Exploring the Role of Plasma Lipids and Statins Interventions on Multiple Sclerosis Risk and Severity: A Mendelian Randomization Study

Mona M. Almramhi, MSc^{1,2}, Chris Finan, PhD^{3,4,5}, Catherine S. Storm, BSc¹, Amand F. Schmidt, PhD^{3,4,5}, Demis A. Kia, MBBS¹, Rachel Coneys, BSc⁶, Sandesh Chopade, MSc^{3,4}, Aroon D. Hingorani, PhD, FRCP^{3,4,7}, Nicholas W. Wood PhD, FRCP, FMedSci¹.

Affiliations: ¹Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; ² Faculty of Applied Medical Sciences, King Abdulaziz University, Kingdom of Saudi Arabia; ³Institute of Cardiovascular Science, Faculty of Population Health, University College London, United Kingdom; ⁴British Heart Foundation University College London Research Accelerator, London, United Kingdom; ⁵Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands, ⁶Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom. ⁷Health Data Research UK London, University College London

Supplementary

MS severity data

The MS severity score is an algorithm that relates scores on the EDSS to the distribution of disability in patients with comparable disease durations ¹. The MS severity score is designed to predict disease severity.

We obtained the summary statistics data for MS severity, from Professor Jacob McCauley, the corresponding author of the original publication 2 . The MS severity data has been generated from a genome-wide scan performed in MS cases (7,069 cases) to identify genetic variants that might influence MS severity 2 . In this severity-based analysis, the MS cases obtained from the discovery phase of the primary analysis of susceptibility of the 2011 GWAS, which included 9,772 cases and 17,376 controls 2 . Of the 9,772 cases, the disease severity (as measured by MS severity score) was available for only 7,069 cases, thus association analyses were only performed on 7,069 cases 2 . No genetic variants with strong evidence (p-value $< 5 \times 10^{-8}$) for association with MS severity were identified in that severity-based analysis 2 .

Table S1: The Rho GTPase family and cholesterol biosynthesis pathway (mevalonate pathway) gene list $(part\ 1)$

HGNC symbol	Ensemble Gene ID	Description	Participant of	Genes - MS risk analyses	Genes - MS severity analyses
PPAPDC2	ENSG00000205808	phosphatidic acid phosphatase type 2 domain containing 2	Cholesterol biosynthesis	Yes	Yes
HMGCS1	ENSG00000112972	3-hydroxy-3-methylglutaryl-CoA synthase 1 (soluble)	Cholesterol biosynthesis	Yes	Yes
TM7SF2	ENSG00000149809	transmembrane 7 superfamily member 2	Cholesterol biosynthesis	Yes	Yes
ARV1	ENSG00000173409	ARV1 homolog (S. cerevisiae)	Cholesterol biosynthesis	Yes	Yes
IDI1	ENSG00000067064	isopentenyl-diphosphate delta isomerase 1	Cholesterol biosynthesis	Yes	Yes
HMGCR	ENSG00000113161	3-hydroxy-3-methylglutaryl-CoA reductase	Cholesterol biosynthesis	Yes	Yes
LBR	ENSG00000143815	lamin B receptor	Cholesterol biosynthesis	Yes	Yes
PMVK	ENSG00000163344	phosphomevalonate kinase	Cholesterol biosynthesis	Yes	Yes
FDFT1	ENSG00000079459	farnesyl-diphosphate farnesyltransferase 1	Cholesterol biosynthesis	Yes	Yes
DHCR24	ENSG00000116133	24-dehydrocholesterol reductase	Cholesterol biosynthesis	Yes	Yes
MVK	ENSG00000110921	mevalonate kinase	Cholesterol biosynthesis	Yes	No
FDPS	ENSG00000160752	farnesyl diphosphate synthase	Cholesterol biosynthesis	Yes	Yes
ACAT2	ENSG00000120437	acetyl-CoA acetyltransferase 2	Cholesterol biosynthesis	Yes	Yes
GGPS1	ENSG00000152904	geranylgeranyl diphosphate synthase 1	Cholesterol biosynthesis	Yes	Yes
CYP51A1	ENSG00000001630	cytochrome P450, family 51, subfamily A, polypeptide 1	Cholesterol biosynthesis	Yes	Yes
HSD17B7	ENSG00000132196	hydroxysteroid (17-beta) dehydrogenase 7	Cholesterol biosynthesis	Yes	Yes
MVD	ENSG00000167508	mevalonate (diphospho) decarboxylase	Cholesterol biosynthesis	Yes	Yes
SQLE	ENSG00000104549	squalene epoxidase	Cholesterol biosynthesis	Yes	Yes
SC5DL	ENSG00000109929	sterol-C5-desaturase	Cholesterol biosynthesis	Yes	Yes
LSS	ENSG00000160285	lanosterol synthase (2,3-oxidosqualene- lanosterol cyclase)	Cholesterol biosynthesis	Yes	Yes
MSMO1	ENSG00000052802	methylsterol monooxygenase 1	Cholesterol biosynthesis	NO	NO
EBP	ENSG00000147155	emopamil binding protein (sterol isomerase)	Cholesterol biosynthesis	NO	NO
IDI2	ENSG00000148377	isopentenyl-diphosphate delta isomerase 2	Cholesterol biosynthesis	NO	NO
NSDHL	ENSG00000147383	NAD(P) dependent steroid dehydrogenase- like	Cholesterol biosynthesis	NO	NO
DHCR7	ENSG00000172893	7-dehydrocholesterol reductase	Cholesterol biosynthesis	Yes	NO
RHOV	ENSG00000104140	ras homolog family member V	member of Rho GTPase	NO	NO
RHOB*	ENSG00000143878	ras homolog family member B	member of Rho GTPase	Yes	Yes
CDC42*	ENSG00000070831	cell division cycle 42	member of Rho GTPase	Yes	Yes
RHOG*	ENSG00000177105	ras homolog family member G	member of Rho GTPase	Yes	Yes

