
METHODS	

Ethical	approval	 	

The	study	was	approved	by	the	ethical	commission	of	UZ	Leuven	(KU	Leuven,	reference	

number:	S53684).	Participants	provided	signed	informed	consent	to	participate	with	the	

study.	The	design	of	the	study	was	 in	accordance	with	the	Declaration	of	Helsinki	and	

Belgian	privacy	law.	

Study	design		

The	prospective	study	consisted	of	345	active	IBD	(239	CD	and	106	UC)	patients	initiating	

biological	 therapy.	 They	were	 included	 after	 attending	 the	 outpatient	 clinic	 of	 the	UZ	

Leuven	 (Leuven,	 Belgium)	 following	 informed	 consent.	 IBD	 patients	 were	 diagnosed	

based	on	European	Crohn	and	colitis	organisation	(ECCO)	guidelines1,2.	Active	disease	

before	 patients	were	 treated	 (baseline)	met	 the	 criteria	 for	 initiating	 every	 biological	

therapy	based	on	endoscopic	evaluation.	Patients	were	treated	with	anti-tumor	necrosis	

factor	(aTNF,	159	patients),	vedolizumab	(VDZ,	148	patients)	and/or	ustekinumab	(UST,	

78	 patients).	 Disease	 activity	 for	UC	 patients	was	 based	 on	 patient	 report	 outcome	 2	

(PRO2)	combining	stool	 frequency	and	rectal	bleeding,	Mayo	endoscopy	subscore	and	

faecal	calprotectin3.	Disease	activity	for	CD	patients	was	based	on	PRO2	combining	stool	

frequency	and	abdominal	pain,	simple	endoscopic	score	for	Crohn’s	disease	(SES-CD)	or	

endoscopic	absence	of	ulceration	and	faecal	calprotectin.	In	addition,	albumin,	serum	CRP	

and	hemoglobin	were	used	to	establish	disease	activity	as	well.	Therapeutic	outcome	to	

biological	therapy	was	determined	at	week	14	(w14)	for	UC	and	week	24	(w24)	for	CD	

patients	(primary	endpoint).	Therapeutic	outcome	was	defined	by	endoscopic,	clinical	

and	biomarker	remission	of	the	patient.	Endoscopic	remission	in	UC	patients	was	defined	

as	Mayo	endoscopy	subscore	≤	1	and	 in	CD	patients	as	SES-CD	≤	3	and/or	absence	of	



ulceration.	Clinical	remission	in	UC	patients	was	defined	as	PRO2	with	no	rectal	bleeding	

and	 stool	 frequency	 ≤	 1.	 Clinical	 remission	 in	 CD	 patients	 was	 defined	 as	 PRO2	 ≤	 7	

(calculated	 as	 stool	 frequency	 x	 2	 +	 abdominal	 pain	 x	 5).	 Biomarker	 remission	 in	 all	

patients	was	defined	as	faecal	calprotectin	<	150	mg/kg.		

Metadata	collection	 	

The	 patients	 metadata	 consisted	 of	 anthropometrics,	 clinical	 parameters,	 and	

characteristics	 of	 faecal	 samples	 and	 are	 available	 in	 Supplementary	 Table	 1.	

Anthropometric	 quantitative	 measurements	 are	 comprised	 of	 age	 (years),	 gender	

(male/female),	 smoking	 status	 (active	 smoker	 or	 non-smoker),	 BMI	 (kg/m2),	 disease	

duration	(years),	Diagnosis	(UC/CD)	and	biological	history	(number	of	therapies	before).	

Clinical	parameters	consisted	of	disease	location	(Montreal	classification	and	grouping	

UC	with	colonic	CD	patients	in	L2),	serum	CRP	(mg/L),	albumin	(g/L),	hemoglobin	(g/dL),	

endoscopic	and	total	mayo-score,	SES-CD	and	PRO2.	Faecal	samples	were	characterized	

by	assessing	faecal	calprotectin	(mg/L),	moisture	content	(%)	and	bacterial	cell	count.	

Faecal	 calprotectin	 concentrations	 were	measured	 on	 frozen	 samples	 using	 the	 fCAL	

ELISA	kit	(Bühlmann,	Schönenbuch,	Switzerland).	Faecal	moisture	was	calculated	after	

lyophilization	 as	 the	 percentage	 of	 mass	 loss	 from	 ±	 0.2	 g	 frozen	 aliquots	 (-80°C).	

