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University-Medicine, Berlin, Friedrich-Alexander University, Erlangen, Albert-Ludwigs-
University, Freiburg, Friedrich-Schiller University, Jena, Hannover Medical School, Hannover, 
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Supplementary Methods 

Supplementary Methods 1: Study design and participants 

From 2010 to 2012, 5 217 participants with moderate CKD were enrolled in the 

prospective observational German Chronic Kidney Disease (GCKD) study.1 A detailed 

description of the study population and design has been published.2 Patients under 

regular care by a nephrologist were enrolled if they had 1) an eGFR between 30–60 

mL/min per 1.73 m2 or 2) an eGFR >60 mL/min per 1.73 m2 in combination with 

albuminuria (urinary albumin/creatinine >300 mg/g or albuminuria >300 mg/day) or 

proteinuria (urinary protein/creatinine >500 mg/g or proteinuria >500 mg/day). Clinical 

endpoint collection is still ongoing, recorded continuously and adjudicated in a 

standardised fashion. The GCKD Study was registered in the national registry for 

clinical studies (DRKS 00003971) and approved by all local ethic committees. 

 Outcomes of interest in this study were kidney failure (KF), defined as a 

combined outcome of dialysis, kidney transplantation and death due to forgoing 

dialysis, a combined outcome of acute myocardial infarction, cerebral haemorrhage 

and stroke (short: 3P-MACE), as well as overall mortality (short: death). Further, 

myocardial infarction, cerebral haemorrhage and stroke were analysed separately as 

secondary outcomes. Data on covariates and outcomes over the first six years of 

follow-up were available in this project for 4 873 study participants.  

 

The UK Biobank (UKBB) is a prospective study involving around half a million adult 

people aged 40-69 at enrollment in the UK, with anonymised data made publicly 

available for approved researchers.3 The comprehensive data base includes health 

record data, blood and saliva samples, life-style data as well as genetic data.  
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The CKDGen Consortium is an international effort of researchers working on 

epidemiological studies with genome-wide genetic data and kidney function 

measurements.4 Their goal is to gain insights into the genetic mechanisms underlying 

kidney function and disease.  

 

Supplementary Methods 2: Definition of baseline variables in GCKD 

In short, variables evaluated at baseline were defined as follows (methods and 

definitions were previously published1,2):  

• Serum creatinine was measured using an IDMS traceable enzymatic assay 

(Creatinine Plus, Roche). 

• The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula5 

was used to estimate GFR. 

• The urinary albumin-to-creatinine ratio (UACR) was calculated from urinary 

creatinine (IDMS traceable enzymatic assay [Creatinine Plus, Roche]) and 

albumin (ALBU-XS assay [Roche/Hitachi Diagnostics GmbH, Mannheim, 

Germany]). 

• High-sensitivity C-reactive protein (CRP) was measured using an 

immunoturbidimetric test (CRPHS, Roche, Germany) on a Roche/Hitachi 

MODULAR (P). 

• Total and high-density lipoprotein cholesterol (HDL) as well as triglycerides 

were measured using an enzymatic colorimetric method (CHOD-PAP, Roche, 

Germany) on a Roche/Hitachi MODULAR (P). 

• Patients were considered as smokers if they reported current daily or occasional 

smoking. 

• Blood pressure medication was based on reported medication use (Anatomical 

Therapeutic Chemical [ATC] codes beginning with either of the following: ‘C02’, 

‘C03’, ‘C07’, ‘C08’, ‘C09’).  

• Systolic blood pressure was calculated as the mean out of three measurements 

after five minutes resting using a standardised device (OMRON M5 

Professional, Mannheim, Germany). 
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• Diabetes was based on a baseline serum hemoglobin A1c (HbA1c) of ³ 6.5% 

or self-documented intake of diabetes medication (ATC codes beginning with 

‘A10’). 

• History of cardiovascular disease was defined as a positive history of any of the 

following: stroke, carotid artery operation/stenting, peripheral arterial occlusive 

disease (defined as either amputation or peripheral artery operation/stenting), 

myocardial infarction, bypass operation, or percutaneous coronary intervention. 

 

Supplementary Methods 3: Genotyping  

Genotyping and respective data cleaning was previously described in more detail.6 In 

brief, DNA of 5 123 GCKD participants was isolated from whole blood and genotyped 

at 2 612 357 variants using the Illumina HumanOmni2.5 Exome BeadChip array 

(Illumina, GenomeStudio, Genotyping Module Version 1.9.4) at the Helmholtz Center 

Munich. In total, 89 samples were excluded based on QC steps regarding call rate, 

sex, heterozygosity, genetic ancestry and relatedness. On the variant level, single 

nucleotide polymorphisms (SNPs) were removed if either the call rate was <0.96, when 

the assumption of the Hardy-Weinberg equilibrium was violated (p-value<1×10-5), or 

when they were on duplicated positions. 

 Genotypes were imputed at the Michigan Imputation Server7 (minimac3 v2.0.1) 

with the Haplotype Reference Consortium (HRC) haplotype version r1.1 as the 

reference panel, and Eagle 2.3 was used for phasing. The final genotype dataset 

contained 5,034 participants with information on 7 750 367 high-quality autosomal bi-

allelic variants. 

