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Supplementary Methods 2 

Cell culture methods 3 

Six independent Normal Human Urothelial (NHU) cell lines of finite (non-immortalised) 4 

lifespan were used in this study. The cell lines were established as described [1] using 5 

anonymous discarded tissue from renal transplant surgery, with UK NHS approval (REC 6 

reference 99/095) from the Leeds East Research Ethics Committee. NHU cells were 7 

propagated in Keratinocyte Serum-Free Medium containing bovine pituitary extract, 8 

recombinant human EGF (KSFM) and additionally supplemented with 30ng/ml cholera toxin. 9 

Following expansion, NHU cells were differentiated in the same medium supplemented with 10 

5% adult bovine serum and CaCl2 was added to elevate the [Ca2+] from 0.09 to 2 mM, 11 

according to published methods [2]. Differentiated cultures of the six independent cell lines 12 

were exposed to IFNγ (200U/mL, BioTechne #285-IF) for 7 days and medium was changed 13 

every 48 hours. Urothelial mitotic-quiescence and differentiation was largely unaffected by 14 

IFNγ-treatment and although there was a significant gain of KRT6A expression, there was no 15 

significant loss of transitional epithelial markers and no other indicators of squamous 16 

change (Supplementary Table 1). 17 

 18 

mRNA Analysis 19 

Total RNA was collected in TRIzol reagent (Invitrogen) and mRNA-sequencing was 20 

performed using an Illumina NovaSeq 6000 generating 150bp paired-end reads (Novogene 21 

UK, Cambridge, UK). All mRNA-sequencing data was deposited at GSE174244. Following 22 



standard quality control, gene-level expression values in transcripts per million (TPM) were 23 

derived against the Gencode v35 human transcriptome using kallisto v0.46.1 [3]. 24 

Differentially-expressed genes were identified using the sleuth v0.30.0 [4] implementation 25 

of the likelihood ratio test (LRT), accounting for matched genetic backgrounds, generating 26 

Benjamini-Hochberg corrected q-values. For volcano plots (performed in R v4.0.4 27 

EnhancedVolcano v1.8.0), fold-change values used a log2(TPM+1) transformation to reduce 28 

the influence of low abundance transcripts. This analysis identified 107 genes that were 29 

significantly (q<0.05) >2-fold increased by IFNγ and 48 genes whose expression was 30 

significantly (q<0.05) more than halved by IFNγ-treatment of urothelial tissues 31 

(Supplementary Table 1). 32 

 33 

Publicly-Available Bladder Cancer Cohort Data 34 

Patient data for four publicly-available bladder cancer cohorts was downloaded following 35 

instructions in their relevant publications [5-8]. Two cohorts focussed on non-muscle 36 

invasive bladder cancer (NMIBC) and from these we extracted only the T1 tumours for 37 

further analysis [5, 7]. Two cohorts we of muscle invasive bladder cancer (MIBC) and from 38 

these we extracted the tumours transcriptomically classified as the “Basal/Squamous” 39 

subtype for further analysis based on the high variability in the IFNγ-Signature that we 40 

observed in this group [6, 8, 9]. mRNA-sequencing data was remapped to Gencode v35 41 

human transcriptome using kallisto v0.46.1 where possible [3]. MIBC gene array data from 42 

the Lund cohort was utilised as deposited at GSE83586 to generate Combat centered probe 43 

fluorescence values [8].  44 

 45 



IFNγ-signature generation 46 

All q<0.05 significantly >2-fold IFNγ-increased genes were extracted from the TCGA-BLCA [6] 47 

and UROMOL2021 [7] cohorts of MIBC and NMIBC, respectively. Genes regulated by IFNγ in 48 

vitro can be regulated predominantly by other mechanisms in tissues and to refine the 49 

signature, Spearman correlation matrices were calculated to compare all genes with one 50 

another. The median Spearman Rho for each gene in comparison with all others was 51 

calculated in each cohort. The median Spearman Rho values for the TCGA-BLCA and 52 

