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Supplementary material 

 

1. Modification to Poisson likelihood for censored observations 

First, consider the model of decreasing mobility between February 2 – April 4. The number 

of trips between zip codes 𝑖 and 𝑗 (in either direction) in age group 𝑎 at time 𝑡 is denoted 

𝑌𝑖𝑗𝑎𝑡. For simplicity we can considered a fixed time and age group and just write 𝑌𝑖𝑗 for this 

variable. This is the sum of trips from 𝑖 to 𝑗 and 𝑗 to 𝑖, which we denote 𝑌𝑖−𝑗  and 𝑌𝑗−𝑖 

respectively.  

 

Let 𝜆 be the mean of the Poisson process implied by some parameter values (again just for 

notational convenience), so the likelihood when 𝑌𝑖𝑗 is known exactly is  

𝑌𝑖𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) 

or in other words  

𝑝(𝑌𝑖𝑗|𝜆) 

where 𝑝 is the probability mass function of a Poisson distribution with mean 𝜆. 

 

There are two possibilities for when the total 𝑌𝑖𝑗 isn’t known exactly, either one of 𝑌𝑖−𝑗 and 

𝑌𝑗−𝑖 are below 50 (but not both) or both are below 50. Suppose just one is below 50 and let it 

be 𝑌𝑖−𝑗 be known (otherwise switch the indices). The total 𝑌𝑖𝑗 could therefore be any value 

between 𝑌𝑖−𝑗  and 𝑌𝑖−𝑗 + 49 and so the likelihood is  

𝑝(𝑌𝑖−𝑗 ≤ 𝑌𝑖𝑗 ≤ 𝑌𝑖−𝑗 + 49|𝜆) =  ∑ 𝑝(𝑌𝑖−𝑗 + 𝑘|𝜆)

49

𝑘=0

 

 

Similarly, if both are below 50 then 𝑌𝑖𝑗 could take any value between 0 and 99, yielding a 

likelihood 

𝑝(0 ≤ 𝑌𝑖𝑗 ≤ 99|𝜆) =  ∑ 𝑝(𝑘|𝜆)

99

𝑘=0

 



 

Likelihoods were modified in a similar way for the model of mobility between June 1 – 

August 31, where the uncertainty (and therefore the number of values summed over) 

accumulates for each week that is censored.  

 

2. Prior distributions  

 

Modelling initial decrease in mobility 

All effect sizes were given Normal priors centred at zero with standard deviations of 1. 

Baseline trip rates were parameterised on the log scale with Normal priors centred at -3 with 

standard deviations of 0.5. Note that baseline trip rates were treated as random parameters 

and integrated out (via a Laplace approximation) at each step of the optimisation. The 

weekly city-wide rates of decrease in mobility, 𝑐𝑘, were also parameterised on the log scale 

with an AR(1) prior, with 𝜙 = 1, 𝑐 = 0, 𝜖 = 0.1.  

 

Modelling mobility over summer 

All effect sizes were given Normal priors centred at zero with standard deviations of 1. 

  



Figure S1: Daily trips relative to baseline in cities in the South (excluding San Antonio) 

between June 1 – August 31, with days with data loss removed. Using daily trips reduces the 

amount of missingness as in the weeks with data loss there was only data loss in some (not 

all) days. With the exception of Phoenix, where travel decreased during June from above 

baseline levels to around 90% of baseline, there is little evidence of a decreasing mobility 

during this time frame. San Antonio is not included as there was a similar amount of data 

loss in weekly and daily data. 

 

 
  



Table S1: Summary of all models used 

 

 

 Model 1: Rate of decrease in 

mobility 

Model 2: Summer 

mobility compared to 

baseline 

Model 3: 

Comparison to 

model 1 – rate of 

decrease in mobility 

Time frame February 1 – April 4 June 1 – August 31 February 1 – April 4 

Baseline 

component 

Baseline rate of travel 

between each pair of zips is a 

parameter to be learned. 

Baseline rate of 

travel between each 

pair of zips is fixed at 

the rate learned in 

model 1. 

Gravity model where 

propensity to travel 

and effect of 

distance, origin 

population and 

destination 

population on 

baseline travel is 

learned. 

 

Changing 

mobility 

component 

For each week there is a city-

wide parameter for average 

rate of decrease of mobility.  

The effect of each explanatory 

variable on this city-wide 

average is learned. 

Parameter 𝛽0 

describes average 

change in mobility 

rates between 

baseline and 

summer.  

The effect of each 

explanatory variable 

on this city-wide 

average is learned. 

 

Same as model 1 

Explanatory 

variables 

Distance, proportion of high-

income subscribers, case rate 

relative to city, age, 

median household income 

Distance, proportion 

of high-income 

subscribers, age, 

median household 

income 

Same as model 1 

 

 

 

3. List of zip codes used 

 

See file “list_of_zips.csv” (dataset 1) 

 

4. Weeks removed due to data loss 

 

See file “weeks_removed.csv” (dataset 2) 

 

 

 

 



5. Trips by age  

 

Figure S2: Trips relative to baseline by age group in each city (a) – (e) 

 

Figure S2(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2(b) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S2(c) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S2(d) 
  



Figure S2(e)  



 
6. Trips by distance 

 

Figure S3: Relative trips by distance quartile for each city (not including those presenting in 

the main text) (a) – (d) 

 

Figure S3(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S3(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3(d) 

 

 

 

  



7. Demographic distributions  

 

The distributions of individual income for the subscribers in the dataset in each city is shown 

in Figure S4 and for the general population of the US by region from Census data in Figure 

S5. A clear overrepresentation of higher income groups can be seen in all cities compared to 

the general population in any region.  