RHOD*	ENSG00000173156	ras homolog family member D	member of Rho GTPase	Yes	NO
RHOF*	ENSG00000139725	ras homolog family member F (in filopodia)	member of Rho GTPase	Yes	Yes
RHOQ*	ENSG00000119729	ras homolog family member Q	member of Rho GTPase	Yes	Yes
RAC2*	ENSG00000128340	ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2)	member of Rho GTPase	Yes	Yes
RAC1*	ENSG00000136238	ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)	member of Rho GTPase	Yes	Yes
RHOH*	ENSG00000168421	ras homolog family member H	member of Rho GTPase	Yes	Yes
RHOBTB2	ENSG00000008853	Rho-related BTB domain containing 2	member of Rho GTPase	Yes	Yes

Table S1: The Rho GTPase family and cholesterol biosynthesis pathway (mevalonate pathway) gene list (*part* 2)

HGNC symbol	Ensemble Gene ID	Description	Participant of	Genes - MS risk analyses	Genes - MS severity analyses
RAC3*	ENSG00000169750	ras-related C3 botulinum toxin substrate 3 (rho family, small GTP binding protein Rac3)	member of Rho GTPase	NO	NO
RHOU	ENSG00000116574	ras homolog family member U	member of Rho GTPase	Yes	NO
RHOBTB1	ENSG00000072422	Rho-related BTB domain containing 1	member of Rho GTPase	Yes	Yes
RND2*	ENSG00000108830	Rho family GTPase 2	member of Rho GTPase	NO	NO
RHOC*	ENSG00000155366	ras homolog family member C	member of Rho GTPase	Yes	Yes
RND1*	ENSG00000172602	Rho family GTPase 1	member of Rho GTPase	Yes	Yes
RND3*	ENSG00000115963	Rho family GTPase 3	member of Rho GTPase	NO	NO
RHOA*	ENSG00000067560	ras homolog family member A	member of Rho GTPase	NO	NO
RHOJ*	ENSG00000126785	ras homolog family member J	member of Rho GTPase	NO	NO

The table includes 25 genes that were flagged as being involved in the cholesterol biosynthesis pathway in the Reactome database of human pathways and reactions (http://www.reactome.org). The 20 genes of the Rho GTPase family were extracted from Azzarelli, 2015 3 . For each gene, the HGNC symbol (HUGO Gene Nomenclature Committee), Ensemble gene ID and description were derived from the Ensembles database (https://www.ensembl.org/index.html). In the last two columns, 'Yes' indicates that a gene was included in the MR analysis, while 'NO' indicates that a gene was not included in the MR analysis due to either no SNPs being robustly associated with the target gene at a p-value $< 5 \times 10^{-8}$ or the eQTL data being absent.

