**1** Supplementary Material

- 2
- 3 Methods

4 **MinION library preparation**: Where possible 1  $\mu$ g, or the maximum amount available 5 up to 1  $\mu$ g, of genomic DNA of each of the 47 samples was dissolved in 50  $\mu$ l of nuclease-free 6 water and fragmented using a Covaris g-TUBE (Covaris, USA) according to manufacturer's 7 instructions (centrifuged at 6000 rpm for 60 seconds, in both directions). To confirm 8 fragmentation, 1 µl of each sample DNA was run on the 2100 Bioanalyzer instrument (Agilent 9 Technologies, USA). End repair and dA tailing were performed on the sheared DNA using 10 NEBNext<sup>®</sup> Ultra<sup>™</sup> II End repair/dA Tailing Module (NEB, UK) and end-prepped DNA purified 11 using solid phase reversible immobilisation (SPRI) purification (Beckman Coulter, UK), eluting 12 in 22.5 µl of nuclease-free water according to manufacturer's instructions. Twelve native 13 barcodes NB01-NB12 from kit EXP-NBD103 (ONT, UK) were ligated to 12 samples of end-14 prepped DNA, using 22.5  $\mu$ l end-prepped DNA, 2.5  $\mu$ l of native barcode adaptor and 25  $\mu$ l of 15 Blunt TA master mix (NEB, UK). A second SPRI purification was carried out according to 16 manufacturer's instructions and DNA eluted in 15  $\mu$ l with water. DNA was quantified using 17 Qubit v1.0 with Qubit dsDNA BR assay kit (Invitrogen, USA). Equal amounts of each sample 18 were pooled into sets of three, with a total pooling mass of approximately 700 ng, equalling 19 approximately 233 ng per sample. 20  $\mu$ l of native barcoding adapter mix (BAM) was ligated to 20 each pool using 50  $\mu$ l Blunt TA master mix, and made up to 100  $\mu$ l with water. A final SPRI 21 purification step was done using 40 µl of SPRI beads, followed by 2 x 140 µl wash with adapter 22 bead binding (ABB) and elution in 25  $\mu$ l of elution buffer (ELB). The library was then ready for 23 sequencing on the MinION.

MinION sequencing was performed using 16 MinION flow cells (Flow Cell - FLOMIN105 using R9.2 Pore) with barcoded-DNA from three isolates per flow cell. Each MinION
flow cell was removed from its packaging and inserted onto the MinION 1.1b (MIN101B) and
MinION quality control software run to assess pore activity. Barcoded one-directional DNA

libraries were created using library kits: SQK-NSK007 and EXP-NBD103, and 12 µl of each
barcoded sample pool was loaded into the MinION according to manufacturer's instructions.
Flow cells were run for varying lengths of time, between 2–24 hours. No flow cells were

reused. 1D base calling was performed using the Metrichor rev 1.107 (cloud) platform.

32 Post-hoc quality control adjustment: The first, 'filter 1', maintained all QC parameters 33 of standard QC (as detailed in the methods), with alteration to only the DP4 filtering criteria 34 to include at least one read mapping to each strand (forward and reverse) of either the REF 35 or ALT site, and with these minimum criteria met, at least 75% of total number of reads 36 supporting that site. The second, 'filter 2', also maintained all QC parameters of standard QC 37 with a further relaxation of DP4 criteria to a minimum of only one read covering one strand 38 of either the REF or ALT site, and with these minimum criteria met, at least 75% of reads 39 supporting that site. Additionally, the impact on accuracy when compared to the MiSeq 40 position within the same isolate, was done.

41

31

42 Results

43 Post-hoc quality control adjustment: For standard QC parameters, DP4 requires a
44 minimum of four reads, with at least two mapping to each strand of one site (supporting the
45 REF or ALT), and at least 75% of reads supporting that site. In many cases, strand-bias was
46 caused by sufficient reads for only one strand (on one site), and less than two for the
47 opposite strand, resulting in QC failure.

