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Supplementary Methods 

 

Analytical heterogenous infection model  

The analytical heterogenous infection model is a network composed of multiple cliques, close 

contact networks, which might resemble household interactions. Nodes in the clique may be 

‘vaccinated’ or ‘unvaccinated’. The cliques are weakly connected with each other. We denote δ 

as the ratio between infections happening inside the clique versus infections happening outside of 

the clique. Around half of all infections are household infections (28), so a logical δ is 1. We also 

define 𝛼 as the probability of transmitting the virus; 𝑉𝐸 as the input for the vaccine effectiveness 

the reduced risk of infection for protected individuals. Finally, 𝑁𝑖𝑛 is the number of nodes in each 

clique, and 𝑁𝑜𝑢𝑡 is the sum of nodes in all other cliques in the network, where the number of the 

unvaccinated nodes in all the network, 𝑁𝑢𝑛𝑣𝑎𝑐 = 𝜈 ⋅ 𝑁𝑎𝑙𝑙 = 𝜈 ⋅ (𝑁𝑖𝑛 + 𝑁𝑜𝑢𝑡). The parameters used 

in the HIM are summarized in Table S1. 

PARAMETER INTERPRETATION VALUE IN HIM 

𝛼 Probability of transmitting the virus 
0.1 (Not needed 

for  𝑉�̂�) 

𝑉𝐸 
The input vaccine effectiveness, such that the risk of 

infection is 1-𝑉𝐸 
0.85 

𝛿 
Infections within outer cliques compared to inner clique 

infections (normalized to the size of the inner clique) 

1 (half of infections 

are household 

infections) 

𝜈 

Fraction of unvaccinated people in the total 

population=
𝑁𝑢𝑛𝑣𝑎𝑐

𝑁𝑎𝑙𝑙
⁄   

0.6 

𝑁𝑖𝑛 Number of nodes in each clique 5 
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𝑛 Total number of cliques 5 

 𝑁𝑎𝑙𝑙 Total number of nodes 𝑛 ⋅ 𝑁𝑖𝑛 = 25 

Table S1. Parameters and their interpretation in the heterogenous infection model (HIM). 

We follow (19,21) to further define additional parameters of the number of unvaccinated edges, 

for each node, inside and outside of the clique. For each node we define a vector 𝑨, which resemble 

the number of unvaccinated edges for each node, and later 𝑨 is used for estimating the amount of 

interference in the system: 

𝑨𝒊 = {𝐴1
𝑖 , 𝐴2

𝑖 , 𝐴3
𝑖 }                                                                           (S.1) 

Table S2 summarize these parameters, 

Table S2. Parameters of vector 𝐴𝑖  

The vector 𝐴 is required for the calculation of the observed vaccine effectiveness (𝑉�̂�). Since the 

aim of this study is to evaluate the effect of unvaccination environment on vaccine effectiveness, 

for each node, we define 𝐼𝑖 as the fraction of edges it has with unvaccinated nodes in the inner 

clique which will indicate the amount of interference in the system: 

𝐴2
𝑖 (𝐴1

𝑖 ) = 𝐼𝑖(𝐴1
𝑖 ) ⋅ (𝑁𝑖𝑛 − 1)                                                               (S.2) 

PARAMETER INTERPRETATION VALUE 

𝐴1
𝑖  Binary variable for vaccination for 

the 𝑖𝑡ℎ node  

0 – vaccinated 

1 – vaccinated  

𝐴2
𝑖  Number of unvaccinated edges for 

the 𝑖𝑡ℎ node in the close clique  
 

𝐴3
𝑖  Number of unvaccinated edges for 

the 𝑖𝑡ℎ node in the remote cliques  

for each node: 

(1 − 𝐴1
𝑖 ) + 𝐴2

𝑖 + 𝐴3
𝑖 = 𝜈 ⋅ 𝑁𝑎𝑙𝑙 
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 We further define ⟨𝐼(𝐴1
𝑖 )⟩ as the average of all 𝐼𝑖 values in the network. A ⟨𝐼(𝐴𝑖