Microbial	loads	were	determined	in	±	0.2	g	frozen	(-80°C)	aliquots	as	described	before4,5.	

Sample	selection	 		

A	 subset	 of	 faecal	 samples	 was	 collected	 from	 the	 original	 prospective	 study	 cohort	

(n=345)	based	on	sample	availability	and	pairing.	Faecal	samples	(n=432)	were	collected	

from	a	total	of	181	IBD	(126	CD	and	55	UC)	patients.	All	IBD	patients	had	active	disease	

at	baseline	and	were	treated	with	one	of	four	biological	therapies	(51	IFX,	28	ADA,	63	

VDZ	and	49	UST).	Every	patient	 comprised	of	 a	baseline	and	primary	endpoint	 faecal	



sample,	and	50	CD	patients	contained	an	additional	w14	timepoint.	Some	patients	(n=10)	

received	2	biological	treatments.	In	this	study,	the	term	(non-)remission	was	used	to	refer	

to	samples	of	(non-)responding	patients	based	on	endoscopic	outcome,	irrespective	of	

the	timepoint	of	sample	collection	(baseline/primary	endpoint).	

Viral	metagenomics	 	

The	NetoVIR	 protocol	was	 used	 to	 prepare	 faecal	 samples	 for	 viral	metagenomics	 as	

described	before	(Extended	Data	Figure	2A)6.	Faecal	samples	were	aliquoted	in	capped	

O-ring	 tubes	 (50-100	mg)	 and	 suspended	 in	 sterile	 dPBS	 (10%).	 The	 suspension	was	

homogenized	 using	 the	 PRECELLYS	 homogenizer	 (Bertin	 Technologies)	 for	 1	 min	 at	

3,000	rpm	following	a	centrifugation	step	 for	3	min	at	17,000	g.	The	supernatant	was	

filtered	through	a	0.8	µm	PES	filter	(Sartorius)	and	a	nuclease	treatment	was	performed	

using	a	combination	of	benzonase	(Novagen)	and	micrococcal	nuclease	 (New	England	

Biolabs)	at	37°C	for	2h.	Extraction	of	viral	nuclei	acids	was	performed	without	addition	

of	carrier	RNA	using	the	QIAMP®	Viral	RNA	mini	kit	(60µL,	Qiagen,	Venlo,	Netherlands).	

Nucleic	 acids	 were	 randomly	 amplified	 using	 the	 Complete	 Whole	 Transcriptome	

Amplification	kit	(WTA2,	Sigma-Aldrich)	with	small	adaptations	(94°C	for	2	min,	and	17	

cycles	of	94°C	for	30	sec	and	70°C	for	5	min).	The	amplified	PCR	product	was	purified	

using	the	MSB	Spin	PCRapace	kit	(Invitek	Molecular)	and	concentration	was	measured	

using	the	Qubit™	dsDNA	HS	Assay	Kit.	The	preparation	of	the	sequencing	libraries	was	

performed	using	the	Nextera	XT	DNA	Library	kit	(Illumina)	and	purified	with	Agencourt	

AMPure	XP	beads	(Beckman	Coulter).	Quality	and	library	sizes	were	evaluated	using	a	

High	Sensitivity	DNA	kit	on	the	Bioanalyzer	2100	(Agilent	Technologies).	Sequencing	of	

the	 libraries	 was	 carried	 out	 by	 VIB	 Nucleomics	 Core	 in	 2	 runs	 on	 an	 Illumina	

NovaSeq6000	S2	sequencer	(2x150bp,	paired	end).	



Bioinformatic	analyses	 	

Computational	analyses	on	an	input	of	10.2	billion	paired	end	reads	(1.52	TB)	was	carried	

out	as	described	before	(Extended	Data	Figure	2B)7.	The	average	was	23.6	(range	7.09	to	

50.3)	million	reads	per	sample.	Raw	reads	were	trimmed	to	remove	low-quality	bases,	

ambiguous	 bases	 and	 adapter	 sequences	 using	 Trimmomatic	 v0.398.	 Trimmed	 reads	

were	 decontaminated	 upon	 alignment	 to	 the	 reference	 human	 genome	 (hg38,	

BioProject=PRJNA31257),	and	contaminome	sequences	present	in	negative	controls	with	

bwa-mem2	v2.09.	The	average	number	of	quality-controlled	reads	per	sample	was	11.6	

