
Appendix A 

Mathematical details on the fit function 

 

In this Appendix we specify some technical details which complete the discussion reported in the Methods 

section of the article. 

The function exploited to fit the WHO data is  

𝑣(𝑁) = 𝑘 ∙
𝑁

log 𝑁
 

where 𝑣 is the cumulative number of relevant SARS-CoV-2 variants, 𝑁 is the cumulative number of 

infected subjects worldwide, 𝑘 is the constant of the numerical fit and “log𝑁” represents the natural 

logarithm of 𝑁.  

This function satisfies all the conditions listed in the Methods section of the article, as shown below:  

1) the function 𝑣 varies from zero to infinity: 

lim
𝑁⟶0

𝑣 = 0   and   lim
𝑁⟶∞

𝑣 = ∞ 

2)  The function 𝑣 increases monotonically, therefore the first derivative 𝑣′(𝑁) is positive:  

𝑣′(𝑁) = 𝑘 ∙
log𝑁 − 1

(log𝑁)2
> 0 for 𝑁 > 𝑒 

where 𝑒 ≅ 2.72 is the Euler’s number. In this research 𝑁 ≫ 1, hence 𝑣′(𝑁) > 0. 

3) The first derivative of 𝑣 decreases monotonically, therefore the second derivative 𝑣′′(𝑁) is negative: 

𝑣′′(𝑁) = 𝑘 ∙
2 − log𝑁

𝑁 ∙ (log𝑁)3
< 0 for 𝑁 > 𝑒2 

with 𝑒2 ≅ 7.39. In our study it always turns out 𝑁 ≫ 1, therefore 𝑣′′(𝑁) < 0. 

The number 𝑛 of new relevant variants per ten million cases (∆𝑁 = 107) turns out to be: 

𝑛 ≅ 𝑣′(𝑁) ∙ ∆𝑁 = 107 ∙ 𝑘 ∙
log𝑁 − 1

(log𝑁)2
 

The relative variation |𝑛′(𝑁)| of new relevant variants per ten million cases decreases as the number 𝑁 of 

cases increases: |𝑛′(𝑁)| ≅ |𝑣′′(𝑁)| ∙ ∆𝑁 = 107 ∙ 𝑘 ∙ |
2−log𝑁

𝑁∙(log𝑁)3
|. Being 𝑁 ≫ 1, it turns out |𝑛′(𝑁)| ≪ 1. 



Appendix B 

Heuristic arguments on the fit function 

 

In this Appendix we present two heuristic arguments supporting the choice of the function exploited in 

our study to fit the WHO data on relevant SARS-CoV-2 variants: the first argument is inspired to the 

model introduced by Delbrück and Luria on bacterial mutations, the second one relies on a possible 

relationship between virus variants and prime numbers. 

 

DELBRÜCK AND LURIA MODEL 

In 1943 Delbrück and Luria studied the effect of a virus on bacterial cultures [B1]. They found that 

bacterial variants resistant to the action of the virus appeared as a consequence of mutations which 

occurred independently of the virus (hypothesis of mutation to immunity) rather than induced by the virus 

(hypothesis of acquired hereditary immunity). We extended the same approach to the investigation of 

relevant mutations in a viral sample, including virus variants resistant to vaccines. 

Following Delbrück and Luria [B1], the number 𝑁𝑡 of bacteria present at time 𝑡 in a growing culture is 

expressed by the equation 

𝑁𝑡 = 𝑁0𝑒
𝑡 

where 𝑁0 is the initial number of bacteria and 𝑡 is measured in units of division cycles of the bacteria. 

The likely average 𝑟 of the resistant bacteria in a limited number 𝐶 of samples is given by 

𝑟 = 𝑎𝑁𝑡 ln(𝑁𝑡𝐶𝑎) 

where 𝑎 is the mutation rate, i.e. the chance of mutation per bacterium per time unit.  

The variance of the distribution of all resistant bacteria in a limited number of 𝐶 cultures is 

𝑣𝑎𝑟𝑟 = 𝐶𝑎2𝑁𝑡
2 

By comparing the variance 𝑣𝑎𝑟𝑟 with the likely average 𝑟 of resistant bacteria, Delbrück and Luria found:  

𝑣𝑎𝑟𝑟 = 𝑟 ∙ 𝐶𝑎 ∙
𝑁𝑡

ln(𝑁𝑡𝐶𝑎)
 



Based on the hypothesis of random mutations, the number of resistant bacteria is not distributed 

according to Poisson’s law and the variance 𝑣𝑎𝑟𝑟 turns out to be much greater than the likely average 𝑟 of 

resistant bacteria. On the contrary, the hypothesis of acquired hereditary immunity predicts that variance 

and average should be equal, according to Poisson’s law. The experiment performed by Delbrück and 

Luria confirmed the hypothesis of random mutations [B1]. 