The relaxation of QC parameters using filter 1 and filter 2, increased QC pass rates with increasing depth of coverage (Supplementary Table 2). Overall, increased QC pass rate was not associated with loss of accuracy. The impact of filter 1 QC parameters on genome position 620918 within codon 91 in GyrA, was an increase in number of positions passing QC, as well as maintaining accuracy at 100% when compared to the MiSeq, across all three depths. For genome position 620906 within codon 95 of GyrA, filter 1 QC parameters saw the number

| 54 | that passed QC increase from 4/22 to 9/22 at 10x depth, however no further increase was       |
|----|-----------------------------------------------------------------------------------------------|
| 55 | seen at 30x and 40x depth. All sites that passed filter 1 QC at this position agreed with the |
| 56 | MiSeq and maintained 100% accuracy. Filter 2 QC parameters, saw an increase in isolate        |
| 57 | numbers at both positions in GyrA that passed QC at depths of 10x, 30x and 40x, but with      |
| 58 | decreased accuracy (Supplementary Table 2, C & D).                                            |
| 59 |                                                                                               |
| 60 |                                                                                               |
| 61 |                                                                                               |
| 62 |                                                                                               |
| 63 |                                                                                               |
| 64 |                                                                                               |
| 65 |                                                                                               |
| 66 |                                                                                               |
| 67 |                                                                                               |
| 68 |                                                                                               |
| 69 |                                                                                               |
| 70 |                                                                                               |
| 71 |                                                                                               |
| 72 |                                                                                               |
| 73 |                                                                                               |
| 74 |                                                                                               |
| 75 |                                                                                               |
| 76 |                                                                                               |
| 77 |                                                                                               |
| 78 |                                                                                               |
| 79 |                                                                                               |
| 80 |                                                                                               |
| 81 |                                                                                               |
| 82 |                                                                                               |
| 83 |                                                                                               |

# 84 Supplementary Table 1. Summary of MinION and MiSeq sequencing outputs

|         | MiSeq      |       | MinION     |       |                          |
|---------|------------|-------|------------|-------|--------------------------|
| Isolate | Read count | Depth | Read count | Depth | Median<br>read<br>length |
| NG002   | 286726     | 59    | 37791      | 95    | 5228                     |
| NG003   | 374461     | 80    | 32921      | 89    | 5906                     |
| NG004   | 359432     | 79    | 32297      | 80    | 4724                     |
| NG005   | 398056     | 84    | 16470      | 42    | 5268                     |
| NG006   | 329834     | 75    | 66837      | 80    | 2013                     |
| NG007   | 382478     | 79    | 37944      | 82    | 4477                     |
| NG008   | 144410     | 26    | 58890      | 76    | 1957                     |
| NG010   | 181701     | 41    | 28766      | 50    | 3489                     |
| NG011   | 254192     | 55    | 21676      | 40    | 4016                     |
| NG012   | 235162     | 54    | 29130      | 39    | 2491                     |
| NG013   | 125864     | 22    | 37164      | 75    | 4311                     |
| NG014   | 249449     | 54    | 36783      | 57    | 3096                     |
| NG015   | 223409     | 46    | 19411      | 47    | 5598                     |
| NG016   | 209404     | 45    | 20056      | 41    | 3802                     |
| NG017   | 142738     | 30    | 21572      | 39    | 3882                     |
| NG018   | 186799     | 42    | 40262      | 90    | 4891                     |
| NG019   | 287033     | 63    | 32981      | 68    | 4416                     |
| NG020   | 279821     | 60    | 84971      | 105   | 1813                     |
| NG022   | 251790     | 53    | 39907      | 65    | 3409                     |
| NG023   | 276267     | 62    | 57729      | 80    | 2488                     |
| NG024   | 354985     | 75    | 26719      | 59    | 4767                     |
| NG026   | 240317     | 54    | 19265      | 43    | 4865                     |
| NG027   | 283617     | 61    | 26274      | 54    | 4487                     |
| NG028   | 204630     | 42    | 36560      | 51    | 2559                     |
| NG029   | 121248     | 21    | 13602      | 30    | 5154                     |
| NG031   | 273662     | 63    | 13538      | 29    | 4489                     |
| NG032   | 326198     | 68    | 5117       | 11    | 4299                     |
| NG033   | 164870     | 37    | 21286      | 24    | 1883                     |
| NG035   | 185770     | 38    | 18782      | 26    | 2131                     |
| NG037   | 274239     | 61    | 17889      | 26    | 1658                     |
| NG038   | 197600     | 41    | 27064      | 34    | 1755                     |
| NG039   | 241124     | 54    | 15144      | 19    | 1774                     |
| NG040   | 237790     | 51    | 8086       | 19    | 5672                     |
| NG043   | 169118     | 28    | 80153      | 67    | 1355                     |
| NG044   | 220790     | 45    | 27641      | 32    | 1636                     |
| NG045   | 190776     | 43    | 26785      | 36    | 2043                     |
| NG047   | 173802     | 39    | 32648      | 34    | 1412                     |
| NG048   | 253662     | 56    | 25489      | 31    | 1576                     |
| NG049   | 88812      | 17    | 39523      | 40    | 1499                     |
| NG050   | 34598      | 6     | 45642      | 46    | 1188                     |
| NG051   | 382287     | 83    | 24154      | 32    | 2067                     |
| NG052   | 510395     | 111   | 49371      | 42    | 1500                     |
| NG054   | 275550     | 58    | 47080      | 40    | 1427                     |
| NG056   | 314907     | 71    | 13558      | 32    | 5172                     |
| NG057   | 169721     | 31    | 15576      | 32    | 4892                     |

