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SUPPLEMENTARY INFORMATION 

1. Methods: Cohort Characteristics 

Preterm infants with a gestational age ≤32 weeks were prospectively included in the study on 

informed parental consent (Study Site 1, n=86, Perinatal Centre LMU Munich, EC #195–07; 

Study Site 2, n=21, Perinatal Centre UKGM Giessen, EC #135-12). BPD (mild, moderate and 

severe) was diagnosed at 36 weeks gestational age. Inclusion of participants for the study started 

in December 2012 and ended November 2020.  Pulmonary function tests were performed 

according to the guidelines of the American Thoracic and European Respiratory Society. 

2. Methods: Imaging and Annotation Protocols 

Axial images were obtained (GA 37±5.8) with a T2-weighted half-Fourier-acquired single-shot 

turbo spin echo (HASTE) protocol for lung structural assessment. An ECG-triggered 2D multi-

slice single-shot fast spin-echo sequence with an echo time (TE) of 57 ms was used; the 

repetition time was set to 2 RR intervals.  

The T2-weighted sequence with an echo time of 57 ms shows low signal intensities in normal 

(non-pathological) lung parenchyma, predominantly as an effect of low proton density in the 

lung. However, in contrast to gradient-echo (GRE) acquisitions with non-ultrashort TEs, there 

is still a reasonable level of (spinecho-refocused) signal remaining in the lungs. By choosing 

relatively narrow windowing settings, these images show that the lung signal is significantly 

higher than the air/background signal outside the subject. T2-weighted lung acquisitions can 

also generally be well suited for the depiction of lung pathologies such as infiltrates or nodules 

(Hatabu et al. https://doi.org/10.1148/radiol.2020201138). 

The spatial MRI resolution was 1.3×1.9 mm² in plane with a slice thickness of 4 mm and 0.4 

mm slice gap. Parallel imaging with an acceleration factor of 2 was applied and 2 averages were 

acquired for each slice.  

A total of 107 Pulmonary MRI sequences with 2,165 axial images, with a resolution of 256×192 

pixels, were acquired during spontaneous quiet breathing without oxygen supplementation and 

without invasive or non-invasive respiratory support in supine position swaddled in a vacuum 

mattress after feeding using neonatal noise attenuators (Minimuffs®, natus® newborn care, 

Seattle, USA) for hearing protection. Study infants did not exhibit clinical or laboratory signs 

of infection. Two types of 3T MRI scanners were used (Siemens Skyra for the Perinatal Centre 

LMU Munich and Siemens Verio for Perinatal Centre UKGM Giessen).  



To remove unnecessary background, we first identify the centroid of all pixels that are above 

the 5% intensity quantile threshold across all slices and then crop all slices to a square of 

128×128 pixels centered at the centroid. 

Standardized image scoring of lung structural injury was performed by two independent 

radiologists (i.e., a third-year radiological resident and a radiology fellow). 

3. Methods: Deep-Learning MRI Lung Segmentation Model 

Hyperparameters of the U-Net segmentation models were optimized using grid search for three 

randomly selected leave-one-patient-out models in a 4-fold cross-validation scheme, the best 

performances were achieved with 300 training epochs, 0.001 learning rate, using a binary cross-

entropy loss for the NN optimization, and applying image augmentations with 0.1 random 

zoom, 0.1 translations and up to 22.5° random rotations. 

Architecture parameters of the UNets are summarized in Table S1, and hyperparameters for 

random search in Table S2. 

4. Methods: MRI-Lung Volumetric Representation  

The lung 3D volume was built from the lung segmented 2D masks by generating voxels in the 

3D space, each voxel has dimensions of (dx,dy) constituting the distance to the neighboring 

pixels, and (dz) representing slice thickness and space between the MRI slices, as obtained from 

the DICOM metadata. 

A pipeline to orient all the patients' 3D lung volumetric representations to a common reference 

frame was developed and applied. The pipeline consists of calculating a convex hull silhouette 

for each binary 2D lung mask (including left and right lung masks) from the MRI slides; we 

then calculate the rotation of the minor axis 𝜃𝑖 for each convex hull.  