If we assume that the variance 𝑣𝑎𝑟𝑟 is proportional to both the likely average 𝑟 of resistant bacteria and 

the number 𝑣 of mutations, we can write: 𝑣𝑎𝑟𝑟 = 𝑏 ∙ 𝑣 ∙ 𝑟, where 𝑏 is a constant of proportionality. By 

substituting this expression of 𝑣𝑎𝑟𝑟 in the equation connecting variance 𝑣𝑎𝑟𝑟 and likely average 𝑟, we get: 

𝑣 = 𝐶
𝑎

𝑏
∙

𝑁𝑡

ln(𝑁𝑡𝐶𝑎)
 

If we define a new constant 𝑘 = 𝐶
𝑎

𝑏
 and suppose |ln(𝐶𝑎)| ≪ ln𝑁𝑡, the previous equation becomes 

𝑣 = 𝑘 ∙
𝑁

log𝑁
 

with 𝑁 ≡ 𝑁𝑡 and log ≡ ln. 

The findings of Delbrück and Luria [B1] on bacterial mutations can be adapted to the study of virus 

mutations and thus allow the evaluation of the number of SARS-CoV-2 variants.  

The equation 𝑣 = 𝑘 ∙
𝑁

log𝑁
 obtained from the Delbrück and Luria model can be interpreted as the number 

of relevant virus variants 𝑣 up to a time 𝑡 as function of the number 𝑁 of infections up to that time. 

Delbrück and Luria [B1] considered a bacterial culture growing according to an exponential law. 

Therefore, the equation obtained from their model is strictly valid only in the exponential phases of the 

Covid-19 pandemic. Moreover, Delbrück and Luria considered bacterial mutations resistant to a virus 

while the viral variants in our study are either mutations resistant to vaccines or virus variants with relevant 

characteristics concerning transmissibility, disease course and global public health. 

 

 

 

 



VIRUS VARIANTS AND PRIME NUMBERS 

The connection discussed here between virus mutations, quantum states and prime numbers yields a 

suggestive justification of the analytic form of the function used for the fit of WHO data, although a precise 

theoretical framework is still lacking. 

 

Prime numbers. As discussed in the Methods section, the fit of WHO data was obtained by means of the 

function 𝑣(𝑁) = 𝑘 ∙ 𝑁 log𝑁⁄ , where 𝑘 is the constant of the numerical fit. 

In 1801 Gauss [B2] found that the function 𝜋(𝑥)~
𝑥

log 𝑥
 yields asymptotically (i.e. for 𝑥 sufficiently large) 

the cumulative number of primes less than a given number x. By comparing the Gauss function 𝜋(𝑥) and 

the function exploited for the fit, it is clear that the cumulative number of relevant variants 𝑣 for 𝑁 total 

infected subjects in the world is proportional to the cumulative number 𝜋(𝑁) of primes less than 𝑁, i.e. 

𝑣(𝑁) = 𝑘 ∙ 𝜋(𝑁). 

A more accurate expression of the number of primes less than 𝑥 is given by the logarithmic integral 

function 𝐿𝑖(𝑥), defined as 𝐿𝑖(𝑥) = ∫
𝑑𝑡

log 𝑡

𝑥

0
 . By exploiting the logarithmic integral function for the fit of 

WHO data, the cumulative number 𝑣 of relevant SARS-CoV-2 variants for 𝑁 infected cases in the world 

becomes: 𝑣(𝑁) = ℎ ∙ 𝐿𝑖(𝑁) = ℎ ∙ ∫
𝑑𝑡

log 𝑡

𝑁

0
 with the constant ℎ given by ℎ = 1.73 ∙ 10−6 and 95% CI =

 (1.44 –  2.03) ∙ 10−6. The adjusted 𝑅-squared, measuring the goodness of the fit, is 𝑅2 = 0.91 with both 

the Gauss function and the logarithmic integral function.  

The difference between the fits 𝑣(𝑁) and 𝑣(𝑁) is less than 1 for 𝑁 ≤ 2.32 ∙ 109, therefore in the current 

range of 𝑁 values we can use the simpler function 𝑣(𝑁). 