^{*} Rho GTPases that undergo prenylation, a total of 16 family members, which are the primary focus of the current study.

Table S 2: MR analysis of the effect of lipid level on MS risk

		No. of	, OR (95 % CI)	p-volue FDP		pleiotropy assessment			
Lipid trait	Method	SNPs	OR (95 % CI)	p-value	FDR	Q p-value	<i>I</i> ² (%)	MR-Egger intercept	MR- Egger intercept p-value
HDL-C	IVW	118	1.144 (1.04,1.26)	7.94E-03	2.38E-02				
HDL-C	MR Egger	118	1.229 (1.02,1.48)	3.03E-02		6.38E-06	40.5	-0.004	3.66E-01
HDL-C adjusted for LDL-C & TG	MVMR	118	1.255 (1.06,1.49)	0.00913					
LDL-C	IVW	99	0.996 (0.9,1.1)	9.36E-01	9.36E-01				
LDL-C	MR Egger	99	1.002 (0.85,1.18)	9.82E-01		1.30E-09	52.5	-5.00E-04	9.27E-01
LDL-C adjusted for HDL-C & TG	MVMR	99	1.024 (0.94,1.12)	0.607					
TG	IVW	65	0.921 (0.81,1.04)	2.00E-01	3.00E-01				
TG	MR Egger	65	0.859 (0.7,1.05)	1.36E-01		1.50E-04	43.6	0.0046	3.70E-01
TG adjusted for HDL-C & LDL-C	MVMR	65	1.076 (0.88,1.32)	0.472					

HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; No. of SNPs, the number of independent genome-wide significant single nucleotide polymorphisms; IVW, inverse-variance weighted; MVMR, multivariable MR; OR, odds ratio; CI, confidence interval; Q p-value, Cochran's Q statistic; FDR, false discovery rate; I² (%) expresses the level of heterogeneity as a percentage.

Figure S 1: Scatter plots for MR analyses showing the causal estimates of the lipid fractions on MS risk. The effect sizes of each genetic variant (with 95% confidence intervals) are represented by black points. The slope of each line shows the estimated MR effect for each method.

Table S3: MR analysis of the effect of lipid level on MS severity

Trait	Method	No. Method of SNP	of Beta (95 % CI)	p-value	FDR		Pleiotropy assessment				
		5111				Q p- value	I2 (%)	MR- Egger intercept	MR-Egger intercept p-value		
HDL-C	IVW	83	-0.155 (-0.33,0.02)	0.0847	0.254						
HDL-C	MR Egger	83	-0.039 (-0.49,0.41)	0.867		1	0	-0.0067	0.546		
HDL-C adjusted for LDL &TG	MVMR	83	-0.059 (-0.4,0.28)	0.735							
LDL-C	IVW	70	-0.091 (-0.3,0.12)	0.402	0.603						
LDL-C	MR Egger	70	-0.019 (-0.43,0.4)	0.929		0.805	0	-0.005	0.684		
LDL-C adjusted for HDL &TG	MVMR	70	0.012 (-0.35,0.37)	9.49E-01							
TG	IVW	46	-0.001 (-0.19,0.19)	0.991	0.991						
TG	MR Egger	46	0.08 (-0.39,0.54)	0.738		1	0	-0.0055	0.661		
TG adjusted for HDL &LDL	MVMR	46	0.035 (-0.22,0.29)	7.88E-01							

The results reported as ORs with the 95% CI per 1-SD increase of lipid fractions. *For Abbreviations, see Table S2*.