1 = 1)⟩ = 0 in the 

analytical infection model represents a network where the vaccinated and the unvaccinated 

populations are completely distinct as there are no  close interactions between them. As ⟨𝐼(𝐴𝑖
1 = 1)⟩ 

increases, there is more mixture between the two populations. The observed vaccine effectiveness 

is defined as: 

 𝑉�̂� = 1 −

1
𝑁𝑣𝑎𝑐

∑ 𝑃(𝐴1
𝑖 = 1)

𝑖=𝑁𝑣𝑎𝑐
𝑖=1 =

1
𝑁𝑢𝑛𝑣𝑎𝑐

∑ 𝑃(𝐴1
𝑗

= 1)
𝑗=𝑁𝑢𝑛𝑣𝑎𝑐
𝑗=1

 

(S.3) 

 

With 𝑃(𝐴1
𝑖 ) is individual probability of infection such that 𝑃(𝐴1

𝑖 = 1) is the infection probability 

of the ith vaccinated node and (𝑃(𝐴1
𝑗

= 0) is jth unvaccinated node. Infection risk from inside the 

clique depends on the number of vaccinated and unvaccinated nodes in the clique; Infection risk 

from outside the clique depends on the fraction of vaccinated nodes outside the clique. 

 𝑃 = 𝛼 × (1 − 𝑉𝐸 ⋅ 𝐴𝑖
1) 

⋅ {[(1 − 𝑉𝐸) ⋅ (𝑁𝑖𝑛 − 1−𝐴2
𝑖 ) + 𝐴2

𝑖 ] + 𝛿
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
⋅ [(1 − 𝑉𝐸) ⋅ (𝑁𝑜𝑢𝑡 − 𝐴3

𝑖 ) + 𝐴3
𝑖 ] } = 

𝑃𝑖 = 𝛼 × (1 − 𝑉𝐸 ⋅ 𝐴𝑖
1) 

⋅ {(1 − 𝑉𝐸) ⋅ (𝑁𝑖𝑛 − 1) + 𝐴2
𝑖 ⋅ 𝑉𝐸 + 𝛿

𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
⋅ [(1 − 𝑉𝐸) ⋅ 𝑁𝑜𝑢𝑡 + 𝐴3

𝑖 ⋅ 𝑉𝐸] } = 

𝛼 × (1 − 𝑉𝐸 ⋅ 𝐴𝑖
1) 

⋅ {(1 − 𝑉𝐸) ⋅ (𝑁𝑖𝑛 − 1) + 𝐴2
𝑖 ⋅ 𝑉𝐸 + 𝛿(𝑁𝑖𝑛 − 1) ⋅ (1 − 𝑉𝐸) + 𝛿

𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
⋅ 𝐴3

𝑖 ⋅ 𝑉𝐸 } = 

𝛼 × (1 − 𝑉𝐸 ⋅ 𝐴𝑖
1) ⋅ {(1 − 𝑉𝐸) ⋅ (𝑁𝑖𝑛 − 1) ⋅ (1 + 𝛿) + 𝑉𝐸 ⋅ [𝐴2

𝑖  + 𝛿
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
⋅ 𝐴3

𝑖 ] } = 

(S.4) 

 

Where: 

 
𝐴3

𝑖 = 𝜈 ⋅ 𝑁𝑎𝑙𝑙 − (1 − 𝐴1
𝑖 + 𝐴2

𝑖 ) 
 

(S.5) 

 

So, eq. S.2 becomes: 

 𝑃 = 𝛼 × (1 − 𝑉𝐸 ⋅ 𝐴𝑖
1) 

⋅ {(1 − 𝑉𝐸) ⋅ (𝑁𝑖𝑛 − 1) ⋅ (1 + 𝛿) + 𝑉𝐸 ⋅ [𝐴2
𝑖  + 𝛿

𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
⋅ (𝜈 ⋅ 𝑁𝑎𝑙𝑙 − 1 − 𝐴2

𝑖 + 𝐴1
𝑖 )] } 

 