| 86  | Read count and depth of coverage of MinION and MiSeq sequencing, with median |
|-----|------------------------------------------------------------------------------|
| 87  | read length for MinION only. Sequencing depth was calculated based on reads  |
| 88  | mapped against the FA1090 reference genome (accession: NC_002946).           |
| 89  |                                                                              |
| 90  |                                                                              |
| 91  |                                                                              |
| 92  |                                                                              |
| 93  |                                                                              |
| 94  |                                                                              |
| 95  |                                                                              |
| 96  |                                                                              |
| 97  |                                                                              |
| 98  |                                                                              |
| 99  |                                                                              |
| 100 |                                                                              |
| 101 |                                                                              |
| 102 |                                                                              |
| 103 |                                                                              |
| 104 |                                                                              |
| 105 |                                                                              |
| 106 |                                                                              |
| 107 |                                                                              |
| 108 |                                                                              |
| 109 |                                                                              |
| 110 |                                                                              |
| 111 |                                                                              |
| 112 |                                                                              |
| 113 |                                                                              |
| 114 |                                                                              |
| 115 |                                                                              |
| 116 |                                                                              |

#### 117 Supplementary Table 2. Number and accuracy of MinION variant calls passing

#### 118 standard and alternative QC parameters

119 A.

| Passed QC | Standard QC | Filter1  | Filter2   |
|-----------|-------------|----------|-----------|
| 10x       | 13.5%       | 28.7%    | 52.8%     |
|           | 185/1371    | 393/1372 | 724/1371  |
| 30x       | 36.5%       | 47.9%    | 70.2%     |
|           | 503/1378    | 660/1378 | 967/1378  |
| 40x       | 40.9%       | 51.3%    | 72.7%     |
|           | 565/1382    | 709/1382 | 1005/1382 |

## 120

### 121

Β.

| Passed QC + accuracy | Standard QC | Filter1 | Filter2  |
|----------------------|-------------|---------|----------|
| 10x                  | 100%        | 100%    | 99.2%    |
|                      | 185/185     | 393/393 | 718/724  |
| 30x                  | 99.8%       | 99.8%   | 98.8%    |
|                      | 502/503     | 659/660 | 955/967  |
| 40x                  | 99.8%       | 99.7%   | 98.8%    |
|                      | 564/565     | 707/709 | 993/1005 |

### 122

#### 123 **c.**

#### 124 Position: 620906 (GyrA D95)

| Passed QC + accuracy | Standard QC | Filter1 | Filter2 |
|----------------------|-------------|---------|---------|
| 10x                  | 100%        | 100%    | 86.7%   |
|                      | 4/4         | 9/9     | 13/15   |
| 30x                  | 100%        | 100%    | 81.3%   |
|                      | 13/13       | 13/13   | 13/16   |
| 40x                  | 100%        | 100%    | 81.3%   |
|                      | 13/13       | 13/13   | 13/16   |

## 125

#### 126 Position: 620918 (GyrA S91)

| Passed QC + accuracy | Standard QC | Filter1 | Filter2 |
|----------------------|-------------|---------|---------|
| 10x                  | 0           | 100%    | 100%    |
|                      | 0/0         | 7/7     | 13/13   |
| 30x                  | 100%        | 100%    | 100%    |
|                      | 10/10       | 14/14   | 16/16   |
| 40x                  | 100%        | 100%    | 100%    |
|                      | 12/12       | 14/14   | 17/17   |

127

Total number of the 68 nucleotide positions representing 37 non-plasmid RAMs across 22
MinION isolates which: A. passed standard, filter 1, and filter 2 QC parameters B. passed
standard, filter 1, and filter 2 QC parameters, and were accurate when compared to the
MiSeq sequences within the same isolate, at the same position C. Total number of positions:
620906, and 620918 corresponding to GyrA D95 and S91 respectively, that passed standard,
filter 1, and filter 2 QC parameters, and were accurate when compared to the MiSeq
sequences within the same isolate, at the same position.

## 136 Supplementary Figure 1. MinION genome depth of coverage vs sequencing time



138 MinION depth of coverage at increasing timepoints.