
METHODS SUPPLEMENT

Participant Information:
All participants were deemed to be at risk for AD based on their systemic metabolic dysfunction
and cognitive dysfunction or subjective memory complaints at study onset (see Table 1 for full
participant characteristics). Criteria for metabolic dysfunction was a hemoglobin A1c of level
5.7-6.4%, which corresponds to the American Diabetes Association pre-diabetes category
according to their 2016 guidelines (1). Subjective memory complaints (SMC) were diagnosed
using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) criteria and mild cognitive
impairment (MCI) was diagnosed by expert physicians and neuropsychologists using NIA-AA
guidelines for clinical diagnoses without reference to biomarker status (2, 3). Study exclusion
criteria included prior diagnosis of neurological or neurodegenerative illness (except MCI), major
psychiatric disorder (although well-controlled depression was allowed), prior stroke, current use
of diabetes and lipid lowering medications, or medications with known effects on the central
nervous system (i.e. anti-seizure medications, anti-psychotics, opioids, etc.).

The protocol was approved by the Wake Forest Institutional Review Board (ClinicalTrials.gov
Identifier: NCT02984540), and written informed consent was obtained from all participants
and/or their study partners. Participants were medically supervised by clinicians, with safety
monitoring overseen by the Wake Forest Institutional Data and Safety Monitoring Committee.

Procedure:
The primary pilot trial was a randomized crossover design in which participants consumed either
a Modified Mediterranean-Ketogenic Diet (MMKD) or the control American Heart Association
Diet (AHAD) for 6 weeks, followed by a 6-week washout, after which the second diet was
consumed for 6 weeks (Figure S1). During the washout period participants were instructed to
resume their pre-study diet and specifically not continue the protocols from their first diet.
Randomization was performed with a random number generator so that the number of MCI and
SMC participants in each dietary group would be roughly equal. Baseline cognitive, imaging,
blood, stool, and CSF measures were obtained prior to diet randomization (4).

Diet Intervention and Education:
The experimental Modified Mediterranean Ketogenic Diet (MMKD) was a very low carbohydrate
diet aimed at inducing ketosis. Notably, modified versions of the KD have increasingly been
utilized in cases of medically intractable epilepsy given its similar efficacy and increased
tolerability for patients (5). These modified KDs generally incorporate slightly higher amounts of
carbohydrates from whole food sources, yet are still very low carbohydrate and reliably induce
ketosis. The control diet was adapted from the low-fat American Heart Association Diet (AHAD,
5-6). The diets were customized to each participant’s baseline caloric needs to maintain their
current weight throughout the course of the study. Participants were also asked to keep their
exercise and physical activity level stable throughout the study.



The proportions of carbohydrates and fat were the main variables manipulated between the two
diets. The target macronutrient composition (expressed as % of total calories) was 5-10%
carbohydrate, 60-65% fat, and 30% protein for the MMKD and 55-65% carbohydrate, 15-20%
fat, and 20-30% protein for the AHAD. Participants on the MMKD were asked to keep their daily
carbohydrate consumption below 20g each day throughout the 6-week intervention, while higher
fat foods (preferably those low in saturated fats) could be consumed liberally. They were
encouraged to eat fish, lean meats, leafy green vegetables, and nuts and discouraged from
consuming artificially sweetened beverages or products marketed as “low-carbohydrate” during
the intervention. Participants on the AHAD were encouraged to limit their amount of fat intake to
40g or less each day, and to eat plentiful fruits, vegetables, and fiber-laden carbohydrates.

A registered dietitian developed daily meal plans for each participant based upon their food
preferences and caloric needs as determined by a pre-study 3-day food diary, body
composition, and activity level. Participants had weekly diet education visits (either in-person or
by phone) starting one week prior to the start of each diet and continuing throughout the
remainder of the intervention. Participants maintained a daily food record that was reviewed at
these visits.

Adherence to the dietary intervention was assessed by capillary ketone body
(beta-hydroxybutyrate) measures that were collected at all major time points and during diet
education visits using the Nova Max Plus® (http://www.novacares.com/nova-max-plus/) and
with participant subjective report recorded by study dietician. Prior evidence suggests that less
frequent blood-based ketone body measures are equally accurate as daily urine ketone body
test strips in assessment of ketosis (7).