 

(S.6) 
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Since only 𝐴1
𝑖  and 𝐴2

𝑖  depend on 𝐼, we divided eq S.4 into two parts: F1 which is a function of 

𝐴1
𝑖  and F2 which is a function of 𝐴1

𝑖  and 𝐴2
𝑖 : 

 𝑃 = 𝛼 × (1 − 𝑉𝐸 ⋅ 𝐴𝑖
1) ⋅ 

{(1 − 𝑉𝐸) ⋅ (𝑁𝑖𝑛 − 1) ⋅ (1 + 𝛿) + 𝑉𝐸 ⋅ [ 𝛿
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
⋅ (𝜈 ⋅ 𝑁𝑎𝑙𝑙 − 1 + 𝐴1

𝑖 )] } + 

𝛼 × (1 − 𝑉𝐸 ⋅ 𝐴𝑖
1) ⋅ {𝑉𝐸 ⋅ 𝐴2

𝑖 [1 − 𝛿
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡 ] } 

(S.7) 

 

With:  

 
𝐹1 = 𝛼 × (1 − 𝑉𝐸 ⋅ 𝐴1

𝑖 )

⋅ {(1 − 𝑉𝐸) ⋅ (𝑁𝑖𝑛 − 1) ⋅ (1 + 𝛿) + 𝑉𝐸 ⋅ [𝛿
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
⋅ (𝜈 ⋅ 𝑁𝑖𝑛 + 𝐴1

𝑖 − 1)]} 

(S.8) 

 

. 
𝐹2 = 𝛼 × (1 − 𝑉𝐸 ⋅ 𝐴1

𝑖 ) ⋅ 𝑉𝐸 ⋅ 𝐴2
𝑖 ⋅ (1 − 𝛿

𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
) 

(S.9) 

And  

 
𝐴2

𝑖 = 𝐼𝑖(𝐴1
𝑖 ) ⋅ (𝑁𝑖𝑛 − 1) 

(S.10) 

 

For the vaccinated nodes: 

 
⟨𝑃(𝐴1

𝑖 = 1)⟩ =
1

𝑁𝑣𝑎𝑐
∑𝑃(𝐴1

𝑖 = 1) =
1

𝑁𝑣𝑎𝑐
∑𝐹1(𝐴1

𝑖 = 1) +
1

𝑁𝑣𝑎𝑐
∑𝐹2(𝐴1

𝑖 = 1) = 

1

𝑁𝑣𝑎𝑐
∑𝛼 × (1 − 𝑉𝐸) ⋅ {(1 − 𝑉𝐸) ⋅ (𝑁𝑖𝑛 − 1) ⋅ (1 + 𝛿) + 𝑉𝐸 ⋅ (𝛿

𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
⋅ 𝜈 ⋅ 𝑁𝑎𝑙𝑙)} 

+
1

𝑁𝑣𝑎𝑐
∑𝛼 × (1 − 𝑉𝐸) ⋅ { 𝑉𝐸 ⋅ [𝑰𝑖(𝐴1

𝑖 = 1) ⋅ (𝑁𝑖𝑛 − 1)] ⋅ (1 − 𝛿
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
) } = 

𝛼 × (1 − 𝑉𝐸) ⋅ {(1 − 𝑉𝐸) ⋅ (𝑁𝑖𝑛 − 1) ⋅ (1 + 𝛿) + 𝑉𝐸 ⋅ [𝛿
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
⋅ (𝜈 ⋅ 𝑁𝑎𝑙𝑙)]} + 

𝛼 × (1 − 𝑉𝐸) ⋅ { 𝑉𝐸 ⋅ [⟨𝐼(𝐴1
𝑖 = 1)⟩ ⋅ (𝑁𝑖𝑛 − 1)] ⋅ (1 − 𝛿

𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
) } 

(S.11) 
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For the unvaccinated nodes: 