The Gauss function provides an asymptotic approximation of the number of primes less than a sufficiently 

large quantity, therefore we considered the number of infected subjects all over the world instead of 

focusing on a specific country or geographical area, where the infections are a fraction of the world cases. 

 

Zeta function and quantum states. In 1859 Riemann [B3] found an exact expression for the number of 

primes less than a given quantity. Riemann’s formula involves a sum over the zeroes of the so-called zeta 



function ζ(s), whose relevant zeroes have all real part 
1

2
 according to Riemann’s Hypothesis [B4]. The 

distribution of the zeroes of ζ(s) along the critical line 𝑧 =  
1

2
 determines the distribution of the prime 

numbers, as well established in number theory [B5].  

In 1977 Montgomery [B6] found the function which describes the spacing between the zeroes of ζ(s). As 

spotted by the physicist Dyson, such function is the same as that describing the spacing between the energy 

levels of heavy atomic nucleus. The link between zeroes of ζ(s) and quantum states also extends to chaotic 

systems, as pointed out by Berry [B7] and confirmed numerically by Odlyzko [B8].  

In conclusion, a connection seems to exist between the distribution of the prime numbers and the quantum 

states of a physical system. 

 

Virus mutations. In 1944 Schrödinger [B9], in his renowned essay “What is life?”, suggested - following 

Delbrück [B10] - that a genetic mutation can be considered a sort of “quantum jump”, i.e. a transition 

between two different states of a quantum system. Analogously, a virus variant may be interpreted as a 

genetic mutation due to a quantum transition between two different configurations in the structure of the 

virus. 

The following figure schematises the connection between the cumulative number of primes less than a 

given quantity and the number of relevant variants for a given number of cases. The intermediate links in 

the scheme are the distribution of the zeroes of Riemann’s zeta function and the spacing between the 

quantum states of a physical system. 
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The numerical fit of WHO data could be performed by exploiting a great variety of functions different 

from the one we used (see Appendix C). However, our choice is supported by the suggestive hypothesis 

of a connection between virus variants and prime numbers inspired by quantum physics and number 

theory. 
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Appendix C 

Other fit functions 

 

In order to fit the WHO data on relevant SARS-CoV-2 variants, we can use many functions satisfying the 

conditions discussed in the Methods section and in Appendix A, i.e. functions varying from zero to 

infinity, monotonically increasing and with the first derivative monotonically decreasing. 

The functions 𝑓 = 𝛼 ∙ 𝑁𝛽, with 𝛼 > 0 and 0 < 𝛽 < 1, satisfy all the requested conditions: 

1) lim
𝑁⟶0

𝑓 = 0 and lim
𝑁⟶∞

𝑓 = ∞. 

2) 𝑓′(𝑁) = 𝛼 ∙ 𝛽 ∙ 𝑁−(1−𝛽) > 0. 

3) 𝑓′′(𝑁) = −𝛼 ∙ 𝛽 ∙ (1 − 𝛽) ∙ 𝑁−(2−𝛽) < 0. 

If we choose the value 𝛽 =
1

2
, we obtain the square root function 𝑓 = 𝛼 ∙ √𝑁. In this case the fit of WHO 

data through Wolfram Mathematica yields the value 𝛼 = 1.69 ∙ 10−3, with 95% CI = (1.58 –  1.80) ∙

10−3. The adjusted 𝑅-squared measuring the goodness of the fit is 𝑅2 = 0.98, the maximum residual is 

𝑟𝑚𝑎𝑥 = 5.20 and the residual standard deviation is 𝜎𝑟 = 2.60 (see Appendix E for the definition of 𝑟𝑚𝑎𝑥 

and 𝜎𝑟). 

  

 



 

 

The previous figures represent the fits of WHO data through the logarithmic function 𝑣 = 𝑘 ∙ 𝑁 log𝑁⁄ , 

with 𝑘 = 1.83 ∙ 10−6 (solid line), and the square root function 𝑓 = 𝛼 ∙ √𝑁, with 𝛼 = 1.69 ∙ 10−3 (dashed 

line). The first figure shows the cumulative number of relevant variants while the second figure represents 

the number of new relevant variants per ten million infected cases. The empty circle in each figure 

indicates the intersection of the two fits, i.e. their common value with the corresponding number of 

infected cases and the date of detection. 

The number 𝑛 of new relevant variants per ten million cases is 𝑛 =  
𝑘∙107(log𝑁−1)

(log𝑁)2
, with 𝑘 = 1.83 ∙ 10−6, 

for the logarithmic function (solid line) and 𝑛 =  
𝛼∙107

2√𝑁
, with 𝛼 = 1.69 ∙ 10−3, for the square root function 

(dashed line).  

