Supplementary Materials:

- 1. Supplementary acknowledgement KPMP
- 2. Supplementary methods
- 3. Supplementary references
- 4. Supplementary tables:
 - o Table S1. Proteins/SOMAmers associated with DKD progression
 - Table. S2 Association of plasma ANGPT2 measured by ELISA with risk of composite outcome
 - Table S3. ANG-TIE signaling pathway related genes from three database
 - o Table S4. Basic clinical data of DKD patients included in the ScRNAseq analysis
- 5. Supplementary Figures: S1 to S6
 - o Figure S1. Curation of an unbiased ANG-TIE signaling gene set.
 - Figure S2. Correlation matrix between the univariate significant plasma proteins and the lasso cross validation curve..
 - Figure S3. Time-dependent ROC curve truncated at 5 years for clinical model and the joint clinical and biomarker model.
 - Figure S4. Functional characterization of the ANG-TIE signaling network in the kidney.
 - Figure S5. Association of tubular ANG-TIE signaling pathway score with plasma ANGPT2 level and kidney outcome (n=25).
 - Figure S6. TEK gene expression in KPMP single cell data: DKD and living kidney donors (LD).

Supplementary acknowledgement

For the Kidney Precision Medicine Project

American Association of Kidney Patients, Tampa, FL: Richard Knight

Beth Israel Deaconess, Boston, MA: Stewart H. Lecker; Isaac Stillman

Boston Cell Standards, Boston, MA: Steve Bogen

Boston University and Boston Medical Center, Boston, MA: Afolarin A. Amodu; Titlayo Ilori; Shana Maikhor; Insa Schmidt, Laurence H. Beck; Joel M. Henderson; Ingrid Onul; Ashish Verma, Sushrut Waikar

Brigham & Women's Hospital, Boston, MA: Gearoid M. McMahon; M. Todd Valerius; Sushrut Waikar; Astrid Weins; Mia R. Colona

Broad Institute, Cambridge, MA: Anna Greka; Nir Hacohen; Paul J. Hoover; Jamie L. Marshall

Case Western Reserve, Cleveland, OH: Mark Aulisio; Yijiang M. Chen; Andrew Janowczyk; Catherine Jayapandian; Vidya S. Viswanathan; William S. Bush; Dana C. Crawford; Anant Madabhushi

Cleveland Clinic, Cleveland, OH: Lakeshia Bush; Leslie Cooperman; Agustin Gonzalez-Vicente; Leal Herlitz; Stacey Jolly; Jane Nguyen; John O'toole; Ellen Palmer; Emilio Poggio; John Sedor; Dianna Sendrey; Kassandra Spates-Harden; Jonathan Taliercio

University of Colorado, Denver, CO: Petter M. Bjornstad; Laura Pyle; Carissa Vinovskis

Columbia University, New York, NY: Paul Appelbaum; Jonathan M. Barasch; Andrew S. Bomback; Pietro A. Canetta; Vivette D. D'Agati; Krzysztof Kiryluk; Satoru Kudose; Karla Mehl; Ning Shang; Olivia Balderes

Duke University, Durham, NC: Shweta Bansal

European Molecular Biology Laboratory, Heidelberg, Germany: Theodore Alexandrov

Harvard University, Cambridge, MA: Helmut Rennke

Indiana University, Indianapolis, IN: Tarek M. El-Achkar; Daria Barwinska; Sharon Bledsoe; Katy Borner; Andreas Bueckle; Yinghua Cheng; Pierre C. Dagher; Kenneth W. Dunn; Michael T. Eadon; Michael J. Ferkowicz; Bruce W. Herr; Katherine J. Kelly; Ricardo Melo Ferreira; Ellen M. Quardokus; Elizabeth Record; Marcelino Rivera; Jing Su; Timothy A. Sutton; James C. Williams, Jr.; Seth Winfree

John Hopkins University, Baltimore, MD: Steven Menez; Chirag R. Parikh; Avi Rosenberg; Celia P. Corona-Villalobos; Yumeng Wen