Figure S2: Scatter plots for MR analyses showing the causal estimates of the lipid fractions on MS severity. The effect sizes of each genetic variant (with 95% confidence intervals) are represented by black points. The slope of each line shows the estimated MR effect for each method.

Table S4: MR analysis of the effect of MS risk on lipid levels

Outcome	Mothod	No. of SNP Beta (95 % CI)	p- value	FDR	P	Pleiotropy assessment			
						Q p-value	I ² (%)	MR- Egger intercept	MR- Egger intercept p-value
HDL-C	IVW	118	-0.004 (-0.02,0.01)	0.591	0.886				
HDL-C	MR Egger	118	-0.016 (-0.06,0.03)	0.498		4.05E-12	54	0.0012	0.593
LDL-C	IVW	118	-0.008 (-0.02,0.01)	0.295	0.885				
LDL-C	MR Egger	118	0 (-0.04,0.05)	0.991		2.61E-07	44.5	-0.0008	0.717
TG	IVW	119	0 (-0.01,0.01)	0.961	0.961				
TG	MR Egger	119	0.017 (-0.02,0.06)	0.405		2.55E-06	41.6	-0.0017	0.37

The associations between genetically predicted MS risk and the lipid fractions are presented as 1-SD with 95% CI per 1-unit-higher log-odds of MS risk. *For Abbreviations, see Table S2*.

Figure S3: Scatter plots for MR analyses showing the causal estimates of the MS risk on lipid fractions. The effect sizes of each genetic variant (with 95% confidence intervals) are represented by black points. The slope of each line shows the estimated MR effect for each method.

Table S5: MR estimates for the genetically mimicked effects of statins on MS risk (part 1)

Trait	Method	No. of SNPs	OR (95 % CI)	p-value	FDR	pleiotropy assessment				
		SIVES				Q p-value	I ² (%)	MR-Egger intercept	MR-Egger intercept p- value	
ACAT2	IVW	5	1.035(0.92,1.17)	5.77E-01	8.74E-01					
ACAT2	MR Egger	5	1.043(0.89,1.22)	6.00E-01		6.27E-01	0	-0.0076	4.85E-01	
ARV1	IVW	10	0.939(0.86,1.03)	1.84E-01	7.38E-01					
ARV1	MR Egger	10	0.941(0.84,1.05)	2.96E-01		6.79E-01	0	-4.00E-04	9.52E-01	
CYP51A1	IVW	3	1.029(0.89,1.19)	6.99E-01	8.74E-01					
CYP51A1	MR Egger	3	1.046(0.38,2.85)	9.30E-01		7.93E-01	0	-0.0036	9.69E-01	
DHCR24	IVW	9	1.053(0.92,1.2)	4.37E-01	8.74E-01					
DHCR24	MR Egger	9	1.024(0.73,1.44)	8.90E-01		9.61E-01	0	0.0072	8.12E-01	
DHCR7	Wald ratio	1	0.431(0.18,1.02)	5.68E-02	6.05E-01					
FDFT1	IVW	25	0.984(0.95,1.02)	4.07E-01	8.74E-01					
FDFT1	MR Egger	25	0.979(0.94,1.02)	2.62E-01		3.33E-01	0.05	0.0058	6.12E-02	
FDPS	Wald ratio	1	0.878(0.57,1.35)	5.53E-01	8.74E-01					
GGPS1	IVW	6	1.009(0.9,1.13)	8.74E-01	8.74E-01					
GGPS1	MR Egger	6	1.018(0.84,1.24)	8.61E-01		3.29E-01	0	-0.0027	9.16E-01	
HMGCR	IVW	3	1.178(0.89,1.56)	2.50E-01	7.38E-01					
HMGCR	MR Egger	3	1.074(0.09,12.56)	9.55E-01		3.33E-01	0	0.0101	9.41E-01	
HMGCS1	Wald ratio	1	1.877(0.92,3.82)	8.24E-02	6.05E-01					
HSD17B7	IVW	9	1.061(0.83,1.36)	6.40E-01	8.74E-01					
HSD17B7	MR Egger	9	1.132(0.76,1.69)	5.45E-01		8.56E-02	0.36	-0.0101	7.01E-01	
IDI1	IVW	4	0.941(0.59,1.51)	8.00E-01	8.74E-01					
IDI1	MR Egger	4	0.493(0.21,1.17)	1.10E-01		4.97E-02	0.5	0.0491	1.13E-01	
LBR	IVW	3	0.77(0.48,1.22)	2.69E-01	7.38E-01					
LBR	MR Egger	3	0.608(0,985.61)	8.95E-01		8.75E-01	0	0.0174	9.46E-01	
LSS	IVW	15	0.993(0.94,1.05)	8.03E-01	8.74E-01					
LSS	MR Egger	15	1.006(0.93,1.09)	8.82E-01		3.67E-02	0.4	-0.0028	6.84E-01	