Afterwards, the overall rotation angle  𝜃𝑎𝑣𝑔 of the 3D lung object is found by performing a 

weighted average of the individual slice rotations 𝜃𝑖 , weighted by the lung area of the slice 𝑎𝑖: 

𝜃𝑎𝑣𝑔 =
∑ 𝜃𝑖 ⋅ 𝑎𝑖
𝑁
𝑠𝑙𝑖𝑐𝑒=𝑖

∑ 𝑎𝑖
𝑁
𝑠𝑙𝑖𝑐𝑒=𝑖

 

Rigid rotation of the lung 3D object is applied such that 𝜃𝑎𝑣𝑔 is aligned with the x-axis of the 

new reference frame. The pipeline includes regionprops functions from the Scikit-Image 0.19.2 

library (See code repository).  

Ultimately, the left and right separation of the lungs is performed by finding the two largest 3D 

objects with connected voxels in the 3D space, the left or right designation of the lungs is 

determined by the x coordinates of the 3D object centroids, enabling the extraction of side-

specific lung features for each patient.  



5. Methods: 3D Lung Morphological Features 

MRI-Morphological features were investigated as descriptors of lung disease, based on the 

topological features proposed by Waibel et al. [24], and measures to quantify the distribution 

of pixel intensities from the lung 3D representations. The features evaluated fall in three 

category groups: 

● Volume and shape features (n=38): Total volume, left and right lung volume, left over 

right volume ratio. Minor axis length, major axis length, lung elongation, normalized 

centroids (x,y,z), maximum lung height and standard pixel-columns height deviation in 

the z-dimension, for both left and right lungs. Three eigenvalues of the inertia of each 

lung's volume. Six descriptors of the moments of inertia per lung. 

● Surface descriptors (n=10): Surface area, surface roughness, gauss surface roughness, 

surface convexity, and 3D boundaries per lung. 

● Intensity distribution features (n=30): MRI signal intensity weighted centroids (x,y,z), 

the distance of the MRI intensity-weighted centroids to the non-weighted centroid 

(x,y,z),  maximum, minimum, median, standard deviation, and percentiles of the lung 

pixel intensities (5th, 25th, 50th, 75th, 95th). 

A description of the complete set of features can be found in Table S3.  

 

6. Methods: BPD Severity Prediction Models 

Logistic regression (LR) with elastic-net and random forest (RF) models for BPD severity 

prediction (Binomial, Multinomial and Regression) were trained and evaluated in a nested 

cross-validation (CV) scheme, with 5-fold splits in both the inner and outer k-folds. The best 

model hyperparameters were found using a randomized search algorithm in the inner fold and 

model performance was validated in the outer fold of the CV; ranges and configurations given 

for the hyperparameter search are described in Table S4. 

In addition, model performance with and without applying of feature selection methods, namely 

Principal Component Analysis (PCA) and/or Univariate Feature Selection (UFS), was also 

evaluated. PCA was used to reduce the dimensionality of only the lung morphological features, 

and the resulting PCA-components were filtered to include only those which constituted the top 

(90% or 99%) of the cumulative variance ratio. UFS was also optionally applied for 

dimensionality reduction of all the input features before model training; the top 20 features of 

the UFS were selected with the mutual information coefficient (MI). 



The different combinations of explanatory feature groups (PCL=Patient, clinical and lung 

MRI-descriptors, PC=Patient and clinical descriptors, GA=Gestational age, L=78 MRI lung 

MRI-descriptors) and model pipeline configurations (LR or RF, with/without PCA and UFS) 

were trained and tested each on an individual CV scheme. Only the best performing model 

configuration for each feature group (best average throughout the outer CV folds) was reported 

in the main manuscript. 

 

7. Results: MRI Lung Features Correlate with BPD Severity  

Automated MRI-lung features extracted from each MRI-sequence are available in Table S6. 

Our exploratory analysis showed that MRI-based lung morphological features have significant 

correlation with BPD severity levels. In Table S7, we show the statistical tests (Pearson, 

Kruskal-Wallis and Wilcoxon–Mann–Whitney U-test with Bonferroni correction) for 

correlation and paired wise discrimination of BPD severity levels with the two most highly 

correlated MRI-based morphological variables and clinical variables. 