Joslin Diabetes Center, Boston, MA: Camille Johansen; Sylvia E. Rosas; Neil Roy; Jennifer Sun;

Mark Williams

Mount Sinai, New York, NY: Evren U. Azeloglu; Jens Hansen; Cijang He; Ravi Iyengar; Yuguang Xiong

Northshore, Evanston, IL: Pottumarthi Prasad

Northwestern University, Evanston, IL: Anand Srivastava

Ohio State University, Columbus, OH: Sethu M. Madhavan; Samir Parikh; Brad Rovin; John P. Shapiro

Pacific Northwest National Laboratories, Richland, WA: Christopher R. Anderton; Jessica Lukowski; Ljiljana Pasa-Tolic; Dusan Velickovic

Parkland Center for Clinical Innovation, Dallas, TX: George (Holt) Oliver

Patient Advocates: Joseph Ardayfio; Jack Bebiak; Keith Brown; Taneisha Campbell; Catherine E. Campbell; Lynda Hayashi; Nichole Jefferson; Glenda V. Roberts; John Saul; Anna Shpigel; Christy Stutzke; Robert Koewler; Roy Pinkeney

Princeton University, Princeton, NJ: Rachel Sealfon; Olga Troyanskaya; Aaron Wong

Providence Medical Research Center, Spokane, WA: Katherine R. Tuttle

Seattle Children's Hospital, Seattle, WA: Ari Pollack

Stanford University, Stanford, CA: Yury Goltsev

State University of New York, Buffalo, NY: Nicholas Lucarelli; Pinaki Sarder

University of California San Diego, La Jolla, CA: Blue B. Lake; Kun Zhang

University of California San Francisco, San Francisco, CA: Patrick Boada; Zoltan G. Laszik; Garry Nolan; Kavya Anjani; Minnie Sarwal; Tariq Mukatash; Tara Sigdel

University of Cincinnati, Cincinnati, OH: Rita R. Alloway; Ashley R. Burg; Paul J. Lee; Adele Rike; Tiffany Shi; E. Steve Woodle

University of Michigan, Ann Arbor, MI; Ulysses GJ. Balis; Victoria M. Blanc; Ninive C. Conser; Sean Eddy; Renee Frey; Yougqun He; Jeffrey B. Hodgin; Matthias Kretzler; Chrysta Lienczewski; Jinghui Luo; Laura H. Mariani; Rajasree Menon; Edgar Otto; Jennifer Schaub; Becky Steck;

University of Pittsburgh, Pittsburgh, PA: Michele M. Elder; Matthew Gilliam; Daniel E. Hall; Raghavan Murugan; Paul M. Palevsky; Parmjeet Randhawa; Matthew Rosengart; Mitchell Tublin; Tina Vita; John A. Kellum; James Winters

University of Washington, Seattle, WA: Charles E. Alpers; Ashley Berglund; Kristina N. Blank; Jonas Carson; Stephen Daniel; Ian H. De Boer; Ashveena L. Dighe; Frederick Dowd; Stephanie M. Grewenow; Jonathan Himmelfarb; Andrew N. Hoofnagle; Christine Limonte; Robyn L. McClelland; Sean D. Mooney; Kasra Rezaei; Stuart Shankland; Jamie Snyder; Ruikang Wang;

Adam Wilcox; Kayleen Williams; Christopher Park

UT Health San Antonio, San Antonio, TX: Shweta Bansal; Richard Montellano; Annapurna Pamreddy; Kumar Sharma; Manjeri Venkatachalam; Hongping Ye; Guanshi Zhang

UT Southwestern Medical Center, Dallas, TX: S. Susan Hedayati; Asra Kermani; Simon C. Lee; Christopher Y. Lu; R. Tyler Miller; Orson W. Moe; Jiten Patel; Anil Pillai; Kamalanathan Sambandam; Jose Torrealba; Robert D. Toto; Miguel Vazquez; Nancy Wang; Natasha Wen; Dianbo Zhang; Harold Park