MVD	IVW	8	1.061(0.76,1.47)	7.26E-01	8.74E-01				
MVD	MR Egger	8	1.047(0.73,1.5)	8.01E-01		7.61E-03	0.6	0.0019	9.16E-01
MVK	IVW	3	1.079(0.78,1.49)	6.39E-01	8.74E-01				
MVK	MR Egger	3	1.237(0.14,10.68)	8.47E-01		7.63E-01	0	-0.0148	8.87E-01

Table S5: MR estimates for the genetically mimicked effects of statins on MS risk (part 2)

							pleiotropy	assessment	
Trait	Method	No. of SNPs	OR (95 % CI)	p-value	FDR	Q p-value	I ² (%)	MR- Egger intercept	MR-Egger intercept p-value
PMVK	IVW	4	0.877(0.69,1.11)	2.81E-01	7.38E-01				
PMVK	MR Egger	4	0.741(0.38,1.43)	3.73E-01		1.85E-01	0.11	0.0248	5.91E-01
PPAPDC2	IVW	9	1.065(0.97,1.17)	2.02E-01	7.38E-01				
SC5DL	IVW	4	0.989(0.89,1.1)	8.43E-01	8.74E-01				
SC5DL	MR Egger	4	0.993(0.82,1.2)	9.40E-01		3.21E-01	0	-0.0013	9.62E-01
SQLE	IVW	5	1.024(0.82,1.28)	8.38E-01	8.74E-01				
SQLE	MR Egger	5	1.054(0.73,1.52)	7.80E-01		6.65E-01	0	-0.0067	7.69E-01
TM7SF2	IVW	3	0.877(0.75,1.02)	8.64E-02	6.05E-01				
TM7SF2	MR Egger	3	1.068(0.37,3.06)	9.03E-01		8.01E-01	0	-0.0489	6.56E-01
PPAPDC2	MR Egger	9	0.961(0.83,1.11)	5.86E-01		3.01E-01	0.045	0.0321	7.91E-02
RAC1	IVW	10	1.071(0.96,1.2)	2.41E-01	5.41E-01				
RAC1	MR Egger	10	1.218(0.9,1.66)	2.08E-01		7.11E-01	0	-0.0168	3.56E-01
RAC2	IVW	15	0.861(0.78,0.95)	3.80E-03	5.32E-02				
RAC2	MR Egger	15	0.855(0.76,0.96)	8.14E-03		6.73E-01	0	0.0033	5.15E-01
RHOB	IVW	3	0.849(0.53,1.36)	4.94E-01	5.83E-01				
RHOB	MR Egger	3	1.053(0.07,15.89)	9.70E-01		6.53E-01	0	-0.0172	8.66E-01
RHOBTB1	IVW	13	0.977(0.81,1.18)	8.09E-01	8.09E-01				
RHOBTB1	MR Egger	13	1.017(0.86,1.21)	8.48E-01		4.66E-02	0.4	-0.0154	2.42E-01
RHOBTB2	IVW	3	0.713(0.51,1)	4.94E-02	2.21E-01				
RHOBTB2	MR Egger	3	0.868(0.36,2.11)	7.56E-01		5.70E-01	0	-0.0273	5.61E-01
RHOC	IVW	5	1.038(0.83,1.3)	7.44E-01	8.02E-01				
RHOC	MR Egger	5	1.167(0.75,1.82)	4.94E-01		5.00E-02	0.49	-0.0268	5.62E-01
RHOD	IVW	2	0.544(0.29,1.03)	6.30E-02	2.21E-01				
RHOF	IVW	6	1.134(0.93,1.39)	2.18E-01	5.41E-01				
RHOF	MR Egger	6	0.873(0.43,1.79)	7.12E-01		6.80E-01	0	0.0523	4.43E-01
RHOG	IVW	4	1.126(0.85,1.49)	4.07E-01	5.69E-01				
RHOG	MR Egger	4	1.228(0.84,1.8)	2.91E-01		2.38E-01	0	-0.0153	4.97E-01
RHOH	IVW	5	0.518(0.29,0.94)	3.01E-02	2.11E-01				
RHOH	MR Egger	5	1.733(0.74,4.07)	2.06E-01		4.14E-01	0	-0.0905	2.41E-03
RHOQ	IVW	9	1.07(0.88,1.3)	4.99E-01	5.83E-01				
RHOQ	MR Egger	9	0.909(0.66,1.25)	5.56E-01		5.79E-01	0	0.0261	1.70E-01

