
Supplementary Note 
 
A. Simulation studies for power evaluation  
 
Phenotypes were simulated based on the real genotypes 𝐺 of randomly selected 𝐿= 30,000 LD-pruned (r2 

< 0.2) markers from the odd chromosomes with MAF ≥ 1% from the following logistic mixed model logistic 

mixed model 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖0) =  𝛼0 + 𝑋𝑖1 + 𝑋𝑖2 + ∑ �̂�𝑖𝑗𝛽 𝐿
𝑗=1 + ∑ 𝑔

𝑖𝑞𝑘
𝛽

𝑐𝑖
, where 𝜋𝑖0 is the probability for the 

𝑖𝑡ℎ individual being a case given covariates and random effects, �̂�𝑖𝑗  is the standardized genotype value 

for the 𝑗𝑡ℎ marker of 𝑖𝑡ℎ individual, and 𝛽 is the genetic effect size following 𝑁(0, 𝜏/𝐿), where 𝜏 = 1, 
which is the variance component parameter. Two covariates, 𝑋𝑖1and 𝑋𝑖2, were simulated from 
Bernoulli(0.5) and N(0,1). The intercept 𝛼0 was determined by the prevalence 10%. In addition to the 
30,000 variants to simulate random effects, we select 10 genes as causal genes to simulate phenotypes 
and evaluate power. 𝑔𝑖𝑞𝑘  is the genotype value for the 𝑞𝑡ℎ variant in the 𝑘𝑡ℎ gene of 𝑖𝑡ℎ individual, 𝛽𝐶𝑖 

is the causal genetic effect sizes. Since functionally severe variants are likely to be causal variants with 
high effect sizes, we considered a different proportion of causal variants and effect sizes by the functional 
annotations.Two different settings of proportions of causal variants across the multiple functional 
annotations were used for variants that are not ultra-rare (MAC > 10): 1. 20% of LoF, 10% of missense, 
and 2% of synonymous and 2. 30% of LoF, 10% of missense, and 2% of synonymous. As functionally 
deleterious variants are more likely to be rarer, we assumed that the proportions of causal variants in the 
ultra-rare variants were 3 times higher than the numbers above (Supplementary Table 6).  Two settings 
of the absolute effect sizes for causal missense and synonymous variants were used, |0.25log10(MAF)| 
and |0.15log10(MAF)|, respectively, while the absolute effect sizes for causal LoF variants were set to be 
twice greater: |0.5log10(MAF)| and |0.3log10(MAF)|. Two different settings of effect directions were used 
among causal variants, 1. all causal variants had the same effect direction 2. 100% of LoF, 80% of missense, 
and 50% of the synonymous variants increased disease risk while the other causal variants decreased 
disease risks. In the second setting (different association direction), since LoF variants are not likely to 
have different effect directions, we still assumed that the effect directions of LoF causal variants were the 
same.  We repeated the simulations 100 times for different simulation scenarios, resulting in 1000 p-
values (10 genes with each having 100 p-values) for each scenario. 
 
B. Simulation studies for type I error evaluation 

 
The phenotypes were simulated based on real genotypes of randomly selected 𝐿= 30,000 LD-pruned (r2 < 

0.2) markers from the odd chromosomes with MAF ≥ 1% from the following logistic mixed model 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖0) = 𝛼0 +  𝑋𝑖1 + 𝑋𝑖2 + ∑ �̂�𝑖𝑗𝛽𝐿
𝑗=1 , where  𝜋𝑖0 is the probability for the 𝑖𝑡ℎ individual being a case 

given covariates 𝑋𝑖1and 𝑋𝑖2, and random effects, �̂�𝑖𝑗 . We followed the same scenarios to simulate 

covariates, random effects, and effect size 𝛽 as in power simulations. The intercept 𝛼0 was determined 

by given prevalence (i.e. case-control ratios). We repeated the simulation for 20 times for different disease 
prevalence: 0.3%, 1%, and 10%, respectively. For each phenotype set, a null logistic mixed model was 
fitted in Step 1 with covariates including the first 4 genetic principal components, which were estimated 
for all White-British participants in the UK Biobank, 𝑋1 and 𝑋2.  
 