Vanderbilt University, Nashville, TN: Richard M. Caprioli; Nathan Patterson; Kavya Sharman; Jeffrey M. Spraggins; Raf Van de Plas

Washington University in St. Louis, St. Louis, MO: Jeanine Basta; Sabine M. Diettman; Joseph P. Gaut; Sanjay Jain; Michael I. Rauchman; Anitha Vijayan

Yale University, New Haven, CT: Lloyd G. Cantley; Vijaykumar R. Kakade; Dennis Moledina; Melissa M. Shaw; Ugochukwu Ugwuowo; Francis P. Wilson; Tanima Arora

Supplementary Methods

SOMAscan measurement

Briefly, plasma samples were incubated with aptamers, washed and quantified with an Agilent microarray (Agilent Technologies). Normalization and calibration with replicate measurements of a common pooled calibrator plasma sample were carried out as previously described (S1). Samples in this study were analyzed in batches balanced by prospective case status and masked to the laboratory operators and data processing scientists. Twelve replicate samples across the batches allowed for universal calibration based on intercept and beta estimates from the linear regression model drawn from PROC GLM in SAS.

Statistical analysis- Lasso Cox

Lasso introduces a penalty on the regression coefficients, leading to some coefficients shrinking to zero and thereby simultaneously performing variable selection (S2). The penalty factor of the lasso Cox model was learned from a 5 fold 200 repeats cross validation process, based on minimizing the cross validated deviance defined as -2*log(partial likelihood) of the model. The repeated grid-search k-fold cross-validation procedure was selected due to the variability of lasso cross validation results in different data splits, which is exaggerated in small sample size and large candidate feature scenario. The method incorporated the variability of different data splits, thus improving the reliability and confidence of the selected optimal model (S3).

Supplementary References

S1. Niewczas MA, Pavkov ME, Skupien J, Smiles A, Dom ZIM, Wilson JM, Park J, Nair V, Schlafly A, Saulnier PJ, Satake E, Simeone CA, Shah H, Qiu CX, Looker HC, Fiorina P, Ware CF, Sun JK, Doria A, Kretzler M, Susztak K, Duffin KL, Nelson RG, Krolewski AS: A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med 2019;25:805-+

S2. Tibshirani R: The lasso method for variable selection in the cox model. Stat Med 1997;16:385-395

S3. Krstajic D, Buturovic LJ, Leahy DE, Thomas S: Cross-validation pitfalls when selecting and assessing regression and classification models. J Cheminform 2014;6

Table S1. Proteins/SOMAmers associated with DKD progression					
Protein	HR	P value	HR.confint.lower	HR.confint.upper	
EGFR.2677.1.1	0.166	0.000	0.063	0.434	
APOA1.2750.3.2	0.266	0.001	0.118	0.598	
CTSV.3364.76.2	0.303	0.001	0.146	0.629	
CLEC4M.3030.3.2	0.168	0.002	0.055	0.510	
TNFRSF1A.2654.19.1	3.255	0.002	1.546	6.852	
CCL20.2468.62.3	2.173	0.004	1.283	3.678	
HAMP.3504.58.2	0.635	0.004	0.467	0.864	
IL22.2778.10.2	2.150	0.004	1.277	3.622	
IL1RL1.4234.8.2	2.744	0.004	1.375	5.476	
SERPINA4.3449.58.2	0.189	0.004	0.060	0.592	
PGLYRP1.3329.14.2	1.714	0.006	1.171	2.509	
CD5L.3293.2.4	2.158	0.006	1.252	3.718	
IL1RL2.2994.71.2	0.159	0.006	0.043	0.585	
ECE1.3611.70.4	0.399	0.007	0.205	0.773	
GSN.4775.34.3	0.146	0.007	0.036	0.586	
NTN4.3327.27.1	2.822	0.007	1.328	5.996	
FTH1.FTL.5934.1.3	0.643	0.008	0.465	0.890	
YWHAQ.7625.27.3	2.713	0.008	1.297	5.674	
DIABLO.3122.6.2	3.907	0.008	1.425	10.715	
GHR.2948.58.2	0.339	0.008	0.152	0.755	
IBSP.3415.61.2	1.862	0.008	1.174	2.951	
TNFRSF9.2598.9.3	2.077	0.009	1.204	3.581	
ANGPT2.2602.2.2	2.323	0.009	1.236	4.365	
TPM1.5033.27.1	1.902	0.009	1.171	3.091	
TNFRSF4.3730.81.2	6.035	0.009	1.553	23.446	
CA6.3352.80.3	0.503	0.010	0.298	0.847	
CSF3R.2719.3.4	1.679	0.010	1.133	2.490	
HTRA2.3317.33.1	2.322	0.011	1.217	4.432	
ANP32B.4194.26.3	3.512	0.011	1.337	9.222	
HSPB1.11103.24.3	0.450	0.011	0.243	0.834	
VTN.13125.45.3	0.451	0.011	0.244	0.836	
CKAP2.5345.51.3	0.394	0.012	0.191	0.811	
DDR1.4122.12.2	0.310	0.012	0.124	0.774	
CSF1.3738.54.1	2.516	0.013	1.217	5.203	
CD40LG.3534.14.2	1.521	0.018	1.074	2.153	
PPIB.4718.5.2	1.706	0.019	1.092	2.664	
NID2.3633.70.5	5.790	0.019	1.330	25.208	
AMN.4322.28.3	3.775	0.021	1.223	11.656	
REG1A.13095.51.3	2.046	0.021	1.114	3.755	
B2M.3485.28.2	3.331	0.022	1.191	9.317	