 



Supplementary Tables 

 

Table S1: U-Net Architecture Parameters 

 Block Description 

Convolutional Block 1 

(CNN-1) 

CNN Filters = 64, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.2) 

Batch Normalization 

 

CNN Filters = 64, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.2) 

Batch Normalization 

 

Dropout and Max Pooling  

 

Dropout fraction = 0.1 

Max. Pooling Kernel Size = 2×2 

 

Convolutional Block 2 

(CNN-2) 

CNN Filters = 128, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.2) 

Batch Normalization 

 

CNN Filters = 128, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.2) 

Batch Normalization 

 

Dropout and Max Pooling  

 

Dropout fraction = 0.1 
Max. Pooling Kernel Size = 2×2 

 

Convolutional Block 3 

(CNN-3) 

CNN Filters = 256, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.2) 

Batch Normalization 

 

CNN Filters = 256, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.2) 

Batch Normalization 

 

Dropout and Max Pooling  

 

Dropout fraction = 0.1 

Max. Pooling Kernel Size = 2×2 

 

Convolutional Block 4 

(CNN-4) 

CNN Filters = 512, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.2) 

Batch Normalization 

 

CNN Filters = 512, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.2) 

Batch Normalization 

 

Dropout and Max Pooling  

 

Dropout fraction = 0.1 

Max. Pooling Kernel Size = 2×2 

Convolutional Block 5 

(CNN-5) 

CNN Filters = 1024, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.2) 

Batch Normalization 

 

CNN Filters = 1024, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.2) 

Batch Normalization 

 

Dropout and Max Pooling  

 

Dropout fraction = 0.1 

Max. Pooling Kernel Size = 2×2 

 

Convolutional Block 6 Up-6 Features: feature size= 512, up-sampling-kernel = 2×2 



(CNN-6) Concatenation: CNN-4 Features + Up-6 Features 

 

CNN Filters = 512, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.1) 

Batch Normalization 

 

CNN Filters = 512, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.1) 

Batch Normalization 

 

Convolutional Block 7 

(CNN-7) 

Up-7 Features: feature size= 256, up-sampling-kernel = 2×2 

Concatenation: CNN-3 Features + Up-7 Features 

 

CNN Filters = 256, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.1) 

Batch Normalization 

 

CNN Filters = 256, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.1) 

Batch Normalization 

 

Convolutional Block 8 

(CNN-8) 

Up-8 Features: feature size= 128, up-sampling-kernel = 2×2 

Concatenation: CNN-2 Features + Up-8 Features 

 

CNN Filters = 128, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.1) 

Batch Normalization 

 

CNN Filters = 128, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.1) 

Batch Normalization 

 

Convolutional Block 9 

(CNN-9) 

Up-9 Features: feature size= 64, up-sampling-kernel = 2×2 

Concatenation: CNN-1 Features + Up-9 Features 

 

CNN Filters = 64, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.1) 

Batch Normalization 

 

CNN Filters = 64, Kernel = 3×3 

Activation function = LeakyReLU (alpha=0.1) 

Batch Normalization 

 

Output Layer 

 

Activation function = Sigmoid  

 

 

Table S2: U-Net Grid Search Parameters. 

 Hyperparameters Evaluated with Grid Search 

U-Net for Lung 

Segmentation 

Epochs = [100, 200, 300, 400] 

Loss Functions = Mean squared error, Binary cross-entropy, Dice-loss. 

Learning Rate = [0.001, 0.0001] 

 

Augmentation = Augmentations were applied with the following configuration  (0.1 

random zoom, 0.1 translations and up to 22.5° random rotations), training without 

augmentations was also compared. 

