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Supplementary Material 
 
Image exclusion criteria 
 
As described in Han et al. [1], a neuroimaging expert at each scanning site inspected each 

image segmentation by overlaying the segmentation label of each structure on the T1-weighted 

brain scan. Additionally, study-wide statistics were collected (means and standard deviations) 

as well as histogram plots to identify non-normally distributed data and major outliers. Samples 

were marked if its FreeSurfer feature was >2.698 standard deviations away from the global 

mean. If a sample was marked as a statistical outlier, the individual site was asked to re-inspect 

the subject’s segmentation to verify that it was properly segmented. If a sample was a statistical 

outlier, yet properly segmented, it was kept in the dataset. Otherwise, the sample was removed. 

 
Quality checking and sample exclusion criteria 

For each of the participating cohorts, we excluded those participants below 18 years and above 

75 years old (if any) to focus on adult patients and controls, and to match the age range of the 

training dataset previously used to develop the ENIGMA brain age prediction model (see Han 

et al. [1] for further details on the rationale for this age range). We also checked individual 

FreeSurfer features for missing values and excluded participant samples with >10% missing 

data, suggestive of poor reliability. In addition, following calculation of brain-PAD for each 

participant, we intended to winsorize extreme brain-PAD outliers - here defined as data points 

outside the 5*interquartile range (IQR) within each cohort. However, we identified no outliers 

outside the 5*IQR at each cohort.  

 

Cohorts with less than 5 participants per group with respect to diagnosis (SZ/HC) or sex 

(males/females) were excluded from subsequent analyses. As a result of this criterion, one 

cohort was excluded from the primary case-control analysis due to a HC sample size of less 

than 5, but SZ data from this site (n=11) contributed to additional analyses (i.e., within the SZ 

group). Note that for any given clinical characteristic assessed (age of onset, length of illness, 

symptom severity scores, and antipsychotic use and dose), some of the participating cohorts 
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had no data available (see Supplementary Table S2 for more details) and thus were 

automatically excluded from additional analyses. In addition, cohorts with available data on less 

than 5 SZ patients per clinical characteristic (or subgroups for antipsychotic use) were excluded. 

This resulted in 6 cohorts being excluded from additional analyses on the effects of 

antipsychotic use.  

 
Data harmonization for clinical characteristics  

 
Symptom severity was assessed using the Scale for the Assessment of Negative Symptoms 

(SANS) [2], the Scale for the Assessment of Positive Symptoms (SAPS) [3], and the Positive 

and Negative Syndrome Scale (PANSS) [4]. To harmonise symptom severity scores, we 

decided to convert all positive (i.e., PANSS-Positive and total SAPS composite scores) and 

negative (i.e., PANSS-Negative and total SANS composite scores) to Global SAPS and Global 

SANS (summary) scores, respectively. These conversions were made based on 

recommendations by Andersen [2, 3] and using the algorithms published in van Erp et al. [5]. In 

addition, data on medication dose for typical and atypical antipsychotics were harmonised based 

on chlorpromazine (CPZ) dose equivalents, as described by Woods 

(www.scottwilliamwoods.com/files/%0DEquivtext.doc)  

 
 
Model validation 
 
As described in Han et al. [1], tenfold cross-validation was performed in the training sample of 

healthy controls (from the ENIGMA MDD working group) to assess model performance. To 

quantify model performance, we calculated the (1) mean absolute error (MAE) between 

predicted brain age and chronological age, (2) Pearson correlation coefficients between 

predicted brain age and chronological age(r), and (3) the proportion of the variance explained 

by the model (R2). The accuracy of the model was further validated using a hold-out dataset of 

healthy controls from the same scanning sites as the training dataset (males, N = 927; females, 

N = 1199). To evaluate generalizability of the model, independent control test samples (acquired 

on completely independent scanning sites) from the ENIGMA-BD working group were used. 

http://www.scottwilliamwoods.com/files/%0DEquivtext.doc
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Training model parameters were applied on these independent subjects (males, N = 610; 

females, N = 720) from the ENIGMA BD working group. 

 

Within the training set of controls, under cross-validation, the structural brain measures 

predicted chronological age with a MAE of 6.32 (SD 5.06) years in males and 6.59 (5.14) years 

in females. Correlation between chronological age and predicted brain age in the cross-

validation training sample was r = 0.85, p < 0.001 for both males and females (both R2 = 0.72). 

Model performance in the hold-out dataset (males MAE = 6.50 [SD 4.91]; r = 0.85, p < 0.001; 

R2 = 0.72 and females MAE = 6.84 [5.32]; r = 0.72, p < 0.001; R2 = 0.69) was comparable to 

that of the cross-validation training sample. When applying the model parameters to the 

independent healthy control samples of the ENIGMA BD working group the generalization 

worked fairly well (MAE = 7.49 [SD 5.89]; r = 0.71, p < 0.001; R2 = 0.45 for males and MAE = 

7.26 [5.63]; r = 0.72, p < 0.001; R2 = 0.48, for females) (for more details see Han et al. [1]).  

 

Correcting for the systemic age bias in brain-age prediction in subsequent analyses 

“Regression dilution” is a well-known phenomenon in any brain age prediction framework, which 

often leads to young people being systematically predicted to be of older age (than their 

chronological one) and older people to be systematically predicted younger than their 

chronological age [6–9]. To account for this potential bias, we have included chronological age 

as a covariate in subsequent analyses, as proposed elsewhere [6]. This removes all linear age 

effects on our outcome variable (brain-PAD). However, one cannot assume that the effect of 

aging on imaging measures is perfectly linear across the lifespan [7, 10, 11]. Therefore, to 

control for potential non-linear age effects on brain age estimation and brain-PAD, we also 

included quadratic age (age2) in our subsequent analyses, as suggested elsewhere [7].  

     
     Feature importance: correlations between brain imaging features and brain age 
 

All imaging features, except the mean lateral ventricle volume, were negatively correlated with 

predicted brain age (and are visualised in Figure 2 in the main manuscript), although thickness 
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features correlated more strongly with brain age (mean Pearson r [SD]: −0.46 [0.13]) than 

subcortical volumes (−0.32 [0.30]) or surface area features (−0.22 [0.06]). We also visualized 

these associations separately for controls and SZ patients with similar results, suggesting 

comparable structure coefficients in both groups (Supplementary Figure S6; see below). With 

regards to spatial patterns of brain ageing, our correlation analysis of individual FreeSurfer 

measures and brain-predicted age does not allow for a straightforward interpretation of the 

importance of the specific brain regions contributing to the ageing pattern (i.e., we did not 

include a spatial weight map of our brain age model, as the weights were obtained from a 

multivariate model). Nevertheless, our results indicate that the ENIGMA brain age model used 

here relied most heavily on cortical thickness features for making predictions - consistent with 

the results of its first report by Han et al. [1]. The widespread and relatively strong negative 

correlations between cortical thickness and brain age (as observed here) are in alignment with 

the general pattern of greater cortical thinning with advancing age reported in the existing 

literature [12].  

 
 
Supplementary Figure S6. Correlation coefficients of predicted brain age and FreeSurfer features in 
healthy control (left) and schizophrenia (right) groups across participating cohorts. Bivariate correlations 
are shown for illustrative purposes to provide a sense of the relative contribution of features in brain age 
prediction and to show the similarity of patterns between controls and SZ patients. The figure shows 
Pearson correlations between predicted brain age and cortical thickness features (top row), cortical 
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surface areas (middle row) and subcortical volumes (bottom row), from both the lateral (left) and medial 
(right) view. The negative correlation with ICV was excluded from this figure for display purposes.   
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