NTRK1.3477.63.2	1.577	0.022	1.067	2.329
ALB.3707.12.2	0.206	0.023	0.053	0.805
THBS2.3339.33.1	1.614	0.025	1.062	2.452
PDIA3.4719.58.2	0.205	0.025	0.051	0.822
NOTCH1.5107.7.2	0.300	0.026	0.104	0.869
TIMP1.2211.9.6	1.885	0.027	1.076	3.303
CD27.5412.53.3	0.181	0.027	0.040	0.823
ARID3A.3875.62.1	1.345	0.027	1.034	1.749
SCARF1.5129.12.3	4.621	0.030	1.158	18.438
CCL19.4922.13.1	1.726	0.031	1.052	2.832
FGF8.4394.71.2	1.494	0.033	1.034	2.158
IL1B.3037.62.1	1.607	0.033	1.039	2.486
AIMP1.2714.78.2	0.315	0.033	0.109	0.914
SHC1.5272.55.2	2.222	0.034	1.063	4.646
HIPK3.3443.61.2	0.414	0.035	0.182	0.938
CCL2.2578.67.2	1.291	0.035	1.018	1.636
CD300C.5066.134.3	2.578	0.035	1.068	6.222
NGF.5801.72.3	1.350	0.035	1.021	1.785
IFNL1.4396.54.1	1.432	0.036	1.024	2.001
ACP5.3232.28.2	0.297	0.036	0.096	0.924
LCMT1.4237.70.3	0.139	0.036	0.022	0.882
MAPK12.5005.4.1	1.972	0.036	1.044	3.727
KDR.3651.50.5	0.247	0.038	0.066	0.926
C7.2888.49.2	3.563	0.039	1.065	11.917
FGF2.3025.50.1	0.682	0.040	0.474	0.982
TNFRSF1B.3152.57.1	2.506	0.040	1.042	6.028
NCAM1.4498.62.2	0.326	0.041	0.112	0.953
CTSF.9212.22.3	0.326	0.041	0.112	0.954
ESAM.2981.9.3	4.009	0.041	1.056	15.225
IFNGR2.9180.6.3	2.181	0.041	1.031	4.616
RPS3A.5484.63.3	0.436	0.042	0.196	0.970
APCS.2474.54.5	0.410	0.043	0.173	0.971
S100A4.14116.129.3	0.424	0.043	0.184	0.975
TNFAIP6.5036.50.1	3.088	0.044	1.029	9.264
ALCAM.5451.1.3	0.381	0.046	0.147	0.985
GFRA3.2505.49.3	1.474	0.047 1.005		2.160
FCGR2B.3310.62.1	1.651	0.048	1.005	2.710
KLRK1.3056.11.1	2.939	0.048	1.011	8.546
PIGR.3216.2.2	1.561	0.048	1.004	2.426
CLEC11A.4500.50.2	2.554	0.048	1.008	6.474
EHMT2.5843.60.3	0.391	0.049	0.154	0.995
KLK6.3450.4.2	0.404	0.049	0.164	0.996
SNRPF.5494.52.3	0.259	0.050	0.067	0.997
PGAM1.3896.5.2	1.224	0.050	1.000	1.498