(range	6,669	to	33.3)	million	per	sample.	These	reads	were	de	novo	assembled	in	a	set	of	

long	contiguous	sequences	(contigs)	using	MetaSPAdes	v3.15.1	with	k-mer	length	of	21,	

33,	 55	 and	 7710.	 To	 reduce	 fragmentation	 of	 contigs	 with	 a	 very	 high	 coverage	 the	

assembly	step	was	repeated	two	more	times	with	respectively	10%	and	1%	of	the	reads	

(triple	assembly).	Per	sample,	the	contigs	of	the	3	assemblies	were	merged,	clustered	and	

contigs	with	a	sequence	length	lower	than	1,000	bp	were	discarded.	A	second	clustering	

was	performed,	this	time	across	all	samples	to	remove	redundancy	and	obtain	a	set	of	

non-redundant	 (NR)	contigs	at	95%	ANI	and	80%	coverage	using	CheckV’s	 clustering	

scripts11.	Abundances	were	calculated	per	sample	by	mapping	quality-controlled	reads	

to	the	set	of	NR	contigs	using	bwa-mem2	v2.0,	provided	that	the	respective	sample	had	a	

member	 in	 the	 cluster	 of	 contigs	 that	 NR	 contigs	 represent9.	 To	 avoid	 false	 positive	

identification	of	phages	 in	a	sample,	NR	contigs	with	a	horizontal	 coverage	of	70%	or	

lower	 were	 discarded.	 To	 correct	 for	 sequencing	 depth	 viral	 metagenomes	 were	

subsampled	(rarefied)	to	±	1	million	reads	(n=377)	thereby	discarding	55	samples.	

Eukaryotic	viruses	 	

Identification	 and	 classification	 (genus/family)	 of	 eukaryotic	 viruses	 was	 performed	

using	well-annotated	public	databases.	The	homology-based	approaches	compared	the	



NR-contig	 set	 against	 a	NR	 protein	 sequence	 database	 (Jan	 8,	 2021)	 using	DIAMOND	

v0.9.30.131	 (sensitive	mode)	and	CAT	v4.6,	 and	against	 the	NCBI	nucleotide	database	

(April	18,	2021)	using	BLASTN	v2.7.1	(e-value	≤	1e-10)12–14.	Classification	was	derived	

from	the	principle	of	lowest	common	ancestor	as	determined	by	ktClassifyBLAST	module	

in	KronaTools	v2.815.	

Prokaryotic	viruses	 	

Identification	 of	 prokaryotic	 viruses	 (bacteriophages/phages)	 was	 performed	 using	

VirSorter2	 v2.2.3	 (--min-score	 ³	 0.5)16.	 Genome	 completeness	 of	 the	 NR-contigs	 was	

determined	 with	 CheckV	 v0.5.111.	 Bacteriophages	 identified	 with	 VirSorter2	 and	 an	

adequate	 quality	 tier	 (³	 50%	 completeness)	 were	 selected	 for	 further	 analyses.	

Classification	was	 performed	 by	 a	 combination	 of	 homology-based	 approaches	 and	 a	

marker	 gene	 approach.	 Homology-based	 approaches	 were	 described	 in	 the	 previous	

section	for	eukaryotic	viruses.	Additionally,	phage	classification	was	expanded	by	marker	

gene	 approaches	using	Cenote-Taker2	 v2.0.1	 (Extended	Data	 Figure	3)17.	 Early	 phage	

taxonomy	has	been	largely	based	upon	phage	morphology.	The	International	Committee	

on	Taxonomy	of	Viruses	(ICTV)	has	undertaken	large	efforts	to	reorganize	viral	taxonomy	

based	on	genetic	similarities	 in	an	ongoing	challenge	to	optimize	phage	taxonomy18,19.	

Although	great	progress	has	been	made,	linking	current	taxonomies	to	sequencing	data	

at	family	(or	any	other	lower)	taxonomical	rank	remains	inadequate.	To	minimize	false	

annotations,	phage	classification	was	specified	on	the	class	taxon.	 	