UROMOL2021 cohorts were averaged and only genes with a value greater than 0.5 were 53 

retained (n=33; gene list in Supplementary Table 2) to generate a transcriptomic classifier 54 

relevant to both NMIBC and MIBC, where all genes were >2-fold increased by IFNγ in vitro 55 

and closely related to one another in tumours. 56 

Initial evaluation of the IFNγ-signature in tumours was performed on log2(TPM+1) data using 57 

hierarchical clustering (based on Euclidean distance and complete linkage. This approach 58 

highlights the relationship between samples in the full cohorts of NMIBC UROMOL2021 [7] 59 

(Supplementary Fig. 3) and MIBC TCGA-BLCA [6] (Supplementary Fig. 5). 60 

 61 

IFNγ-signature analysis 62 

mRNAseq data expressed as TPMs for tumours from the NMIBC cohorts was combined to 63 

create one large cohort for analysis. For the MIBC cohorts, to allow integration of data 64 

acquired by different methods (TCGA-BLCA mRNA-sequencing [6] with the Lund gene array 65 

[8] data) each cohort was clustered separately into IFNγ-signature high and low groups. 66 

Classification of tumours was performed on log2(TPM+1) data using Euclidean distance k 67 



means clustering into two groups of T1 NMIBC tumours (from the UROMOL2021 [7] and 68 

Northwestern Memorial Hospital [5] cohorts) and Basal/Squamous classified [9] MIBC 69 

tumours (TCGA-BLCA [6]). Classification of Basal/Squamous MIBC tumours form the Lund [8] 70 

cohort was performed using Euclidean distance k means clustering into two groups on log-71 

transformed Combat centered probe fluorescence. 72 

A single-value IFNγ-signature score was derived by unit-length scaling the log2(TPM+1) data 73 

(or log-transformed Combat centered probe fluorescence for the Lund cohort [8]) for each 74 

gene. Unit-length scaled data for the genes in the signature were then summed on a per 75 

patient basis before being re-scaled (again 0-1). This derived a single value IFNγ-signature 76 

score that could be ranked to generate Spearman Rho values in comparison with ranked 77 

gene expression values (eg IFNG) in the various cohorts. The single-value IFNγ-signature 78 

scores for the combined T1, TCGA-BLCA and Lund cohorts are provided in Supplementary 79 

Tables 3, 5 and 6, respectively. 80 

Survival analysis was performed in Prism v9.3.1 (Graphpad). T1 NMIBC tumours and 81 

Basal/Squamous classified MIBC tumours from the different cohorts were pooled to support 82 

Kaplan-Meier NMIBC Recurrence Free Survival (RFS) and MIBC Overall Survival (OS) analysis, 83 

respectively. Statistical significance of the difference between Kaplan-Meier curves for IFNγ-84 

signature high and low groups was performed using Mantel-Cox and Gehan-Breslow-85 

Wilcoxon tests, with hazard ratios calculated using both Mantel-Haenszel and log rank 86 

approaches. A Cox proportional hazards regression analysis was performed using the pseudo-87 

continuous unit-length scaled IFNγ-signature scores to demonstrate that the effects of IFNγ-88 

signalling persist without dichotomising the tumours. 89 

 90 



TCGA-BLCA mutational signature analysis 91 

TCGA-BLCA legacy mutation data [6] was downloaded from cBioPortal [10]. The single base 92 

substitution (SBS) signature for all tumours was analysed using the “Catalog” input for the 93 

“signal” workflow for mutational signature analysis by comparison against the Catalogue of 94 

Somatic Mutations In Cancer “COSMIC” reference SBS signatures common in bladder tumours 95 

(namely SBS2, SBS4, SBS5 and SBS13; https://signal.mutationalsignatures.com/ [11]). 96 



Supplementary Figures 97 

 98 

Supplementary Figure 1 – Urothelial expression of both IFNγ receptor isoform genes was 99 

high but significantly reduced by IFNγ treatment. Mean log2 fold changes were -0.39 and -100 

0.38 for IFNGR1 and IFNGR2, respectively. Stars following gene names indicate significance 101 

**=p<0.01.  102 



 103 

Supplementary Figure 2 – Gain in expression of a broad range of human leukocyte antigen 104 

(HLA) genes. This study used cell derived from six independent donors. Stars following gene 105 

names indicate >2-fold changes with significance *=q<0.05, **=q<0.01 and ***=q<0.001. 106 