 

Figure S4: Proportions of subscribers in each city in each income bracket 

 

 
 

 

  



Figure S5: Proportion of general population in regions of the US in each income bracket [60] 

 

 
 

The distributions of age for the subscribers in the dataset in each city is shown in Figure S6 

and for the general population of the US from Census data in Figure S7. Here the older age 

groups are overrepresented in the subscriber data compared to the general population, 

which is clear despite the slight mismatch in the age ranges of the youngest group. 

 

  



Figure S6: Proportions of subscribers in each city in each age bracket  

 

 

 

Figure S7: Proportion of general US population in each age bracket [61] 

 
 

 
  



8. Model results with alternative distance quartiles 

The results in the main manuscript use distance quartiles based on trips over the whole 

study period. However, since the frequency of trips of different distances changed different 

amounts in response to the COVID-19 pandemic, here we present the results of these 

models when distance quartiles are based on only trips taken in February 2020 (which we 

took as the baseline period for all analyses). The thresholds for each quartile changed very 

little and therefore the modelled results were also very similar.  

 

Figure S8: Effects of distance, income, relative case rates, and age on rate of decrease in 
travel between February 1- April 3 when using distance thresholds defined using trips only 
during February.  
 

 



 

 

Figure S9: Effects of distance, income and age on trip rates between June 1 – August 31 

compared to baseline travel when using distance thresholds defined using trips only during 

February. 

 
 

 

 

 

 

 



 

9. Comparison to gravity model 

 

We compare the performance of the original model and where a gravity model was used to 

model baseline travel. Here we used the Bayesian information criterion (BIC) [46, 47], which 

is defined as  

𝐵𝐼𝐶 = 𝑘 log(𝑛) − 2log (�̂�) 

where k is the number of parameters in the model, n is the number of data points, and L is 

the maximum likelihood value. Similarly to the Akaike information criterion (AIC), the BIC 

evaluates model performance based on the likelihood while penalising the number of 

parameters in the model. This penalisation term is greater in BIC compared to AIC, and 

therefore we would expect BIC to be more favourable towards the gravity model given the 

large number of parameters used in the original model. Despite this, BIC values were 

consistently smaller for the original model compared to the gravity model, suggested the 

original model performs better.  

  

City Original model BIC Gravity model BIC 

Atlanta 3840161.2 258224101 

Austin 1222027.15 64803466.9 

Baltimore 5087018.43 261635336 

Charlotte 2067629.99 173940690 

Chicago 7706554.13 458064822 

Columbus 1938871.43 102160615 

Dallas 4518151.76 137857475 

Detroit 5297367.31 293064915 

El Paso 1195483.35 49771459.6 

Fargo 232714.497 11924885.5 

Houston 4371970.12 245544784 

Jacksonville 719335.198 45020737.1 

Lincoln 575325.226 74694180.3 

Los Angeles 12295065.1 700370925 

Miami 2744751.23 159705789 

Nashville 1627853.07 591536474 

NYC 43231266.4 1235370300 

Omaha 1257801.97 333591669 

Philadelphia 6469144.31 271283519 

Phoenix 3949295.59 1222806194 

San Antonio 1306702.55 55910501.3 

San Diego 3323471.85 217148993 

San Francisco 5093222.29 259613186 

San Jose 3227666.01 648414497 

Sioux Falls 257991.936 73655260.1 

Tampa 3013279.97 175615714 
 

  



10. Relationship between travel and NPIs, case rates at the city-level 
 
Figure S10. Relationship between relative travel and NPI stringency (left) and case rates 

(right) at the city level between (a) March 15 – April 12 2020 and (b) June 1 – August 30 

2020. NPI stringency was at the state level. Cities with some significant additional NPIs in 

place (beyond the state-level policies) between June 1 – August 30 are highlighted in red.  

(a) There was little association between travel and either NPI stringency or case rates 

between March 15 – April 12. 

(b) When taking into account cities with additional NPIs, there was some evidence of a weak 

association between NPI stringency and travel between June 1 – August 30. There was little 

association between travel and case rates over this period.  

 

 

 
  



References 

 

[60] U.S. Census Bureau, Population Division (2020). “Annual Estimates of the Resident 

Population for Selected Age Groups by Sex: April 1, 2010 to July 1, 2019.” Accessed May 24 

2022. https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-detail.html  

 

[61] U.S. Census Bureau (2021). “PINC-01. Selected Characteristics of People 15 Years Old 

and Over by Total Money Income in 2020, Work Experience in 2020, Race, Hispanic Origin, 

and Sex.” Accessed May 24 2022. https://www.census.gov/data/tables/time-

series/demo/income-poverty/cps-pinc/pinc-01.html       

          

[46] Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 461-

464.            

          

[47] Neath, A. A., & Cavanaugh, J. E. (2012). The Bayesian information criterion: 

background, derivation, and applications. Wiley Interdisciplinary Reviews: Computational 

Statistics, 4(2), 199-203. 

https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-detail.html
https://www.census.gov/data/tables/time-series/demo/income-poverty/cps-pinc/pinc-01.html
https://www.census.gov/data/tables/time-series/demo/income-poverty/cps-pinc/pinc-01.html