As shown in the second figure, the number 𝑛 of new relevant invariants decreases much faster in the 

square root model than in the logarithmic fit. For instance, between January 2021 and January 2022 𝑛 

decreased by 46.8% (from 0.85 to 0.45) in the square root fit, while it only decreased by 6.4% (from 0.94 

to 0.88) in the logarithmic model. The reduction between January 2022 and June 2022 was about 14.8% 

in the square root fit and only 2.0% in the logarithmic model. 



The relative standard error on both the cumulative number of relevant variants predicted by the square 

root model and the number of new variants per ten million cases is given by (𝑘2 − 𝑘1) (2𝑡′ ∙ 𝑘)⁄ = 3.0%, 

where 𝑘1 = 1.80 ∙ 10−3 and 𝑘2 = 1.58 ∙ 10−3 are the lower and upper limits of the 95% CI of the 

parameter 𝑘 = 1.69 ∙ 10−3 in the fit function and 𝑡’ = 2.13 is the two-sided 5% point of the Student’s t 

distribution with 15 degrees of freedom. 

If we fit the WHO data with the function 𝑓 = 𝛼 ∙ 𝑁𝛽, the best fit values for the parameters 𝛼 and 𝛽 obtained 

with Wolfram Mathematica are 𝛼 = 4.01 ∙ 10−3 and 𝛽 = 0.46 ≅
1

2
.  

The choice of the function 𝑓 = 𝛼 ∙ √𝑁 can be justified heuristically by considering the virus variants as 

“errors” in the virus replication process. Since the relative error affecting a measurement in a system with 

𝑁 elements is proportional to 
1

√𝑁
 and the virus replications are proportional to the number 𝑁 of infected 

subjects, the absolute error on the virus replication – and hence the number of virus variants – turns out to 

be proportional to 𝑁 ∙
1

√𝑁
= √𝑁. 

 

  



Appendix D 

Numerical fit from the ECDC data 

 

In this Appendix we exploit the ECDC data on relevant SARS-CoV-2 variants instead of the WHO data. 

The parameter 𝒌 in the fit function depends critically on the epidemiological data, therefore it is important 

to check if the value of 𝒌 obtained through the ECDC data is compatible with the value derived from the 

WHO data in the Results section of the article. 

 

The classification of SARS-CoV-2 variants reported by ECDC [D1] is presented in the box below. 

VARIANTS UNDER MONITORING (VUM) 

There is some indication that these variants could 

have an impact on the epidemiological situation, 

but the evidence is weak or has not yet been 

assessed.  

 

VARIANTS OF INTEREST (VOI) 

Evidence is available that these variants could 

affect transmissibility, severity and/or immunity, 

realistically having an impact on the 

epidemiological situation. However, the evidence 

is still preliminary. 

VARIANTS OF CONCERN (VOC) 

Clear evidence is available indicating a significant 

impact of these variants on transmissibility and 

severity of SARS-CoV-2 and/or immunity, with 

critical effects on the epidemiological situation. 

 

DE-ESCALATED VARIANTS 

Variants which satisfy at least one the following 

criteria: 1) no longer circulating, 2) still circulating 

but without any impact on the overall 

epidemiological situation, 3) not associated with 

any concerning properties. 

 

Table D1 lists the characteristics of SARS-CoV-2 variants reported by ECDC [D1, D2]: date and country 

of the first detection, lineage and WHO classification, total number of cases in the world at the end of the 

month of detection and cumulative number of variants. 

The year and month of the first detection of BA.2+L452X were not available (NA), therefore this variant 

has not been included in our fit, which requires to know the number of infected cases up to the date of the 

first detection. 

 

 



Table D1. Characteristics of SARS-CoV-2 variants recorded by ECDC [D1, D2]: date and country of the 

first detection, lineage and additional mutations, WHO nomenclature, cumulative number of cases in the 

world at the end of the month of detection. The last column summarises the cumulative number of the 

relevant variants recorded by ECDC. 
 