 107 



 108 

Supplementary Figure 3 – The full UROMOL2021 NMIBC cohort (n=535; [7]) expression of the 109 

IFNγ-signature genes. Tumours were split using hierarchical clustering based on Euclidean 110 

distance with complete linkage. The IFNG gene is not part of the signature but is included 111 

above to show the lack of sensitivity when relying on IFNG transcript abundance alone. IFNG 112 

transcript abundance was significantly correlated with the IFNγ-signature (Spearman 113 

Rho=0.57; p=1.02x10-46). Tumours are coloured according to the 2021 classification into four 114 

subtypes (Class 1, Class 2a, Class 2b and Class 3) [7]. The heatmap shows enrichment of IFNγ 115 

responsive gene expression in a subset of the Class 2b group of NMIBC. Lindskrog et al. 116 

identified Class 2b as being the most immune-infiltrated tumours [7]. Class 2a tumours were 117 

predominantly IFNγ-signaturelow and had the highest recurrence rate in the original 118 

publication [7]. 119 



 120 

Supplementary Figure 4 – Heatmap and k means clustering based on expression of the IFNγ-121 

signature in the T1 tumours of the Northwestern Memorial Hospital (NMH) cohort (n=99; 122 

shown with the classifier from the original report [5]). The IFNγ-signature shows a Spearman 123 

rank correlation of 0.67 (p=1.66x10-14) with the IFNG gene in this cohort. 124 



 125 

Supplementary Figure 5 – (A) The full TCGA-BLCA MIBC cohort (n=404; [6]) expression of the IFNγ-signature genes. Tumours were split using 126 

hierarchical clustering based on Euclidean distance with complete linkage. The IFNG gene itself is not part of the signature and has a limited 127 

sensitivity for detecting IFNγ signalling; however, it does show significant correlation with the IFNγ-signature (Spearman Rho=0.83; p=2.86x10-128 
102). Tumours are coloured according to the 2019 consensus classification into six subtypes (Basal/Squamous, Luminal Non-specified, Luminal 129 

Papillary, Luminal Unstable, Neuroendocrine-like and Stroma-rich) [9]. The heatmap shows diversity in the IFNγ-signature within the 130 

Basal/Squamous group of MIBC and so these tumours were evaluated further (Figure 2C). (B) Histological grading of lymphocyte invasion of 131 

TCGA-BLCA tumours, showing significant (Chi square=56.63; df=4; p=1.48x10-11) differences, including that IFNγ-signature low tumours were 132 

more likely to contain no lymphocytes.133 



 134 

Supplementary Figure 6 – Basal/Squamous classified tumours from the Lund MIBC cohort 135 

(n=88) showing expression of the IFNγ-signature genes (where present on the gene arrays 136 

employed). Multiple gene names indicate the gene array probes bind multiple targets. There 137 

was no specific probe for the IFNG gene and so correlation with the signature could not be 138 

calculated in this cohort. 139 



 140 

Supplementary Figure 7 – Basal/Squamous tumours of TCGA-BLCA have paired exome-141 

sequencing which allows the analysis of mutations. No significant over-mutation of 142 

individual genes was observed in association with the IFNγ-signature. (A) However, APOBEC-143 

driven mutational processes had been significantly more active (as denoted by significant 144 

enrichment of single base substitution signatures “SBS2” and “SBS13”) in tumours that 145 

ultimately had higher IFNγ-signature scores. It was not the case that all mutational processes 146 

were more active in forming tumours with a higher IFNγ-signature, as SBS4 and SBS5 were 147 



not enriched. Significance was analysed by Mann Whitney U test. ns = no significant 148 

difference. 149 

In silico analysis of the likely effects of mutations on neoantigen load in tumours was 150 

previously described by TCGA consortium [6]. (B) Analysis of Basal/Squamous tumours of 151 

TCGA-BLCA cohort showed a significantly higher predicted neoantigen load in the context of 152 

higher IFNγ-signalling (p=0.0139). (C) Furthermore, linear regression analysis confirmed a 153 

significant relationship between predicted neoantigen load and IFNγ-signature score 154 

(p=0.0012). 155 

 156 
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