 

Supplementary Methods 4: Polygenic Score Development and Validation 

We developed and tuned a PGS for log(eGFR) following a workflow published 

previously.8 We randomly split 321 589 unrelated UK Biobank (application number: 
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17712) individuals of European ancestry into two groups, one containing 90% of the 

individuals that was used to conduct GWAS of log(eGFR) (NGWAS = 289 432), and one 

containing the remaining 10% of individuals that was used to select tuning parameters 

and validate the trained PGS models (Nvalidation = 32 157). 

We first ran a GWAS of log(eGFR) among the 289 432 UK Biobank participants, 

adjusting for age, sex, and the top 40 genetic principal components. We then used 

METAL to perform a meta-analysis to combine the UKB GWAS summary statistics with 

corresponding summary statistics from the CKDGEN Consortium9, from which the 

ARIC and GCKD studies had been excluded to obtain a non-overlapping sample. From 

the results of the meta-analysis, approximately 1.5 million SNPs present on the 

Illumina Multi-Ethnic Genotyping Array (MEGA) Beadchip and HapMap3 were retained 

for score construction.8  

 The PGS was calculated using the LDpred algorithm.10 Specifically, we created 

seven candidate LDpred PGSs corresponding to seven different pre-specified 

proportions of causal variants, ρ. This Bayesian approach utilizes GWAS summary 

statistics to compute the posterior mean effect sizes for the genetic variants by 

assuming a prior of the joint effect sizes and incorporating the LD structure calculated 

based on an external reference panel. In our case, the genetic data of 498 unrelated 

individuals in the 1000 Genomes Project was used as the LD reference.11 With respect 

to user-specified parameters in LDpred, we used the default of 500 (the total number 

of SNPs divided by 3 000) for the LD radius, which is the number of variants being 

adjusted for at each side of a variant.10 The fraction of causal variants, ρ, which can be 

selected via parameter tuning on a separate validation dataset, was tested at 1, 0.3, 

0.1, 0.03, 0.01, 0.003, and 0.001, as suggested in Vilhjálmsson et al.10  

 For PGS tuning, the seven candidate LDpred PGS were calculated for the 32 

157 independent individuals in the UKB validation dataset in order to select the best 
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performing PGS. The best performing PGS along with the corresponding “optimal” 

value of ρ was selected based on R2, i.e., the proportion of the variance of log(eGFR) 

explained by the PGS. Specifically, we fitted a linear regression model with log(eGFR) 

being the outcome, each candidate PGS being the exposure, and age at baseline, sex, 

and the first 40 PCs of genetic ancestry as the covariates.  

 

Supplementary Methods 5: PGS calculation in GCKD 

The eGFR PGS was calculated for GCKD participants with available genetic data using 

LDpred provided by Vilhjálmsson et al. (version 1.0.6, score option).10 Subsequently, 

it was rescaled so that a higher eGFR PGS reflects lower eGFR to reflect that lower 

eGFR is harmful. Additionally, the eGFR PGS was standardised to a mean of 0 and a 

standard deviation of 1. 

 

 Supplementary Methods 6: Statistical Analyses 

Cox regression models were fitted to evaluate the association of the eGFR PGS with 

the three main outcomes. All analyses were conducted for the eGFR PGS as a 

continuous variable, as well as for categories of the eGFR PGS, namely quartiles and 

deciles. The first 10 genetic principal components (PCs) were evaluated for potential 

inclusion as covariates and incorporated when they were nominally significantly 

(p<0.05) associated in a linear regression model with the eGFR PGS being the 

dependent variable and additionally adjusted for age and sex. Besides unadjusted 

analyses, models were adjusted in three incremental ways: 1) age + sex + significantly 

associated PCs, 2) model 1 + baseline eGFR and 3) model 2 + log(UACR).  
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 Cox regression models provide results in the form of hazard ratio (HR) estimates 

for death, and cause-specific HR estimates for the other endpoints (KF, 3P-MACE) in 

the presence of the competing event (i.e., any death of other cause). The statistical 

significance threshold was set to p=0.05/3 to account for the three adjustments in the 

main outcome KF. In the competing event scenario for KF and 3P-MACE, 

subdistribution hazard analyses were carried out for comparison to detect possible 

indirect effects and obtain a summary measure of effect.12,13 Graphical assessment of 

the proportional hazard assumption based on Schoenfeld residuals for the eGFR PGS 

showed no evidence for major violations. 

Furthermore, we assessed whether the eGFR PGS carried predictive ability for 

the renal endpoint KF. The added predictive ability of the eGFR PGS was investigated 

in addition to the well-established 4-variable kidney failure risk equation (KFRE)14,15 

that is based on age, sex, eGFR and UACR. First, we investigated if the eGFR PGS 

added to model performance via a likelihood ratio test (LRT). Next, we compared the 

discriminative ability of the two nested models at years six of follow-up using the 

inverse probability censoring weighted c-index16, a time-to-event equivalent to the area 

under the receiver operating characteristic (ROC) curve (AUC) value. For illustrative 

purposes, we plotted calibration plots  showing predicted and observed estimated risks 

in deciles of the eGFR PGS at year six of follow-up, ROC curves at year six and 

prediction error curves over the six years of follow-up and integrated this curve to 

obtain the summary measure integrated prediction error curve (IPEC).17,18 For the sake 

of more accurate performance measures, we provide 0.632+ estimates using 100 

bootstrap samples for all prediction performance measures.19 
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