Table. S2 Association of plasma ANGPT2 measured by ELISA with risk of composite outcome						
ANGPT2(pg/ml) Event (n/N) Hazard ratio (95% Cl) P-value						
log2ANGPT2	28/58	2.11 (1.30-3.41)	0.002			
Q1(1005-1767)	3/15	1.00 (Ref)				
Q2(1813-2333)	7/14	5.74 (1.38-23.89)	0.016			
Q3(2345-3393)	7/14	4.99 (1.27-19.55)	0.021			
Q4(3416-8662)	11/15	8.04 (2.13-30.38)	0.002			

Table. S3 ANG-TIE signaling pathway related genes from three databases				
PID_ANGIOPOIETIN_RECEPTOR_PATHWAY	REACTOME_TIE2_SIGNALING	NETPATH_TEK_SIGNALING		
AGTR1	ANGPT1	АСТВ		
AKT1	ANGPT2	BIRC5		
ANGPT1	ANGPT4	EEFSEC		
ANGPT2	DOK2	GRB7		
ANGPT4	GRB14	ITGB1		
BMX	GRB2	MASP2		
CDKN1A	GRB7	PIK3R2		
CRK	HRAS	PXN		
DOK2	KRAS	SPHK1		
ELF1	NRAS	WAS		
ELF2	PIK3CA	ADAM30		
ELK1	PIK3CB	BMX		
ETS1	PIK3R1	EGFR		
F2	PIK3R2	GSK3B		
FES	PTPN11	ITGB2		
FGF2	SHC1	MMP2		
FN1	SOS1	PITPNM3		
FOXO1	TEK	RAC1		
FYN		SRC		
GRB14		WASF1		
GRB2		ADSS		
GRB7		CAPZB		
ITGA5		EIF3F		
ITGB1		GTPBP3		
MAPK1		ITGB3		
MAPK14		MTOR		
MAPK3		PKD1		
MAPK8		RAF1		
MMP2		STAT1		
NCK1		ZAP70		
NFKB1		AKT1		
NOS3		CBL		
PAK1		EIF3I		
PIK3CA		GYS1		
PIK3R1		ITGB5		
PLD2		NCK1		
PLG		PKD2		
PTK2		RASA1		
PTPN11		STAT3		
PXN		ZNF397		
RAC1		AKT2		

RASA1	CCT5
RELA	ELK1
RPS6KB1	HAGH
SHC1	LIMCH1
STAT5A	NF1
STAT5B	PLA2G5
ТЕК	RELA
TNF	STAT5A
	ALB
	CDC42
	F13A1
	HDAC7
	LONP1
	NFKBIA
	PLCG1
	RHOA
	STAT5B
	ALDOA
	CDH5
	FES
	HIF1A
	MAP2K1
	NONO
	PLD1
	ROCK1
	STAT6
	ANGPT1
	CREB1
	FOXO1
	HNRNPF
	MAP2K2
	NOS3
	PLD2
	RPS6KA1
	ТЕК
	ANGPT2
	CRK
	FOXO3
	HNRNPH1
	MAP2K4
	PAK1
	PLG
	RPS6KA5
	TIE1
	ANGPT4
	CTNNB1
	FYN