The	 lifestyle	of	bacteriophages	was	determined	based	on	 the	appearance	of	 lysogeny-

specific	genes.	These	genes	were	predicted	using	 the	 functional	annotation	module	of	

Cenote-Taker2	and	can	be	found	in	Supplementary	Table	614.	The	functional	annotation	

module	of	Cenote-Taker2	was	also	used	to	screen	for	toxins	and	reverse	transcriptase	



(RT)	characteristics.	The	bacterial	host	of	phage	genomes	was	predicted	using	Random	

Forest	Assignments	of	Hosts	(RaFAH)	v0.320.	Bacterial	hosts	were	predicted	on	the	phyla	

taxon	(--min_cutoff	³	0.14)	and	the	genus	taxon	(--min_cutoff	³	0.50)	as	suggested	by	the	

authors.	

CrAss-like	bacteriophages		

A	custom	database	of	998	CrAss-like	bacteriophages	was	created	by	combining	the	CrAss-

like	 genomes	 of	 3	 large	 datasets.	 A	 total	 of	 55	 genomes	 were	 found	 in	 RefSeq,	 249	

genomes	in	Guerin	et	al16,	and	694	genomes	in	Yutin	et	al17.	Bacteriophages	selected	in	

previous	section	were	compared	against	this	custom	nucleotide	database	using	BLASTN	

(e-value	≤	1e-5,	%cov	³	10,000	bp)	to	identify	CrAss-like	viruses9.	A	total	of	74	CrAss-like	

viruses	(2.4%)	were	identified.	accounting	for	16.2%	of	the	viral	reads	(Supplementary	

Table	2).	CrAss-like	viruses	were	classified	as	a	separate	group	within	the	class	taxon	of	

Caudoviricetes	and	named	Caudoviricetes	[CrAss].	

Viral	community	typing	 	

Bacterial	community-typing	(‘enterotyping’)	 is	based	on	Dirichlet	Multinomial	Mixture	

(DMM)	 modelling	 and	 allows	 for	 the	 stratification	 of	 individuals	 based	 on	 their	 gut	

microbiome6,21,22.	Briefly,	DMM	includes	a	probabilistic	modelling	that	groups	samples	

from	 the	 same	 community,	 and	 thereby	 reproducibly	 identifies	 microbiome	

configurations	without	making	any	assumptions	regarding	the	putative	discrete	nature	

of	 the	 strata,21,22.	 A	 viral	 counterpart	 of	 these	 enterotypes	 (‘viral	 community	 typing)	

might	allow	researchers	 to	 stratify	 individuals	based	on	 their	gut	virome.	 In	addition,	

viral	 community	 types	 could	 be	 associated	 to	 covariates,	 as	 mentioned	 before21.	 A	

prerequisite	for	viral	community	typing	is	a	high	degree	of	shared	viral	groups	between	

individuals	which	is	problematic	due	to	a	high	virome	individuality23.	Homology-based	



approaches	 to	obtain	 reliable	 lower	 ranks	 (e.g.	 genera)	are	currently	unreliable18.	 For	

that	 reason,	 in	 this	 study	 viral	 groups	 that	 clustered	 together	 based	 on	 amino	 acid	

similarity	were	assigned	to	the	same	genus-like	groups,	as	described	in	Nayfach	et	al24.	A	

total	of	874	viral	genus-like	groups	were	detected	within	this	 IBD	cohort	(median	per	

sample=26).	 Viral	 community	 typing	 of	 the	 genus-like	 groups	 (rarefied)	 abundances	

(³20%	 prevalence)	 with	 logarithmic	 transformation	 was	 performed	 based	 on	 the	

Dirichlet	 multinomial	 mixtures	 approach	 as	 provided	 in	 the	 DirichletMultinomial	 R	

package25.	The	number	of	mixture	components	was	determined	to	be	two	according	to	

the	 Bayesian	 information	 criterion	 (BIC)	 score	 (n=363,	 Extended	 Data	 Figure	 6).	 The	

mean	probability	for	cluster	assignment	was	0.93	(median=1,	Supplementary	Table	4).	