 



 

Table S3: 3D MRI-based Feature Descriptions 

 Feature Name Description 

 

Volume 

and 

Shape 

Features 

total volume [voxels] * sum of the voxel volumes for the left and right lung 

left right volume ratio * volume of left lung divided by volume of the right lung 

number of lung voxels number of voxels of each lung 

major axis length 
length of a lung's major axis calculated on a 3D segmentation volume 

using scikit-image regionprops library. 

minor axis length 
length of a lung's minor axis calculated on a 3D segmentation volume 

using scikit-image regionprops library. 

normalized centroid z 
the z-location of the lung's centroid relative to its height in the z-axis 

(values in [0,1]) 

normalized centroid y 
the y-location of the lung's centroid relative to its length in the y-axis 

(values in [0,1]) 

normalized centroid x 
the x-location of the lung's centroid relative to its width in the x-axis 

(values in [0,1]) 

zsum std standard deviation of the heights of all voxel columns in the z-axis 

zsum max maximal height of all voxel columns in the z-axis 

moment cr0 v 
raw image moments up to the third order calculated using the moments 

function of scikit image 

moment cc0 v 
raw image moments up to the third order calculated using the moments 

function of scikit image 

moment cr1 v 
raw image moments up to the third order calculated using the moments 

function of scikit image 

moment cc1 v 
raw image moments up to the third order calculated using the moments 

function of scikit image 

moment cr2 v 
raw image moments up to the third order calculated using the moments 

function of scikit image 

moment cc2 v 
raw image moments up to the third order calculated using the moments 

function of scikit image 

inertia eigvals0 
the eigenvalues of the inertia tensor of the image calculated using the 

inertia_tensor_eigvals function of scikit-image 

inertia eigvals1 
the eigenvalues of the inertia tensor of the image calculated using the 

inertia_tensor_eigvals function of scikit-image 

inertia eigvals2 
the eigenvalues of the inertia tensor of the image calculated using the 

inertia_tensor_eigvals function of scikit-image 

elongation the lung's major axis length divided by its minor axis length 

Intensity-

Based 

Features 

mean intensity 
mean value of a lung's mri signal values which are scaled to the range [0,1] 

within the combined lung mask 

intensity weighted 

centroid z 

coordinates of the normalized centroid as described above but weighted by 

scaled mri signal 

intensity weighted 

centroid y 

coordinates of the normalized centroid as described above but weighted by 

scaled mri signal 

intensity weighted 

centroid x 

coordinates of the normalized centroid as described above but weighted by 

scaled mri signal 



intensity std 
standard deviation of a lung's mri signal values which are scaled to the 

range [0,1] within the combined lung mask 

max intensity 
maximum of a lung's mri signal values which are scaled to the range [0,1] 

within the combined lung mask 

min intensity 
minimum of a lung's mri signal values which are scaled to the range [0,1] 

within the combined lung mask 

intensity 5 percentile 
percentile values of a lung's mri signal values which are scaled to the range 

[0,1] within the combined lung mask 

intensity 25 percentile 
percentile values of a lung's mri signal values which are scaled to the range 

[0,1] within the combined lung mask 

intensity 50 percentile 
percentile values of a lung's mri signal values which are scaled to the range 

[0,1] within the combined lung mask 

intensity 75 percentile 
percentile values of a lung's mri signal values which are scaled to the range 

[0,1] within the combined lung mask 

intensity 95 percentile 
percentile values of a lung's mri signal values which are scaled to the range 

[0,1] within the combined lung mask 

centroid intensity shift z 
absolute value of the difference between the z coordinates of the 

normalized centroid and intensity-weighted centroids 

centroid intensity shift y 
absolute value of the difference between the y coordinates of the 

normalized centroid and intensity-weighted centroids 

centroid intensity shift x 
absolute value of the difference between the x coordinates of the 

normalized centroid and intensity-weighted centroids 

Surface  

Descriptors 

surface 3D boundary 
number of voxels in the intersection of the lung mask and the binary 

dilation (scikit image function) of the same mask 

surface gauss roughness 

absolute value of the pointwise difference of the predicted lung array and 

its gaussian blurred version (scikit image function gaussian_filter used for 

blurring) 

surface area 
number of voxels in the predicted lung array's mesh which is interpolated 

using the marching cubes algorithm (scikit image) 

surface roughness 
mean squared distance of vertices of the mesh described above and the 

smoothed mesh which is generated using the humphrey filter 

surface convexity 
voxel volume of predicted lung array divided by voxel volume of the 

corresponding convex hull array 

*Features calculated across both lungs (not side-specific) 

 

Table S4: Randomized Search Parameters for BPD Classification Models. 