C. Additional evaluation for set-based tests using the sparse GRM in the UK Biobank 
 

A recently developed generalized linear mixed model method, fastGWA-GLMM1, proposed using the 
sparse GRM to fit the null generalized linear mixed model for single-variants association tests in the UKBB. 

https://paperpile.com/c/sg6NCn/WGf3


In SAIGE-GENE+, we implemented this option to allow users to fit the null generalized mixed model using 
a sparse GRM. We applied this option to the UKBB WES data and compared the exome-wide association 
results to those using the full GRM. Three different coefficients of relationship cutoffs 0.05, 0.0884 (up to 
3rd degree of relationship) and 0.176 (up to 2nd degree of relationship) have been applied to the sparse 
GRM (Supplementary Figure 12). We observed that the association p-values using the sparse GRM with 
different coefficients of relationship cutoffs are highly correlated with those using the full GRM across 
different binary traits (Supplementary Figure 12) and quantitative phenotypes (Supplementary Figure 
14). Step 1 to fit the null model required a much smaller computation time when using the sparse GRM  
(Supplementary Figure 7).  For example, with 150,000 samples, Step 1 required < 1 CPU min with sparse 
GRM (up to 3rd degree of relationship), while it took 11 CPU hours with full GRM estimated on-the-fly with 
93511 genetic markers (Supplementary Table 2). Since the sample relatedness in the UKBB is modest, the 
computational performance gain of using the sparse GRM can be modest in data sets with widespread 
sample relatedness.  
 
 

D. Comparison with REGENIE 

 
We observed that the Burden test p-values by SAIGE-GENE+ are highly concordant with the p-values by 
REGENIE2 (Pearson’s correlation R2 = 0.99 for -log10(p-value)) (Supplementary Figure 9).  We also 
compared the empirical computation cost of SAIGE-GENE+ and REGENIE22. In Step 1 for fitting null 
models, SAIGE-GENE+ with a full GRM was more efficient than REGENIE2 (Supplementary Figure 7A and 
Supplementary Table 2). Out of the five runs with 150,000 samples that were randomly sub-sampled from 
the UK Biobank WES data with White British participants for glaucoma (1,741 cases and 162,408 controls) 
from the UKBB, the median computation time for Step 1 is 11 CPU hours using SAIGE-GENE+ and 36.5 CPU 
hours using REGENIE2 and the median memory usage is 5.4 Gb in SAIGE-GENE+ and 7.3 Gb in REGENIE2. 
Moreover, when a sparse GRM instead of a full GRM is used in Step 1 in SAIGE-GENE+, the time cost and 
memory usage dramatically dropped (< 1 min and 0.61Gb). In Step 2, similar computation cost was 
observed for the two methods for Burden tests (Supplementary Figure 7B and Supplementary Table 3): 
8.8 CPU hours and 0.93Gb by REGENIE2 and 9.1 CPU hours and 0.97Gb by SAIGE-GENE+, which 
additionally output the p-values by the Cauchy combination. SAIGE-GENE+ conducts the SKAT-O test, 
while REGENIE2 conducts Burden tests only and does not allow for incorporating marker level weights. 
Although the SKAT-O tests in SAIGE-GENE+ required nearly 6-7x more computation time (60 CPU hours) 
and 2x more memory (2.0 Gb) (Supplementary Figure 7B and Supplementary Table 3), through simulation 
studies, we observed that SKAT-O tests have higher power than Burden tests in all different scenario 
(Supplementary Table 6) with more significant p-values (Supplementary Figure 2) and higher median Chi-
square statistics (Supplementary Table 7).  
 
E. SAIGE-GENE+ and SAIGE comparison in BRCA2 and GCK 
 

BRCA2 for breast cancer with MAF ≤  0.1% had p-value 7.62x10-8 in SAIGE-GENE+ and 1.65x10-3  in SAIGE-
GENE. Similarly, we observed the gene GCK for diabetes with maximum MAF 0.1%  had a more significant 
p-value (1.22x10-13)  in SAIGE-GENE+ than in SAIGE-GENE (p-value = 4.06x10-6).  
 
In BRCA2-Breast Cancer, the associations are highly enriched in the ultra-rare LoF variants that tend to 
have the same effect directions, as is observed that the collapsed variant from 142 ultra-rare LoF variants 
had p-value 4.9x10-22 ( https://ukb-200kexome.leelabsg.org/assoc/BRCA2/20001_1002). It is known that 
the Burden test is more powerful than the SKAT3 test when most of the genetic variants in the test set are 
causal (having non-zero effects) with the same effect direction, whereas the SKAT test is more powerful 

https://paperpile.com/c/sg6NCn/dF8t
https://ukb-200kexome.leelabsg.org/assoc/BRCA2/20001_1002
https://paperpile.com/c/sg6NCn/DPSm