 

Year and 

month first 

detected 

Country first 

detected 

Lineage# and 

additional mutations 

WHO 

label§ 

Cases 

in the 

world† 

Cumulative 

number 

of variants 

Sep-2020 

United Kingdom B.1.1.7 Alpha 

33735630 3 USA B.1.427/B.1.429 Epsilon 

South Africa B.1.351 Beta 

Oct-2020 
Unclear* C.16 - 

44085676 5 
USA B.1.526.1 - 

Nov-2020 Mexico B.1.1.519 - 63781233 6 

Dec-2020 

United Kingdom B.1.1.7+E484K - 

81242993 20 

Nigeria B.1.525 Eta 

India B.1.617.1 Kappa 

Unclear* B.1214.2 - 

United Kingdom A.23.1+E484K - 

Unclear* A.27 - 

Unclear* A.28 - 

South Africa B.1.351+P384L - 

USA B.1.526 Iota 

USA B.1.526.2 - 

Egypt C.36+L452R - 

Peru C.37 Lambda 

Brazil P.1 Gamma 

India B.1.617.2 Delta 

Jan-2021 

The Philippines P.3 Theta 

103568588 28 

Unclear* B.1.351+E516Q - 

United Kingdom B.1.1.7+L452R - 

United Kingdom B.1.1.7+S494P - 

Brazil P.2 Zeta 

Russian Federation AT.1 - 

Colombia B.1.621 Mu 

Unclear* B.1.1.318 - 

Feb-2021 

France B.1.616 - 

114489076 32 
Unclear* B.1620 - 

India B.1.617.3 - 

Italy P.1+P681H - 

Mar-2021 United Kingdom AV.1 - 127654472 33 

Apr-2021 

India B.1.617.2+E484X - 

147380497 36 India B.1.617.2+Q613H - 

India B.1.617.2+Q677H - 



Jun-2021 

United Kingdom AY.4.2 - 

181744185 39 United Kingdom B.1.617.2+K417N - 

South Africa C.1.2 - 

Sep-2021 Congo B.1.640 - 232671700 40 

Nov-2021 

South Africa/Botswana BA.1 (VOC) Omicron 

262417085 43 South Africa BA.2 (VOC) Omicron 

South Africa BA.3 (VUM) Omicron 

Jan-2022 

South Africa BA.4 (VOC) Omicron 

378132775 46 United Kingdom XF - 

France XD - 

Feb-2022 South Africa BA.5 (VOC) Omicron 436615887 47 

NA NA BA.2+L452X (VOI) - NA 48 

# All sub-lineages of the listed lineages are included in the variant, e.g. BA.1.1 is included in Omicron 

BA.1 as it is a sub-lineage of BA.1 [D1]. 
* The earliest detections from several different countries are close in time and there is no clearly 

demonstrated travel link to a specific country that explains the detections [D1]. 
† The number of cumulative cases was obtained from Ref. [D2]. 
§ WHO labels are reported in Ref. [D3]. 

 

The numerical fit of the ECDC data was obtained by means of the function 𝑣(𝑁) = 𝑘 ∙ 𝑁 log 𝑁⁄ , where 

the constant of the numerical fit is 𝑘 = 2.92 ∙ 10−6. The 95% confidence interval (CI) of 𝑘 is given by 

95% CI = (2.34 –  3.50) ∙ 10−6. The adjusted 𝑅-squared, measuring the goodness of the fit, turned out to 

be 𝑅2 = 0.90. 

The result obtained from the ECDC data is compatible with that obtained from the WHO data, as shown 

by the fact that the 99% CIs of the 𝑘 parameter in the two fits overlap:  

99% CI (ECDC) = (2.09 –  3.74) ∙ 10−6     𝑣𝑠      99% CI (WHO) = (1.40 –  2.27) ∙ 10−6 

Figure D1 represents the cumulative number 𝑣 of relevant SARS-CoV-2 variants versus the cumulative 

number 𝑁 of cases in the world. The dots from 1 to 13 correspond to the data reported by ECDC [D1, D2] 

from September 2020 to February 2022; the solid line represents the function 𝑣 =  𝑘 ∙ 𝑁 log𝑁⁄  used in 

the fit with Wolfram Mathematica. 

As discussed in Appendix E for WHO data, in the fit of ECDC data the maximum absolute value 𝑟𝑚𝑎𝑥 of 

the residuals (differences between observed and predicted values) is 𝑟𝑚𝑎𝑥 = 16.99, corresponding to the 

last observation in Figure D1. The residual standard deviation is 𝜎𝑟 = 10.41. 

 



 

Figure D1. Cumulative number of relevant SARS-CoV-2 variants versus the cumulative number of cases 

in the world. The dots from 1 to 13 indicate the data reported by ECDC [D1, D2] from September 2020 

to February 2022; the solid line represents the function 𝑣 =  𝑘 ∙ 𝑁 log𝑁⁄  used in the numerical fit with 

Wolfram Mathematica. 
 