RHOU	IVW	3	1.161(0.89,1.51)	2.70E-01	5.41E-01				
RHOU	MR Egger	3	1.327(0.49,3.61)	5.79E-01		6.08E-01	0	-0.0196	7.59E-01
RND1	Wald ratio	1	0.805(0.5,1.3)	3.77E-01	5.69E-01				
CDC42	IVW	10	1.054(0.93,1.19)	3.98E-01	5.69E-01				
CDC42	MR Egger	10	1.069(0.86,1.32)	5.43E-01		3.83E-02	0.45	-0.0041	8.85E-01

Genes highlighted with orange encode proteins involved in cholesterol biosynthesis, while genes highlighted with green encode members of the Rho family. Pleiotropy assessment cannot be conducted for instruments consisting of ≤ 2 independent SNPs as it requires > 2 SNPs. For Abbreviations, see Table S2.

Figure S4: Scatter plots for MR analyses showing the causal estimates of *RAC2* on MS risk. The effect sizes of each genetic variant (with 95% confidence intervals) are represented by black points. The slope of each line shows the estimated MR effect for each method.

Table S6: MR estimates for the genetically mimicked effects of statins on MS severity (part 1)

Trait	Method	No. of	Beta (95 % CI)	p-value	FDR		pleiotro	opy assessm	ent
Hait	Wicthou	SNPs	Beta (93 % CI)	p-value	TDK	Q p-value	I ² (%)	MR- Egger intercept	MR-Egger intercept p-value
ACAT2	IVW	3	-0.145(-0.55,0.26)	0.486	0.936				
ACAT2	MR Egger	3	-0.111(-0.58,0.36)	0.642		0.375	0	-0.0129	0.46
ARV1	IVW	3	0.034(-0.24,0.31)	0.808	0.951				
ARV1	MR Egger	3	0.234(-0.46,0.93)	0.509		0.475	0	-0.0656	0.498
CYP51A1	Wald ratio	1	-0.155(-0.63,0.32)	0.524	0.936				
DHCR24	IVW	2	0.149(-0.24,0.54)	0.456	0.936				
FDFT1	IVW	8	0.163(0,0.33)	0.0541	0.936				
FDFT1	MR Egger	8	0.151(-0.04,0.34)	0.117		0.102	0.34	0.0042	0.834
FDPS	Wald ratio	1	0.152(-1.22,1.52)	0.828	0.951				
GGPS1	IVW	2	0.003(-0.32,0.33)	0.988	0.988				
HMGCR	Wald ratio	1	0.274(-0.65,1.2)	0.562	0.936				
HMGCS1	Wald ratio	1	-1.142(-3.19,0.9)	0.273	0.936				
HSD17B7	Wald ratio	1	0.163(-1.21,1.54)	0.817	0.951				
IDI1	IVW	3	-0.11(-0.94,0.72)	0.795	0.951				
IDI1	MR Egger	3	6.549(0.91,12.19)	0.0229		0.257	0	-0.3974	0.0192
LBR	IVW	3	-0.399(-1.74,0.94)	0.558	0.936				
LBR	MR Egger	3	-0.129(-5.54,5.28)	0.963		0.517	0	-0.0196	0.915
LSS	IVW	5	-0.133(-0.28,0.01)	0.0715	0.936				
LSS	MR Egger	5	-0.134(-0.29,0.02)	0.0942		0.393	0	0.0007	0.98
MVD	Wald ratio	1	0.227(-0.94,1.39)	0.702	0.947				