when a small proportion of genetic variants are causal with inconsistent effect directions.  Without 
collapsing in SAIGE-GENE, the Burden test p-value (0.000738) is more significant than the SKAT test p-
value (0.114). But because only a small proportion of variants are causal, Burden test can still suffer from 
the low association power. After collapsing in SAIGE-GENE+, the SKAT test (p-value=2.67x10-8) had a more 
significant p-value than the Burden test (p-value = 0.00452). This could be because the association signal 
is largely contributed by the collapsed ultra-rare variants and the SKAT test is more robust to the large  
proportion of non-causal variants in the test sets.  Similarly, it is observed that the association between 
the gene GCK and diabetes is driven by the collapsed ultra-rare variants https://ukb-
200kexome.leelabsg.org/assoc/GCK/2443.  
 
 

F. Implementation of SAIGE-GENE+ to improve the computational efficiency 
 
In order to further improve the computational efficiency, we utilized several approaches in the 
implementation of SAIGE-GENE+. 1. In Step 1 for fitting the null model, covariates are treated as offset 
which decreases the computation time (Supplementary Table 12).  2. When incorporating multiple MAF 
cutoffs and functional annotations, genotypes or dosages for all markers for each testing gene or region 
are read in at once and subsets are extracted for different tests. This largely reduces the redundancy for 
reading in genotype or dosages. 3. We implemented the Score tests and SPA tests in Rcpp, which reduces 
the overhead of switching between C++ and R. 4. For the tested set with 𝑞 markers, as illustrated in the 
SAIGE-GENE paper, the 𝑞 x 𝑞 matrix R1/2G’PsGR1/2 is used to approximate the G’PG, whose eigenvalues are 
used to obtain the statistics of the SKAT test.  To reduce memory usage, we divide the q markers to several 
blocks and store the submatrices that are required to approximate G’PG in the hard disk, and then 
compute the corresponding submatrix of G’PG using each pair of the blocks. This approach to save 
memory usage has been previously used in other programs, such as KING4 for estimating sample 
relatedness.   

 
  

https://ukb-200kexome.leelabsg.org/assoc/GCK/2443
https://ukb-200kexome.leelabsg.org/assoc/GCK/2443
https://paperpile.com/c/sg6NCn/DG6R


Supplementary Figure 1.  Quantile-quantile plots for STAAR-O5 tests p-values for four exemplary binary 
phenotypes with different case-control ratios in the UKBB WES data. The tests were performed for 
18,372 genes with missense and loss-of-function (LoF) variants with three different maximum MAF 
cutoffs: 1%, 0.1%, and 0.01%.  

 

   

https://paperpile.com/c/sg6NCn/aYed


Supplementary Figure 2.  Scatter plots for association p-values of SKAT-O and Burden tests in the 
simulation studies. Each plot is based on test results for 1,000 test sets (100 data sets, each of which 
includes 10 genes, see Supplementary Table 5). X-axis represents -log10 Burden test p-values, and Y-axis 
represents -log10 SKAT-O p-values. The line in each plot represents the 45-degree line, so the dots above 
the line indicate more significant p-values from SKAT-O than the Burden test. The details of different 
simulation settings are presented in Supplementary Table 6.  
 
 

 

 
 
 
  



 
 
Supplementary Figure 3.  The genomic control inflation lambda based on the 1st percentile against the 
disease prevalence for 24 binary phenotypes in UKBB for SAIGE-GENE and SAIGE-GENE+ using three 
different maximum MAF cutoffs. 
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Supplementary Figure 4.  Quantile-quantile plots for Burden, SKAT3, and SKAT-O6 tests p-values for 
simulated phenotypes with prevalence 10%, 1%, and 0.3% based on the UKBB WES data under the 
null hypothesis. A. Using SAIGE-GENE.  B. SAIGE-GENE+, which collapses ultra-rare variants with MAC  ≤  
10 prior to the gene-based association tests. The tests were performed for 18,372 genes with missense 
and loss-of-function variants with three different maximum MAF cutoffs: 1%, 0.1%, and 0.01%.  

 

   

https://paperpile.com/c/sg6NCn/DPSm
https://paperpile.com/c/sg6NCn/4is4


Supplementary Figure 5.  Histogram of number of genetic variants (missense and LoF) tested in each 
gene with maximum MAF 1% before and after collapsing the ultra-rare variants with MAC <= 10.  
A. All genes. B. genes with number of markers ≤ 500 before collapsing.  