The number 𝑛 of new relevant variants per ten million (107) cases is 𝑛 = 107 ∙ 𝑘 ∙
log𝑁−1

(log𝑁)2
, which becomes 

𝑛 = 29.2 ∙
log𝑁−1

(log𝑁)2
 by substituting the numerical value of 𝑘.  

From September 2020 to February 2022 the number of new variants per ten million cases decreased by 

12.6%, from 1.59 to 1.39. A further reduction by 10%, from 1.39 to 1.25, would require that the cumulative 

cases in the world increase to 4.7 billion, i.e. ten times the total cases from the beginning of the epidemic 

up to February 2022. This result shows that the number 𝑛 of new relevant variants per ten million cases 

decreases very slowly as the virus continues to circulate. 

The relative standard error on the values 𝑣 and 𝑛 predicted by the model is (𝑘2 − 𝑘1) (2𝑡′ ∙ 𝑘)⁄ = 9.2%, 

where 𝑘1 = 2.34 ∙ 10−6 and 𝑘2 = 3.50 ∙ 10−6 are the lower and upper limits of the 95% CI of the 

parameter 𝑘 = 2.92 ∙ 10−6 in the fit function and 𝑡’ = 2.18 is the two-sided 5% point of the Student’s t 

distribution with 12 degrees of freedom. 

Figure D2 reports the number 𝑛 of new relevant SARS-CoV-2 variants per ten million cases versus the 

cumulative number 𝑁 of cases in the world. 



 

Figure D2. Number 𝑛 of new relevant SARS-CoV-2 variants per ten million cases versus the cumulative 

number of cases in the world. From September 2020 to February 2022 𝑛 decreased from 1.59 to 1.39. 

 

 

REFERENCES OF APPENDIX D 

[D1] ECDC (European Centre for Disease Prevention and Control). SARS-CoV-2 variants of concern. 

https://www.ecdc.europa.eu/en/covid-19/variants-concern. 

[D2] ECDC (European Centre for Disease Prevention and Control). COVID-19 situation update 

worldwide. https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases. 

[D3] WHO (World Health Organization). Tracking SARS-CoV-2 variants. Working Definitions and 

Actions Taken. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. 

 

 

 

 

 

 

 



Appendix E 

Details on the numerical fit 

 

In this Appendix we discuss some details on the fit of WHO data (confidence intervals, residuals and 

numerical derivatives) and consider the approximation given by the linear regression. 

 

CONFIDENCE INTERVALS AND RESIDUALS 

The 95% confidence interval (CI) of the constant 𝑘 = 1.83 ∙ 10−6 of the numerical fit of WHO data on 

relevant SARS-CoV-2 variants is 95% CI = (1.52 –  2.15) ∙ 10−6. In the figure below the dashed lines 

correspond to the upper and lower limits of the 95% CI of the constant 𝑘. 

 

 

 

The residual 𝑟𝑖 of the 𝑖-th value in a set of 𝑚 data is the difference between the observed value 𝑦𝑖 and the 

corresponding value �̂�𝑖 predicted by the fit: 𝑟𝑖 = 𝑦𝑖 − �̂�𝑖, with 𝑖 = 1, 2, … ,𝑚. In our fit the maximum 

absolute value 𝑟𝑚𝑎𝑥 of the residuals 𝑟𝑖 is given by  

𝑟𝑚𝑎𝑥 = max
𝑖

|𝑦𝑖 − �̂�𝑖| = 12.15 

corresponding to the eighth observation (𝑖 = 8) shown in the previous figure. 

The residual standard deviation 𝜎𝑟 is defined as: 



𝜎𝑟 = √
∑ (𝑦𝑖 − �̂�𝑖)2𝑚

𝑖=1

𝑑𝑓
 

where 𝑑𝑓 is the degree of freedom: 𝑑𝑓 = 𝑚 − 𝑝 (𝑚 is the number of observed data and 𝑝 the number of 

parameters in the fit: 𝑚 =  16 and 𝑝 = 1 in our case). The residual standard deviation for our fit is  

𝜎𝑟 = √
∑ (𝑦𝑖 − �̂�𝑖)216

𝑖=1

16 − 1
= 6.75 

The Table below compares the observed and predicted values of relevant variants in each of the sixteen 

WHO observations between March 2020 and March 2022.  

