead SNVs. We modelled allelic log-ORs across GWAS in a linear 
regression framework, weighted by the inverse of the variance of the effect estimates, 
incorporating a covariate indicating whether GDM status was defined by a universal blood-
based test (Table S1) in addition to the three axes of genetic variation.  
 
Genetic risk score of T2D on GDM. We considered lead SNVs at 237 previously reported loci 
for T2D from the DIAMANTE Consortium12 obtained from a trans-ancestry meta-analysis of 
180,834 cases and 1,159,055 controls (48.9% non-European ancestry). For each of the 222 
SNVs that were reported in our trans-ancestry meta-analysis, we compared association 
summary statistics (risk allele, other allele, log-OR and p-value) for GDM and those reported 



for T2D. We excluded lead SNVs for T2D that also attained genome-wide significance for 
GDM. For the remaining SNVs, we regressed the log-ORs for GDM (weighted by their 
corresponding variances) on the log-OR for T2D, as implemented in grs.summary function13 
of the gtx package in R version 3.4.2. We estimated the percentage of GDM variance 
explained, as measured by pseudo R2. 
 
Genetic correlation between GDM and glycaemic traits. We used LD Hub14  to perform LD 
score regression15 of the European ancestry association summary statistics for GDM on 
other glycaemic traits. We included T2D16, fasting glucose17, fasting insulin17, fasting 
proinsulin17, glucose 2 h post oral glucose tolerance test (adjusted for BMI)18, HbA1c19, 
HOMA-B20 and HOMA-IR20. European ancestry association summary statistics for GDM were 
filtered so that only SNVs with minor allele frequency > 0.01 was included before 
performing the LD score regression. Genetic correlations between the different glycaemic 
traits were obtained from the LD Hub lookup centre. Visualisation was performed using the 
R package ggplot221 in R version 3.6.1. 
 
Enrichment of GDM association signals in genomic annotations. We mapped each SNV 
across the genome to three categories of functional and regulatory annotations. First, we 
considered genic regions, as defined by the GENCODE Project22, including protein-coding 
exons, and 3’ and 5’ UTRs as different annotations. Second, we considered chromatin 
immuno-precipitation sequence (ChIP-seq) binding sites for 165 transcription factors: 161 
proteins from the ENCODE Project23 and four additional factors assayed in primary 
pancreatic islets24. Third, we considered 13 unique and recurrent chromatin states, including 
promoter, enhancer, transcribed, and repressed regions, in four diabetes-relevant tissues25: 
pancreatic islets, liver, adipose, and skeletal muscle. This resulted in a total of 220 genomic 
annotations for enrichment analyses. 

We tested for genome-wide enrichment of GDM associations that map to genomic 
annotations using fGWAS26. To do this, we approximated the Bayes’ factor in favour of GDM 
association for the 𝑗th SNV by 
 

𝛬𝑗 = exp [
𝐷𝑗 −4ln𝐾𝑗

2
], 

 

where 𝐷𝑗  is the deviance across Kj contributing GWAS contributing to the trans-ancestry 

meta-regression9. We first considered each annotation separately and identified those with 
significant enrichment (p<0.05). We then used an iterative approach to identify a joint 
model of enriched annotations from this set. At each iteration, we dropped the annotation 
from the joint model that minimised the reduction in the penalised likelihood. We 
continued until no additional annotations worsened the fit of the joint model at nominal 
significance (p<0.05). We next used the cross-validation likelihood because the significance 
of parameter estimates from the penalised likelihood cannot be assessed using standard 
statistical approaches. For the selected joint model, we identified the penalty that 
maximised the cross-validation likelihood. Finally, we dropped any annotations from the 
joint model that resulted in a decrease in the cross-validation likelihood. 
 