For the most part, participants were required to supply their own food. They were given a food
stipend of $25 each week provided to offset the higher food costs associated with switching their
diets. All participants were provided with a daily multivitamin supplement (Centrum® Silver®),
and participants on the MMKD were supplied with 1L bottles of extra virgin olive oil during their
Pre-Diet and Mid-Diet visits to promote consumption of healthy fats. Participants were not
allowed to use resveratrol, CoQ10 (coenzyme Q10), curcumin, coconut oil or other medium
chain triglyceride-containing supplements throughout the duration of the study.

Stool Collection
Stool samples were collected from participants at five study timepoints (Figure S1). Methods for
collection were adapted from the Manual of Procedures for the Human Microbiome Project (NIH,
Version Number 12.0). Participants received gloves, a sterile collection container, sterile
scooping tool, and toilet hat in addition to instructions for proper specimen collection and
storage (refrigeration or on ice) prior to transfer to study staff. Once received, samples were
immediately aliquoted into four individual vials from each timepoint and stored at -80°C until
further processing and analyses.

Metagenomic Sample Processing:



DNA was extracted from stool samples according to Earth Microbiome Project protocols (8)
using the QIAGEN® MagAttract® PowerSoil® DNA KF Kit (384-sample). A total of 5 ng (or 3.5
µL maximum) genomic DNA were used in a 1:10 miniaturized Kapa HyperPlus protocol with a
15-cycle PCR amplification for shotgun metagenomic sequencing. Libraries were quantified with
the PicoGreen dsDNA assay kit, and 50 ng (or 1 µL maximum) of each library was pooled. The
pool was size selected for 300 to 700 bp and sequenced as a paired-end 150-cycle run on an
Illumina HiSeq 4000 sequencer at the UCSD IGM Genomics Center (9).

Metagenomic Data Processing:
Shotgun sequencing data were uploaded to and processed by Qiita (10, Study ID 13662).
Human reads were removed using minimap2 2.17 (11), while adapters, quality filtering, and
trimming were performed using fastp 20.1 (12). Remaining reads were recruited to the Web of
Life database (13) with Bowtie2 v2.3.0 (14) using the parameters from the SHOGUN pipeline
(15), then processed into Operational Genomic Units with Woltka (16). The resulting feature
table was used for downstream analysis.

Metabolomic Sample Processing:
To extract metabolites from fecal samples, frozen samples were thawed on ice for 30 minutes.
Then, a solution of 50% methanol spiked with 1 µM sulfamethazine was added to each fecal
sample (approximately 50-100 mg feces) at a volume ratio of 10 µL extraction solvent to 1 mg
sample. Samples were homogenized at 25 Hz for 5 minutes on a tissue homogenizer, then
centrifuged at maximum speed for 15 minutes at 4°C. A 200 µl aliquot of supernatant from each
sample was transferred into a 96-well plate and vacuum concentrated to dryness via centrifugal
lyophilization (Labconco Centrivap). Once dried, the samples were stored at -80 °C until LC-MS
was performed. Untargeted LC-MS was performed using a Vanquish liquid chromatography
system (Thermo Scientific) paired with QExactive mass spectrometer. Samples were separate
using a C18 column (Phenomenex Kinetex 1.7 µm C18 100 Å LC Column 50 x 2.1 mm). The
mobile phase used was LC-MS grade water (phase A) and LC-MS grade acetonitrile (phase B),
both containing 0.1% formic acid (Fisher Scientific, Optima LC-MS). The LC was programmed
with a flow rate set to 0.5 mL/min. Samples were injected at 95%A:5%B, which was held for 1
minute, before ramping up to 100%B over 7 minutes, which was held for 0.5 minutes before
returning to starting conditions. The orbitrap mass spectrometer was equipped with a HESI-II
ESI probe. The mass spectrometer was programmed to use a data-dependent acquisition
method that acquired MS full scan spectra, followed by MS/MS spectra of the top 5 most
abundant ions. Precursor ions were fragmented once before being added to an exclusion list
for 30 seconds.  Data were collected in positive ion mode.