𝒊 
Earliest 

detection 
𝑵 

WHO 

variants 
𝒗 (𝟗𝟓% 𝐂𝐈) |𝒓| 𝒏 (𝟗𝟓% 𝐂𝐈) 

1 Mar-2020 750890 1 0.10 (0.08-0.12) 0.90 1.25 (1.04-1.47) 

2 Apr-2020 3090445 2 0.38 (0.31-0.44) 1.62 1.14 (0.95-1.34) 

3 May-2020 5934936 5 0.70 (0.58-0.82) 4.30 1.10 (0.91-1.29) 

4 Sep-2020 32730945 6 3.47 (2.87-4.06) 2.53 1.00 (0.83-1.17) 

5 Oct-2020 44888869 8 4.67 (3.86-5.47) 3.33 0.98 (0.81-1.15) 

6 Nov-2020 62195274 14 6.35 (5.26-7.45) 7.65 0.96 (0.80-1.13) 

7 Dec-2020 79231893 16 7.98 (6.61-9.36) 8.02 0.95 (0.79-1.12) 

8 Jan-2021 98925221 22 9.85 (8.15-11.54) 12.15 0.94 (0.78-1.10) 

9 Mar-2021 126697603 24 12.44 (10.30-14.59) 11.56 0.93 (0.77-1.09) 

10 May-2021 169597415 25 16.40 (13.57-19.23) 8.60 0.92 (0.76-1.07) 

11 Sep-2021 231703120 26 22.04 (18.25-25.84) 3.96 0.90 (0.75-1.06) 

12 Nov-2021 260493573 27 24.63 (20.39-28.88) 2.37 0.90 (0.74-1.05) 

13 Dec-2021 278714484 28 26.26 (21.74-30.79) 1.74 0.89 (0.74-1.05) 

14 Jan-2022 349641119 31 32.57 (26.96-38.18) 1.57 0.88 (0.73-1.04) 

15 Feb-2022 423437674 33 39.06 (32.33-45.79) 6.06 0.88 (0.73-1.03) 

16 Mar-2022 481756671 34 44.15 (36.55-51.76) 10.15 0.87 (0.72-1.02) 

 

The index 𝑖 indicates the order of each observation, 𝑁 is the cumulative number of infected cases in the 

world,  |𝑟| is the absolute value of each residual (difference between observed and predicted values),  

𝑣 (95%CI) is the number of cumulative relevant variants predicted by the model with the corresponding 

95% CI and 𝑛 (95% CI) is the predicted number of new relevant variants per ten million infected cases. 

The column “WHO variants” lists the number of relevant variants recorded by WHO up to the reported 

date of detection. 

 



NUMERICAL DERIVATIVES 

In order to obtain the derivatives of the function underlying the WHO data on relevant SARS-CoV-2 

variants, we interpolated the observed data with Wolfram Mathematica by exploiting the B-splines and 

the Lagrange and Hermite methods. Moreover, we computed the so-called three-points and five-points 

formulas discussed e.g. by Burden RL and Faires JD in “Numerical analysis” (7th edition. Pacific Grove: 

Brooks/Cole; 2001). 

If 𝑥0, 𝑥1, … , 𝑥𝑞 are 𝑞 + 1 distinct numbers in an interval 𝐼 and 𝑓(𝑥) is a function whose values are known 

in these points, the (𝑞 + 1)-point formula expressing the derivative 𝑓′ of the function 𝑓 in a point 𝑥𝑗, with 

𝑗 = 0, 1, … , 𝑞, is given by: 

𝑓′(𝑥𝑗) = ∑ 𝑓(

𝑞

𝑘=0

𝑥𝑘) ∙ 𝐿′
𝑞;𝑘(𝑥𝑗) +

𝑓(𝑞+1) (𝜉(𝑥𝑗))

(𝑞 + 1)!
∏(𝑥𝑗 − 𝑥𝑘)

𝑞

𝑘=0
𝑘≠𝑗

≅ ∑ 𝑓(

𝑞

𝑘=0

𝑥𝑘) ∙ 𝐿′
𝑞;𝑘(𝑥𝑗) 

where 𝜉 is a point in 𝐼, depending on 𝑥𝑗, and 𝐿′
𝑞;𝑘(𝑥) is the derivate of the 𝑘-th coefficient 𝐿𝑞;𝑘(𝑥) of the 

𝑞-th Lagrange interpolating polynomial: 

𝐿𝑞;𝑘(𝑥) = ∏
𝑥 − 𝑥𝑖

𝑥𝑘 − 𝑥𝑖

𝑞

𝑖=0
𝑖≠𝑘

 

The most common formulas are those involving three and five evaluating points: 