	HNRNPM
	MAP3K3
	PDCD6IP
	PPP2CA
	RPS6KB1
	TLN1
	ANGPTL1
	CTPS1
	GAPDH
	HSP90AA1
	MAPK1
	PDIA3
	PRDX4
	RUVBL2
	TNIP2
	ANKRD28
	DIAPH1
	GCDH
	HSPD1
	MAPK14
	PDPK1
	PRKCZ
	SELP
	TXNRD1
	ARHGAP5
	DOK2
	GNA11
	ILK
	МАРКЗ
	PECAM1
	PTK2
	SERPINH1
	TXNRD3
	BCAR1
	DOK4
	GRB14
	ITGA5
	MAPK8
	PGK1
	PTPN11
	SHC1
	VEGFA
	BCL2
	DYNC1H1
	GRB2
	ITGAV
	MAPK9

	PIK3R1
	PTPRB
	SOS1
	VIM

Table. S4 Basic clinical data of DKD patients included in the ScRNAseq analysis							
Tissue Type	Sex	Age(Years)	Race	Baseline eGFR (ml/min/1.73m2)	Diabetes	Diabetes Duration (Years)	Hypertension History
CKD	Female	60-69	White,Other	20-29	Yes	20-24	Yes
CKD	Fomalo	60.69	Black or African-	0.00	Voc	5.0	Voc
	Female	30-39	White	100-109	Vec	20-24	Ves
CKD	Female	60-69	Black or African- American	110-119	Yes	5-9	Yes
CKD	Male	70-79		40-49	Yes	10-14	Yes
СКД	Female	30-39	White	30-39	Yes	20-24	Yes
CKD	Male	60-69	White	30-39	Yes	0-4	No
CKD	Female	70-79	White	60-69	Yes	10-14	Yes
CKD	Male	70-79	White	40-49	Yes	25-29	Yes
CKD	Female	60-69	White	40-49	Yes	30-34	Yes

Figure S1. Curation of an unbiased ANG-TIE signaling gene set.

Figure S2. Correlation matrix between the univariate significant plasma proteins and the lasso cross validation curve. (a) Correlation distribution of the univariate significant plasma proteins. (b) Correlation structure of univariate significant proteins. Proteins were ordered by hierarchical clustering. Distinct correlation patterns were observed for plasma proteins in different clusters. (c) Cross validation curve of the lasso Cox model. The cross validation curve was the average of 200 repeats. A set of 3 biomarkers were selected based on the tuning parameter log(lambda)= -0.64 that gave the lowest deviance.

Figure S3. Time-dependent ROC curve truncated at 5 years for clinical model and the joint clinical and biomarker model.

Model 0 covariates: age, gender, race, eGFR and uACR.

Model 1 covariates: age, gender, race, eGFR uACR, ANGPT2, CLEC4M and EGFR.

ribonucleoside triphosphate biosynthetic process cell-matrix adhesion cellular response to oxidative stress positive regulation of apoptotic process superoxide metabolic process transmembrane receptor protein tyrosine kinase signaling pathway immune effector process positive regulation of cell motility

regulation of cellular response to insulin stimulus

⊨ humanbase

Figure S4. Functional characterization of the curated ANG-TIE signaling network genes in the kidney. Kidney functional modules were generated using HumanBase (https://hb.flatironinstitute.org/), by projecting the ANG-TIE signature onto the kidney active functional network followed by community clustering to identify cohesive functional modules. Enriched biological processes are shown for each module.

Figure S5. Association of tubular ANG-TIE pathway activation score with plasma ANGPT2 level and kidney outcome (n=25). (a) The association of plasma ANGPT2 level with tubular ANG-TIE pathway activation score (n=25). (b) Tubular ANG-TIE pathway activation score association with outcome in patients from C-PROBE Group B. (NS indicates p value > 0.05).

Figure S6. *TEK* gene expression in KPMP single cell data: DKD and living kidney donors (LD). (a) UMAP of *TEK* gene expression in KPMP data. Cells clusters labeled by cell identity. (b) Average value of *TEK* gene in endothelial cells whose *TEK* expression is more than 0. Mann–Whitney U test was used to test the difference between groups. (c) Violin plot of *TEK* gene in endothelial cells