PMVK	Wald ratio	1	0.482(-0.6,1.56)	0.381	0.936				
PPAPDC2	IVW	3	0.105(-0.14,0.35)	0.404	0.936				
PPAPDC2	MR Egger	3	0.212(-12.8,13.23)	0.975		0.969	0	-0.0279	0.985
SC5DL	IVW	2	0.073(-0.26,0.4)	0.665	0.947				
SQLE	Wald ratio	1	0.038(-1.41,1.48)	0.959	0.988				
TM7SF2	IVW	2	-0.135(-0.65,0.38)	0.604	0.936				
CDC42	IVW	2	0.012(-0.73,0.75)	0.975	0.988				
RAC1	IVW	3	-0.398(-0.92,0.12)	0.134	0.936				
RAC1	MR Egger	3	-0.765(-3.44,1.91)	0.575		0.545	0	0.0631	0.776
RAC2	IVW	5	0.095(-0.25,0.44)	0.588	0.936				

RAC2	MR Egger	5	0.099(-0.59,0.79)	0.779		0.79	0	-0.0012	0.985
RHOB	Wald ratio	1	-0.646(-2.79,1.5)	0.555	0.936				
RHOBTB1	IVW	5	0.347(-0.15,0.84)	0.17	0.936				
RHOBTB1	MR Egger	5	0.325(-0.65,1.3)	0.512		0.278	0	0.0042	0.956
RHOBTB2	IVW	2	-0.467(-1.78,0.85)	0.486	0.936				
RHOC	IVW	2	0.211(-0.45,0.87)	0.531	0.936				
RHOF	IVW	2	0.113(-0.44,0.67)	0.692	0.947				

Table S6: MR estimates for the genetically mimicked effects of statins on MS severity (part 2)

Trait	Method	No. of SNPs	Beta (95 % CI)	p-value	FDR	pleiotropy assessment			
						Q p-value	I ² (%)	MR- Egger intercept	MR-Egger intercept p-value
RHOG	IVW	4	-0.366 (-1.12,0.39)	0.339	0.936				
RHOG	MR Egger	4	-0.231 (-2.1,1.63)	0.809		0.803	0	-0.023	0.779
RHOH	IVW	2	-0.85 (-2.25,0.55)	0.235	0.936				
RHOQ	IVW	4	-0.317 (-0.99,0.36)	0.358	0.936				
RHOQ	MR Egger	4	-0.27 (-1.68,1.14)	0.708		0.357	0	-0.0054	0.94
RND1	Wald ratio	1	0.212 (-2.14,2.57)	0.86	0.952				

Genes highlighted with orange encode proteins involved in cholesterol biosynthesis, while genes highlighted with green encode members of the Rho family. Pleiotropy assessment cannot be conducted for instruments consisting of ≤ 2 independent SNPs as it requires > 2 SNPs. The results reported as log ORs with the 95% CI per 1-SD higher expression of the target gene in blood. For Abbreviations, see Table S2.

References

- 1. Roxburgh R, Seaman S, Masterman T, et al. Multiple Sclerosis Severity Score: using disability and disease duration to rate disease severity. Neurology. 2005;64(7):1144-51.
- 2. Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214.
- 3. Azzarelli R, Kerloch T, Pacary E. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies. Frontiers in cellular neuroscience. 2015;8:445.