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Supplementary methods 

Computing the A priori estimators 

We compute here the a priori Gaussian empirical estimators. In the framework of two classes 

of patients with good versus bad neurological outcome that we consider to be normally 

multidimensional distributed, we will first derive the estimator for a point 𝑥 to be classified, 

based on the mean and variance, that we relate to the sample of the database of patients with 

good neurological outcome. The computations use the Bayes’rule and we assume that each 

class can be distinguished by their mean and covariance matrices, which should be a priori 

different. The variable 𝑦 represents the classification on the class, while x represents the 

position in the phase space. We assume the following apriori probability:  

 𝑦 ∼ Bernoulli (Π) ,  𝑥|𝑦 ∼ Normale . (𝜇𝑖 ,Σ𝑖) (29) 

The parameter to be estimated are 𝜃 = (Π, 𝜇0, 𝜇1,Σ0,Σ1). The data base 𝒮𝑛 is of size 𝑛. 

The log-likelihood estimator is  
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(30) 

Splitting the sum with respect to the two classes represented by 𝑦 = 1 for (𝑝(𝑦|𝜃) =Π) and 

𝑦 = 0 (𝑝(𝑦|𝜃) = 1 −Π), we get:  
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(31) 

Then:  
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(32) 

The total number of points in class 1 is  
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 𝑁 = ∑ 1
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. (33) 

We finally get:  

𝑙(𝜃) = 𝑁 log (Π) + (𝑛 − 𝑁) log ( 1 −Π) − 𝑁 log ( 2𝜋|Σ1|
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(34) 

The value of the different parameter are obtained at the extremum of the estimators. Thus,  
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leading to the empirical estimator  

 Π̂ =
𝑁

𝑛
. (36) 

Differentiating with the mean, we get:  
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Similarly,  
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Finally,  
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and we recall that 
𝑑(𝑙𝑜𝑔 (|𝐴|))

𝑑𝐴
= 𝐴−𝑇 et 
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= 𝐵𝑇, indeed:  
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Using that (𝑐𝑜𝑚𝐴)𝑇 = |𝐴|𝐴−1 for an invertible matrix, we get  
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Then,  
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𝑑𝑙(𝜃)

𝑑𝛴1
−1 =

𝑁

2
Σ1

−𝑇 −
1

2
∑(

𝑖

𝑥𝑖 − 𝜇1)𝑇(𝑥𝑖 − 𝜇1) = 0 (43) 
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We conclude with the final a priori probability:  
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We use relation 47 to estimate the probability for a point 𝑥 to below to a given class, after the 

parameters are estimated from the ensemble of data. 

 

 

Supplementary figures legends 
 

 

Supplementary Figure S1. K-neighbor classification maps for 𝒌 = 𝟒, 𝟔 and 𝟖. (A) 

Probability maps computed with features extracted from the standard auditory stimulations 

(Similarity and variance). (B) Probability maps computed from features extracted from 

deviant auditory stimulations (number of local extrema and oscillation). The red cluster does 

not disrupted despite the increasing k from 4 to 8, 𝒌 = 𝟒 remaining the most robust value.  

 