Diversity,	abundances	and	virome	compositional	visualization	 	

Alpha-diversity	 indices	 (observed	richness	and	Shannon	diversity)	were	calculated	on	

the	 abundance	 table	 using	 phyloseq26.	 Differential	 abundance	 analysis	 was	 used	 to	

identify	 features	 whose	 relative	 abundances	 differ	 between	 two	 or	 more	 groups	 of	

samples	 by	 linear	 discriminant	 analysis	 effect	 size	 (LEfSe)	 as	 implemented	 in	 the	

microbiomeMarker	R	package27.	Virome	inter-individual	variation	was	calculated	using	

Bray-Curtis	 dissimilarity	 on	 the	 genus-like	 groups	 abundances	 with	 logarithmic	

transformation	 and	 visualized	 by	 principal	 coordinate	 analysis	 (PCoA).	 Additionally,	

enterotyping	 (or	 bacterial	 community	 typing)	 of	 the	 genus-level	 abundance	microbial	

profiles	were	performed	as	part	of	another	paper28.	

Explanatory	analyses	of	virome	compositional	variation	 	

The	 contribution	 of	 metadata	 to	 the	 virome	 variation	 (genus	 level,	 Bray-Curtis)	 was	

determined	 using	 univariate	 distance-based	 redundancy	 analysis	 (dbRDA)	 using	 the	

capscale	function	as	described	in	the	vegan	R	package29.	The	contribution	of	significant	



metadata	 variables	 on	 the	 first	 two	 principal	 coordinates	were	 determined	 using	 the	

envfit	 function	 as	 implemented	 in	 the	 vegan	 package	 (univariate	 dbRDA)	 and	 were	

plotted	 as	 arrows	 on	 the	 PCoA	 plot29.	 The	 non-redundant	 cumulative	 contribution	 of	

metadata	to	the	virome	variation	with	maximum	explanatory	power	(genus	level,	Bray-

Curtis)	was	determined	using	single	multivariate	dbRDA	by	forward	model	selection	with	

the	 ordiR2step	 function	 in	 vegan.	 Metadata	 variables	 were	 included	 in	 multivariate	

analyses	 if	 they	 showed	 a	 significant	 contribution	 to	 virome	 variation	 in	 previous	

univariate	 dbRDA.	 To	 assess	 the	 contribution	 of	 a	 variable	 on	 the	 virome	 variation	

between	timepoints	a	subset	of	samples	was	assessed	(limited	to	baseline	and	primary	

endpoint	samples)	by	pairing	the	analysis	using	the	capscale	function	and	conditioning	

on	patient	identifier	(paired	dbRDA).	

Metadata	association	to	community	types	 	

Logistic	regression	(Logit)	allows	for	the	association	between	metadata	and	community	

types.	Simple	logistic	regression	modelled	the	association	between	a	binomial	response	

variable	 (community	 type	 CrM	 presence	 (true/false))	 using	 one	 non-redundant	

explanatory	variable.	The	Logit	link	function	was	applied	(generalized	linear	model	with	

binomial	link	function),	as	provided	by	the	glm	function	in	the	stats	package.	

Prevalence,	quantification,	and	classification	of	potentially	predictive	biomarkers	

Viral	extracts	(60	µL)	of	pre-intervention	samples	(without	VLP	enrichment)	were	used	

to	determine	the	prevalence	and	amount	of	previously	identified	phages	with	predictive	

potential	using	qPCR	(Supplementary	Table	25).		To	evaluate	the	novelty	of	the	phages	

compared	 to	current	databases,	blastn	alignment	score	 (AS)	was	given	by	multiplying	

average	nucleotide	identity	(ANI)	with	the	alignment	coverage	(AC).	Phages	were	given	a	

species	 classification	 based	 on	 the	 closest	 match	 if	 AS	 >	 0.1	 or	 were	 classified	 as	



unannotated	if	AS	<	0.1.	In	total	5	novel	phage	species	were	identified	to	potentially	have	

a	predictive	capacity	with	a	poor	match	to	known	phages,	and	therefore	have	been	given	

a	novel	name.	The	discovered	phages	were	named	CrAssella-R	(NODE_1_B26,	species	=	