Annotation informed fine-mapping of the HKDC1 locus. At the HKDC1 locus, we calculated 
the posterior probability of driving the GDM association for each SNV under an annotation-



informed prior model derived from the globally enriched functional and regulatory 
annotations identified by fGWAS. Specifically, for the 𝑗th SNV at the locus, the posterior 
probability 𝜋𝑗 ∝ 𝛾𝑗𝛬𝑗, where 𝛬𝑗 is the Bayes’ factor in favour of GDM association from the 

meta-regression, derived above. In this expression, the relative annotation-informed prior 
for the SNV is given by 
 

𝛾𝑗 = exp[∑ �̂�𝑘𝑘 𝑧𝑗𝑘], 

 

where the summation is over the enriched annotations, �̂�𝑘  is the estimated log-fold 
enrichment of the 𝑘th annotation from the final joint model, and 𝑧𝑗𝑘 is an indicator variable 

taking the value 1 if the 𝑗th SNV maps to the 𝑘th annotation, and 0 otherwise. We derived a 
99% credible set27 for the locus by: (i) ranking all SNVs according to their posterior 
probability 𝜋𝑗; and (ii) including ranked SNVs until their cumulative posterior probability 

attained or exceeded 0.99. 
 We conducted a look-up of 99% credible set variants at the HKDC1 locus for 
significant (q<0.05) cis-expression quantitative trait loci (eQTLs) across tissues in the GTEx 
Project28. We reported only those 99% credible variants that were the lead SNV for the eQTL 
signal.    
 
MR assessment of the effects of metabolic traits on GDM risk. We systematically searched 
the MR-Base GWAS catalogue (https://www.mrbase.org) for metabolic measures. We 
selected all subcategories of metabolites, which included “amino acid”, “carbohydrate”, 
“cofactors and vitamins”, “energy”, “fatty acid”, “keto acid”, “lipid”, “metabolite salt”, 
“metabolites ratio”, “NA”, “nucleotide”, “peptide”, “protein”, “unknown metabolite” and 
“xenobiotics”. We also selected the following subcategories of risk factors: 
“anthropometric”, “hormone”, “immune system”, “kidney” and “metal”. We identified 
European ancestry GWAS in MR-Base for each selected metabolic trait. Where more than 
one GWAS was available for a trait, we gave preference to: women-specific studies with the 
largest sample sizes and numbers of SNVs. Any GWAS undertaken only in men were 
excluded. 

For each metabolic trait with more than five genetic instruments, we conducted MR 
analyses using a “mixture of experts” (MoE) machine learning approach29. This approach 
maximises statistical power whilst minimising the impact of horizontal pleiotropy by 
combining four instrument selection approaches to 14 different MR models. The four 
approaches for selecting genetic instruments using MoE were: (i) “top hits” corresponding 
to independent variants associated at genome-wide significance (p<5x10-8, r2<0.001 using 
1000G CEU as the reference population); (ii) “directional filtration” that removed 
instruments from “top hits” that are likely to be related to the outcome through reverse 
causation using Steiger filtering30; (iii) “heterogeneity filtering” that removed instruments 
from “top hits” that make a substantial contribution to Cochran’s Q statistic (p<0.05); and 
(iv) combined “directional filtration” and “heterogeneity filtering”. The 14 MR models were: 
seven mean-based methods (inverse variance weighting with fixed effects, IVW random 
effects, MR-Egger fixed effects, MR-Egger random effects, and the three Rucker estimates), 
three median-based methods (simple, weighted and penalised median estimator), and four 
mode-based methods (simple and weighted mode, each weighted with or without the 
assumption of no measurement error in the exposure estimates). The best combination of 



instrument selection-MR method was identified using a variable predicted by MoE, scaled 
between 0 and 1, where 1 indicates best performance.  

For metabolic traits with five or fewer genetic instruments, the MoE approach could 
not be applied because many of the MR models require larger numbers of SNVs. For these 
metabolic traits, we used either the Wald ratio estimate (one SNV) or the inverse-variance 
weighted estimate (between two and five SNVs).  

All analyses were conducted in R version 3.6 using the packages “TwoSampleMR” 
(version 0.5.4) and “MRInstruments” for the MR analyses and “EpiCircos” 
(https://github.com/mattlee821/EpiCircos).  
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