 
 

 
 
 
 
 
  



Supplementary Figure 6.  Computation cost of the Step 2 in SAIGE-GENE+ with and without collapsing the 
ultra rare variants by sample sizes (N) for gene-based tests for 18,372 genes with three maximum MAF 
cutoffs: 1%, 0.1%, and 0.01% and three variant annotations: LoF only, LoF + missense, and LoF + missense 
+synonymous. In total around 165,348 tests were run for each data set.  
 
Benchmarking was performed on randomly sub-sampled UK Biobank WES data with White British 
participants for glaucoma (1,741 cases and 162,408 controls). The reported run times and memory are 
medians of five runs with samples randomly selected from the full sample set using different sampling 
seeds. A. plots of the time usage as a function of sample size (N) B. plots of the maximum memory usage 
(for genes containing most variants) as a function of sample size (N). The x-axis is plotted on the log2 scale. 
C. scatter plots of the memory usage when N = 150,000 simulated with a random seed. We split the 
165,348 tests into 133 chunks, each with ~150 genes. For each gene, 9 SKAT-O tests were conducted 
corresponding to three different MAF cutoffs and functional annotations followed by combining the p-
values using the Cauchy combination   Each dot in the plot is the maximum memory usage of a chunk 
among five runs with different random seeds. 

 
 

  



Supplementary Figure 7.  Computation cost in SAIGE-GENE+ and REGENIE2 by sample sizes (N) for gene-
based tests for 18,372 genes with three maximum MAF cutoffs: 1%, 0.1%, and 0.01% and three variant 
annotations: LoF only, LoF + missense, and LoF + missense +synonymous. In total 165,348 tests were run 
for each data set.  
 
Benchmarking was performed on randomly sub-sampled UK Biobank WES data with White British 
participants for glaucoma (1,741 cases and 162,408 controls). The reported run times and memory are 
medians of five runs with samples randomly selected from the full sample set using different sampling 
seeds. A. plots of the time usage and median memory usage in Step 1 as a function of sample size (N) B.  
plots of the time usage and median memory usage in Step 2 as a function of sample size (N). Note that 
singletons only were also included as a mask in the Burden tests in both methods for a fair comparison. 
SAIGE-GENE+ further automatically output the p-values by the Cauchy combination  

 
 
 
 
 



 
 
Supplementary Figure 8.  Scatter plots for association p-values by SAIGE-GENE+ and SAIGE-GENE in 
simulation studies for power evaluation. Each plot is based on test results for 1,000 test sets (100 data 
sets, each of which includes 10 genes, see Supplementary Table 5). X-axis represents -log10 p-values 
without collapsing (SAIGE-GENE), and Y-axis represents -log10 p-values with collapsing (SAIGE-GENE+). 
The line in each plot represents the 45-degree line, so the dots above the line indicate more significant p-
values from the collapsing. The details of different simulation settings are presented in Supplementary 
Table 6. A. All causal variants have the same effect direction. B. Causal variants have different effect 
directions (Supplementary Table 6).  
 

A. Direction 1: All causal variants had negative effects 
 

 
B. Direction 2: causal variants had different effect directions 



 
Supplementary Figure 9.  Scatter plots for association p-values of the Burden tests by SAIGE-GENE+ and 
REGENIE2. The default weights (Beta(MAF, 1, 25)) for genetic variants are used in SAIGE-GENE+ and the 
“sum” mask was used in REGENIE2.  A. All causal variants have the same effect. B. Causal variants have 
different effect directions (Supplementary Table 6). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figure 10.  Scatter plots for association p-values in SAIGE-GENE+ using multiple MAF 
cutoffs and annotations and using a single cutoff and annotation. In the former tests, three different 
function annotation combinations (L only, L+S, L+S+M) and three maximum MAF cutoffs (0.01%, 0.1%, 
1%) were used. In the latter tests, one function annotation and maximum MAF cutoff (L+S+M with MAF 
<= 1%) are used.  The details of different simulation settings are presented in Supplementary Table 6. 
 
 
 

 
 

 

 

 

 

 

 

 
 
 
 
 



 
 
 
 
 
 
 
Supplementary Figure 11.  Venn diagram of  the number of associations identified (A) by different 
maximum MAF cutoffs (B) by different functional annotations  
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Supplementary Figure 12. Kinship coefficients (>= 0.05) in UKBB. A. all 408,910 samples B. 200,643 
samples with whole exome sequencing data available 
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Supplementary Figure 13. Results with full GRM and sparse GRM for binary traits in UKBB WES data. 
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Supplementary Figure 14. Results with and full GRM and sparse GRM for quantitative traits in UKBB 
WES data 
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Supplementary Figure 15. Collapsing ultra-rare variants with MAC ≤  10.  
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