We can see that ⟨𝐼(𝐴1
𝑖 = 0)⟩ can be written in the following form: 

and Eq S.10 becomes: 

 
⟨𝑃(𝐴1

𝑗
= 0)⟩ = 𝛼 × {(𝑁𝑖𝑛 − 1) ⋅ (1 + 𝛿) + 𝑉𝐸 ⋅ [𝛿

𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
⋅ (𝜈 ⋅ 𝑁𝑎𝑙𝑙 − 1)]} + 

𝛼 × { 𝑉𝐸 ⋅ [1 −
1 − 𝜈

𝜈
⟨𝐼(𝐴1

𝑖 = 1)⟩ ] ⋅ (𝑁𝑖𝑛 − 1) ⋅  (1 − 𝛿
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
) } 

(S.14) 

 

 

We denote ⟨𝐼(𝐴1
𝑖 = 1⟩ as ⟨𝐼⟩, as the average number of close vaccinated-unvaccinated interactions per for 

the vaccinated nodes, and 𝛿′ = 𝛿
𝑁𝑖𝑛−1

𝑁𝑜𝑢𝑡
 and 𝑁𝑖𝑛

′ = 𝑁𝑖𝑛 − 1, Eq (S.3) becomes: 

 

𝑉�̂� = 1 −

1
𝑛𝑣𝑎𝑐

∑ 𝑃(𝐴1
𝑖 = 1)

1
𝑛𝑢𝑛𝑣𝑎𝑐

∑ 𝑃(𝐴1
𝑖 = 0)

= 

𝑉𝐸 ×
𝑁𝑖𝑛

′ ⋅ (1 + 𝛿) + 𝑉𝐸 ⋅ 𝛿′ ⋅ 𝜈 ⋅ 𝑁𝑎𝑙𝑙 + 𝑉𝐸 ⋅ ⟨𝐼⟩ ⋅ 𝑁𝑖𝑛
′ ⋅ (1 − 𝛿′) 

𝑁𝑖𝑛
′ ⋅ (1 + 𝛿) + 𝑉𝐸 ⋅ 𝛿′ ⋅ (𝜈 ⋅ 𝑁𝑎𝑙𝑙 − 1) + 𝑉𝐸 ⋅ [1 + ⟨𝐼⟩ (1 −

1
𝜈)]  ⋅ 𝑁𝑖𝑛

′ ⋅  (1 − 𝛿′)
 

(S.15) 

 

 
⟨𝑃(𝐴1

𝑗
= 0)⟩ =

1

𝑁𝑢𝑛𝑣𝑎𝑐
∑𝑃(𝐴1

𝑗
= 1) =

1

𝑁𝑣𝑎𝑐
∑𝐹1(𝐴1

𝑗
= 0) +

1

𝑁𝑣𝑎𝑐
∑𝐹2(𝐴1

𝑗
= 0) = 

1

𝑁𝑢𝑛𝑣𝑎𝑐
∑𝛼 × {(𝑁𝑖𝑛 − 1) ⋅ (1 + 𝛿) + 𝑉𝐸 ⋅ [𝛿

𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
⋅ (𝜈 ⋅ 𝑁𝑎𝑙𝑙 − 1)]} 

+
1

𝑁𝑢𝑛𝑣𝑎𝑐
∑𝛼 × { 𝑉𝐸 ⋅ [𝐼(𝐴1

𝑖 = 0) ⋅ (𝑁𝑖𝑛 − 1)] ⋅ (1 − 𝛿
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
) } = 

𝛼 × {(𝑁𝑖𝑛 − 1) ⋅ (1 + 𝛿) + 𝑉𝐸 ⋅ [𝛿
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
⋅ (𝜈 ⋅ 𝑁𝑎𝑙𝑙 − 1)]} + 

𝛼 × { 𝑉𝐸 ⋅ [⟨𝐼(𝐴1
𝑗

= 0)⟩ ⋅ (𝑁𝑎𝑙𝑙 − 1)] ⋅ (1 − 𝛿
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡
) } 

 

(S.12) 

 

 ⟨𝐼(𝐴1
𝑖 = 0)⟩ = 1 −

1−𝜈

𝜈
⟨𝐼(𝐴1

𝑗
= 1⟩, 

 

(S.13) 
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Note that 𝑉�̂� is independent of 𝛼. 