𝑓′(𝑥𝑗) ≅ ∑ 𝑓(

𝑗+ℎ

𝑘=𝑗−ℎ
𝑘≠𝑗

𝑥𝑘) ∙ 𝑃′
ℎ;𝑘(𝑥𝑗) 

where ℎ =  1 or ℎ =  2 for the three-points or five-points formula, respectively, and 

𝑃′
ℎ;𝑘(𝑥𝑗) = 𝐷

[
 
 
 
 

∏
𝑥 − 𝑥𝑖

𝑥𝑘 − 𝑥𝑖

𝑗+ℎ

𝑖=𝑗−ℎ
𝑖≠𝑗 ]

 
 
 
 

𝑥=𝑥𝑗

 

being 𝐷[ ]𝑥=𝑥𝑗
 the derivative with respect to 𝑥 computed in 𝑥 = 𝑥𝑗. 

The sets of three points {𝑥𝑗−1, 𝑥𝑗 , 𝑥𝑗+1} and five points {𝑥𝑗−2, 𝑥𝑗−1, 𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2}, belonging to the 

complete set {𝑥0, 𝑥1, … , 𝑥𝑞}, are chosen so that the point 𝑥𝑗 where the derivative must be computed is in 

central position (or as most central as possible), since in this case the approximation error is minimum.  



In our fit the set {𝑥0, 𝑥1, … , 𝑥𝑞} is given by the 𝑞 + 1 = 15 + 1 points {𝑁1, 𝑁2, … , 𝑁16} corresponding to 

the cumulative numbers of infected cases in the world for all the cumulative numbers of relevant variants 

detected by WHO in the months between March 2020 and March 2022 (see Table 1 of the Results section) 

and interpolated by the chosen function (B-splines and Lagrange or Hermite polynomials). 

 

 

 

In the previous figure the solid line represents the new variants per ten million cases 𝑛 =  𝑘 ∙ 107 log𝑁−1

(log𝑁)2
, 

while the dashed lines correspond to the upper and lower limits of the 95% CI = (1.52 –  2.15) ∙ 10−6 of 

the constant 𝑘 = 1.83 ∙ 10−6. The dots represent the new variants per ten million cases computed through 

the formula 𝑛 ≅ 𝑓′(𝑁) ∙ ∆𝑁, where ∆𝑁 = 107 and the numerical derivative 𝑓′ of the function 𝑓 

underlying the observed data was obtained with the methods reported in the legend (three or five points 

formulas, B-splines, Lagrange and Hermite interpolation). Only 𝑛 values between 0 and 2.6 were 

considered. 

 

 

 

 



LINEAR REGRESSION 

The numerical fit 𝑣 = 𝑘 ∙ 𝑁 log𝑁⁄ , where 𝑣 is the cumulative number of relevant SARS-CoV-2 variants 

and 𝑁 is the cumulative number of infected cases, can be approximated by the linear regression �̃� = ℎ ∙ 𝑁, 

with ℎ = 9.27 ∙ 10−8 and 95% CI = (7.56 − 10.99) ∙ 10−8.  

The linear model does not satisfy the third condition listed in the Methods section. However, it is close to 

the logarithmic fit up to large numbers of cases 𝑁 in the world. Specifically, the difference between the 

number of relevant SARS-CoV-2 variants predicted by the two fits is zero for 𝑁 =  383 million cases 

(February 2022), as shown in the figure below, and raises to 10 relevant variants for 𝑁 =  1.6 billion 

cases in the world (corresponding to about three times the cases recorded from the beginning of the 

epidemic up to June 2022). 

 

 

 

In the logarithmic fit 𝑣 = 𝑘 ∙ 𝑁 log𝑁⁄  the number 𝑛 of new relevant variants per ten million cases 

decreases as the number 𝑁 of cases increases, as discussed in the Results section: 𝑛 =  18.3 ∙
log𝑁−1

(log𝑁)2
.  

On the contrary, in the linear fit �̃� = ℎ ∙ 𝑁 the number 𝑛 is constant: 𝑛 ≅ �̃�′(𝑁) ∙ ∆𝑁 = 0.93, being 

�̃�′(𝑁) = ℎ = 9.27 ∙ 10−8 and ∆𝑁 = 107. This different behaviour between the logarithmic and linear 

fits is represented in the following figure. 



 

 

 

The full circle in the previous figure indicates the intersection of the linear and logarithmic fits, i.e. their 

common value as well as the corresponding number of infected cases and the date of detection. In the 

logarithmic fit the number 𝑛 of new relevant variants per ten million infections decreases – although 

slowly – as the virus circulates, while in the linear fit 𝑛 is constant. 