Metabolomics Data Processing:
Raw Q Exactive files were converted to .mzXML format using the ProteoWizard tool MSConvert
(17) software, then these reformatted files were imported to MZmine (version 2.53; 18). We
performed feature finding using the parameters recommended for Feature Based Molecular
Networking (FBMN) in the Global Natural Product Social Molecular Networking (GNPS)
ecosystem in its documentation (19, 20). Only peaks that had an MS2 scan were retained. We
exported the feature quantification table (.csv) and MS/MS spectral summary (.mgf) from



MZmine into GNPS and performed FBMN using release 28.2 with the default parameters (19,
20)

Food-omics Data Processing:
Food counts were inferred from metabolomics data using the “Global FoodOmics” project
(http://www.globalfoodomics.org) reference data set. This dataset contains 3,579 food and
beverage samples contributed by community members, that were systematically annotated (21).
Matching up metabolite spectra from stool samples to metabolites identified in reference food
samples enables estimation of foods consumed without the need for food frequency
questionnaires (22). Specifically, each “food count” corresponded to an individual consensus
node in the molecular networking results that matched to a node found in reference food sample
molecular networks. Consensus nodes were required to match the specific sample type, GFOP,
and not match to any of the other experiment groups. Infrequent food types that occurred less
often than water (which is considered blank) were removed to filter out sporadic random
matches.

Dimensionality Reduction Analysis:
Initial dimensionality reduction analysis was performed by Robust Aitchison Principal
Component Analysis (RPCA, 23) through the gemelli plugin to QIIME2 (24;
https://github.com/biocore/gemelli). Dimensionality reduction that accounted for the repeated
measures study design was performed with compositional tensor factorization (CTF, 25), also
through the gemelli plugin for QIIME2. The biplots output from these methods were visualized
with EMPeror (26; https://github.com/biocore/emperor). The statistical significance of results
were evaluated with ANOVAs comparing beta-diversity distances to baseline (27). Multiple test
correction was performed through Bonferroni correction.

Relative Abundance of Features Analysis:
We identified metagenomic, food-omics, and metabolomic features that are associated with diet
and cognition by performing Bayesian inferential regression
(https://github.com/gibsramen/BIRDMAn). We utilized a Negative Binomial Linear Mixed Effect
model to ensure that our statistics were in agreement with our study design; we modeled time,
dietary sequence (whether MMKD intervention was first or second), cognitive status, and diet
(whether a given individual was on MMKD or AHAD at a given time point) as fixed effects while
subject identity was modeled as a random effect. Microbes, food features, and metabolites were
ordered by the log ratio of their relative abundances in objectively normal cognition to mild
cognitive impairment or MMKD to AHAD individuals, respectively (28) and the top and bottom
ten features were examined more closely.

Multi-omics Analysis:
Microbe and metabolite co-occurrence probabilities were calculated with MMvec’s paired-omics
function (29; https://github.com/biocore/mmvec). Heatmap visualizations were also made with
MMvec. The metabolic capabilities of the microbes were evaluated with MetaCyc (30) on the
Web of Life genomes (13). Any genomes containing BSH (E.C. 3.5.1.24) were considered
BSH-containing/encoding.

http://www.globalfoodomics.org
https://github.com/biocore/gemelli
https://github.com/biocore/emperor
https://github.com/gibsramen/BIRDMAn


Data Availability:
Metagenomic sequencing data are available in Qiita (10) under study ID 13662. Mass
spectrometry data (.mzXML format) are available in MassIVE under ID MSV000087087. The
classical molecular networking job is available in GNPS at the following link:
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=90f1ba6e1e4d4d89b75b9017a0631983. The
feature-based molecular networking job is available in GNPS at the following link:
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=16e7c66221ce4ae9ae6678ec276d8343.
The code utilized for these analyses are available at
https://github.com/ahdilmore/BEAM_MultiOmics.

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=90f1ba6e1e4d4d89b75b9017a0631983
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=16e7c66221ce4ae9ae6678ec276d8343
https://github.com/ahdilmore/BEAM_MultiOmics
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