Supplementary Material

Definition of kinematic and kinetic variables

The knee flexion/extension angle was calculated using Grood and Suntay's method (Grood and Suntay, 1983). The shank inclination angle θ_{shank} was defined as an angle between $e_{shank,z}$ and the global vertical axis projected to the sagittal plane of the shank's LCS (Fig. 3) as follows:

$$\theta_{shank} = \cos^{-1} \left(e_{shank,z}^{T} e_{ver,sag} \right), \tag{1}$$

where $e_{ver,sag}$ is the global vertical axis projected to the sagittal plane of the LCS of the shank (Fig. 3). A positive value indicates that the shank segment inclined anteriorly relative to the global vertical axis in the sagittal plane of the LCS of the shank.

The GRF inclination angle θ_f was defined as follows:

$$\theta_f = \cos^{-1} \left(f_{sag}^{T} e_{ver,sag} / |f_{sag}| \right), \tag{2}$$

where f_{sag} is the GRF vector projected on the sagittal plane of the LCS of the shank (Fig. 3).

The CoP anterior/posterior position relative to the shank proximal/distal axis was defined as follows:

$$r_{cop,x} = e_{shank,x}{}^{T} r_{cop}, \tag{3}$$

1

where r_{cop} is the position vector from KJC to the CoP. When $r_{cop,x} > 0$, the CoP is anterior to the shank proximal/distal axis and vice versa. The knee resultant moment vector τ was calculated using the Newton-Euler equation of motion; then, the knee resultant flexion (+)/ extension (–) moment was defined as follows:

$$\tau_y = e_{knee,y}{}^T \tau, \tag{4}$$

The knee flexion(+)/extension(-) moment due to GRF $\tau_{f,y}$ was defined as follows:

$$\tau_{f,y} = e_{knee,y}{}^{T} (r_{cop} \times f), \tag{5}$$

where f is GRF vector and (×) denotes operator of cross product.

The anterior/posterior component of the GRF vector $f_{a/p}$ relative to the shank proximal/distal axis was defined as a projection of the GRF vector f onto the shank anterior/posterior axis $e_{shank,x}$ as follows:

$$f_{\frac{a}{p}} = e_{shank,x}{}^{T}f, ag{6}$$