CrAssphage	 YS1-2_2437,	 AS	 =	 0.38),	 Croides-R	 (NODE_2_B380),	 Croccus-NR	

(NODE_14_B85,	 species	 =	 Lactococcus	 phage	 FB14,	 AS	 =	 0.41),	 Croides-NR	

(NODE_7_B137)	and	Cripes-R	(NODE_10_B261).	To	evaluate	the	prevalence	and	amount,	

primers,	 probes,	 and	 standards	 specific	 to	 each	 phage	 were	 designed	 based	 on	 the	

alignment	of	medium	to-complete	genomes	as	determined	by	CheckV	(Supplementary	

Table	26).	Quantification	of	the	viral	load	in	each	pre-intervention	sample	was	performed	

for	each	phage	in	duplicate	qPCRs.	The	qPCR	mix	was	made	by	adding	5	µL	viral	extract	

to	a	mastermix	of	15	µL.	The	mastermix	was	composed	of	5	µL	TaqMan	Fast	Virus	1-Step	

Mastermix	 (ThermoFisher),	 5	 µL	 sterile	 water,	 1	 µL	 probes	 (5µM)	 and	 2	 µL	

forward/reverse	 primer	 (10µM).	 The	 standards	 contained	 a	 known	 concentration	 of	

oligonucleotides	and	were	used	to	establish	a	calibration	curve	by	serial	dilution	(1011	to	

103	viral	copies).	This	calibration	curve	was	used	for	calculating	the	concentration	of	the	

respective	phages	in	the	pre-intervention	samples.	The	total	viral	copies	of	each	sample	

were	calculated	by	multiplying	the	qPCR	results	by	a	dilution	factor	of	12	(dilution	factor:	

5	 µL	 out	 of	 60	 µL	 viral	 extract).	 The	 limit	 of	 detection	 to	 determine	 phage	 marker	

prevalence	was	set	at	100	viral	copies	per	mL.	The	limit	of	quantification	to	determine	

phage	marker	concentration	was	set	at	500	viral	copies	per	mL.	

Predictive	model	for	therapeutic	outcome	 	

Phage	marker	concentration	for	each	pre-intervention	samples	was	used	to	calculate	the	

IBD	 predictive	 value.	 The	 predictive	 value	 of	 IBD	 phage	 markers	 was	 calculated	 by	

𝑙𝑜𝑔10(!"#$!"#%$%
!&'$%

)	and		𝑙𝑜𝑔10 (!"#$!(&)$%
!%(*$%

)	for	UC	and	CD	patients,	respectively.	Simple	



logistic	 regression	 modelled	 the	 association	 between	 a	 binomial	 response	 variable	

(endoscopic	 remission	 (true/false))	 using	 the	 IBD	 predictive	 value	 (no	 prediction	

excluded).	The	Logit	function	was	applied	(generalized	linear	model	with	binomial	link	

function),	as	provided	by	the	glm	function	in	the	stats	package.	At	last,	a	ROC	(receiver	

operating	 characteristic)	 curve	was	 calculated	 illustrating	 the	predictive	 ability	 of	 the	

phage	markers	using	the	pROC	package.	

Statistical	analyses		

Statistics	were	performed	in	R	using	the	packages	phyloseq,	DirichletMultinomial,	vegan,	

robustrank		and		stats	packages25,26,29–31.	All	statistical	tests	were	non-parametric,	two-

sided,	and	significance	was	defined	as	P	<	0.05.	Multiple	testing	correction	was	applied	

where	appropriate	using	Benjamini-Hochberg	(BH)	method,	and	significance	was	defined	

as	AdjP	<	0.05.	Wilcoxon	effect	size	was	calculated	by	𝑟 = 𝑍/√𝑁	and	Chi-squared	effect	

size	was	calculated	by	𝑟 = 0𝝌"/𝑁,	as	implemented	in	the	rstatix	package.	

Data	availability	 	

Metadata	can	be	found	in	Supplementary	Table	1.	The	raw	sequence	data	were	deposited	

to	 the	 NCBI	 Sequence	 Read	 Archive	 under	 the	 BioProject	 accession	 number	

PRJNA804384.	 Sequences	 (predictive	markers)	were	deposited	 to	GenBank	under	 the	

following	accession	numbers:	ON493177-ON493181.	

Code	availability	 	

The	ViPER	(Virome	Paired-End	Reads	pipeline)	script	was	used	to	process	raw	paired-

end	reads	and	is	publicly	available	at	https://github.com/Matthijnssenslab/ViPER.	All	

the	 data	 required	 to	 reproduce	 virome	 analyses	 will	 be	 made	 available	 at	

https://github.com/Matthijnssenslab/IBDVirome.			
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