 Hyperparameters Description and Range 

Logistic 

Regression 

(Binomial, 

Multinomial) 

● The regularization for Logistic Regression models was performed choosing L1, L2 or 

Elastic-net penalty functions. 

● Regularization strength parameter C was sampled from a uniform logarithmic function 

with range [0.0001, 10], using scipy.stats. 

● For elastic-net regularization, the l1/l2 ratio was sampled from a uniform distribution 

(loc=0, scale =1) using scipy.stats. 

● A weighted F1 score was chosen as the metric for performance of the randomized 

hyperparameter search. 

 

Random Forest ● The max. tree depth was sampled from a random uniform distribution of integers 

[5,100]. 



(Binomial, 

Multinomial, 

Regression) 

● The number of RF estimators was sampled from a random uniform distribution of 

integers [50, 500] 

● A weighted F1- score was chosen as the metric for performance of the randomized 

hyperparameter search in the classification models. 

 

Poisson  

(Regression) 

● Regularization strength parameter (alpha) was sampled from a uniform distribution 

(loc=0, scale =1) using scipy.stats. 

● The negated value of the mean absolute error was chosen as the metric for performance 

of the randomized hyperparameter search in the regression models. 

 

 

Table S5: Segmentation Performances for Models and Manual Annotations 

Volumetric Dice Coefficient per MRI sequence for Physicians (P1 vs [P2, P3], P2 vs [P1, P3], 

P3 vs [P1, P2]) and Models (M1 vs [P2, P3], M2 vs [P1, P3] , M3 vs [P1, P2]) and ensemble 

model MV vs [P1,P2,P3], can be found in the Supplementary Files. 

 

Table S6: MRI-Lung Features per Sequence 

Calculated MRI-Lung Features per MRI sequence are available in the supplementary files. 

 

Table S7 : Exploratory Analysis - Features vs BPD Severity 

 
Pearson’s 

correlation 

 

Kruskal-Wallis 

 

Pairwise comparison 

Wilcoxon–Mann–Whitney (WMW) U-test  

(with bonferroni correction) * 

 

MRI Lung 

Volume by Birth 

Weight [cm3/Kg] 

 

r=0.562 

p-value=6.52e-

10 

 

k=42.17 

p-value=3.68e-09 

WMW = [236, 25, 60, 107, 217, 112] 

p-values=[2.54e-05, 1.41e-04, 4.56e-06, 7.33e-

02, 3.44e-02, 1.00] 

significance=[***, ***, ***, N.S, *,N.S] 

 

MRI Lung 

Elongation 

(left lung) 

 

r=-0.460 

p-value=1.02e-

06 

 

k=26.01 

p-value=9.48e-06 

WMW = [944, 296, 550, 294, 557, 114] 

p-values=[6.98e-04, 2.00e-03,  5.63e-05, 6.43e-

02,  7.68e-03, 0.885] 

significance=[**, *, ***, N.S, *, N.S] 
 

 

Gestational Age 

[weeks] 

 

 

r=-0.587 

p-value=7.42e-

11 

 

k=48 

p-value=1.72e-10 

WMW = [1173, 328, 623, 270,470,102] 

p-values=[2.21e-09, 7.034e-05, 7.42e-08, 0.193, 

0.203, 0.772] 

significance=[***, ***, ***, N.S, N.S, N.S] 

 

Birth Weight  

[Kg] 

 

 

r=0.563 

p-value=1.17e-

07 

 

k=27.31 p-

value=5.07e-06 

WMW=[620, 142, 325, 138,   284, 35] 

p-values=[9.75e-04, 2.00e-03, 5.00e-05, 0.0437,  

0.0639, 0.592] 

significance=[***,  *,  ***,  N.S,  N.S,  N.S] 

* Order for the WMW Pairwise BPD Tests (No vs Mild, No vs Moderate, No vs Severe, Mild 

vs Moderate, Mild vs Severe, Moderate vs Severe). Significance (***=p-value≤ 0.001, **=p-

value≤0.01, *=p-value≤0.05, N.S = Not Significant, p-value>0.05). 