 

We wish to find the conditions for which Eq. (S.15) is not equal to 𝑉𝐸. Since 𝛿′ < 1 𝜈 < 1 and 

⟨𝐼⟩ ≤
𝑁𝑖𝑛

𝑁𝑖𝑛−1
𝜈 the 1 denominator of Eq. (S.15) is always positive so the sign of the term 

𝑉𝐸⋅[𝛿′−
𝑁′𝑖𝑛 (𝛿′−1)(⟨𝐼⟩−𝜈)

𝜈
]

𝑁𝑖𝑛
′ ⋅(1+𝛿)+𝑉𝐸⋅𝛿′⋅(𝜈⋅𝑁𝑎𝑙𝑙−1)+𝑉𝐸⋅[1+⟨𝐼⟩(1−

1

𝜈
)] ⋅𝑁𝑖𝑛

′ ⋅ (1−𝛿′)
 determined by the sign of the 

numerator. Similar to (19,21),20]. we can now define the average total causal effect on 

vaccine effectiveness as: 

 𝑇𝑉𝐸̅̅ ̅̅ ̅̅ (⟨𝐼⟩, 𝛿, 𝜈, 𝑁𝑖𝑛, 𝑁𝑎𝑙𝑙) = 𝑉�̂�(⟨𝐼⟩, 𝛿, 𝜈, 𝑁𝑖𝑛, 𝑁𝑎𝑙𝑙) − 𝑉𝐸  (S.17) 

Such that: 

 
𝑇𝑉𝐸̅̅ ̅̅ ̅̅ (⟨𝐼⟩, 𝛿, 𝜈, 𝑁𝑖𝑛, 𝑁𝑎𝑙𝑙) ≥ 0 ⟨𝐼⟩ ≤ 𝜈 [1 −

𝛿′

𝑁𝑖𝑛
′ (1 − 𝛿′)

]

𝑇𝑉𝐸̅̅ ̅̅ ̅̅ (⟨𝐼⟩, 𝛿, 𝜈, 𝑁𝑖𝑛, 𝑁𝑎𝑙𝑙) < 0 ⟨𝐼⟩ > 𝜈 [1 −
𝛿′

𝑁𝑖𝑛
′ (1 − 𝛿′)

]

 (S.18) 

 

Interestingly, for 𝛿 = 0, i.e, only household infection, we find that: 

 
𝑇𝑉𝐸̅̅ ̅̅ ̅̅ (⟨𝐼⟩, 𝛿, 𝜈, 𝑁𝑖𝑛, 𝑁𝑎𝑙𝑙) ≥ 0 ⟨𝐼⟩ ≤ 𝜈

𝑇𝑉𝐸̅̅ ̅̅ ̅̅ (⟨𝐼⟩, 𝛿, 𝜈, 𝑁𝑖𝑛, 𝑁𝑎𝑙𝑙) < 0 ⟨𝐼⟩ > 𝜈
 (S.19) 
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MAM: Flexible Monte-Carlo Agent based Model for Modelling COVID-19 Spread 

In this work, we are using MAM, a flexible Monte-Carlo Agent based Model for modelling COVID-

19 spread (24), originally introduced by De-Leon and Pederiva (29,30) to model the spread of 

COVID-19 in Israel in the presence of effective vaccines from December 2020 until March 

2021, and as a result, to estimate the observed vaccine effectiveness. As opposed to other 

infection models, such as the Susceptible Infected Removed (SIR) (31–33), this particle model 

enables us to distinguish between different age groups and treat each one separately, assuming 

that the infection occurs throughout the population simultaneously. Furthermore, a particle 

model can be adjusted to the actual rate of population vaccination. This model enables us to 

accurately examine the different effects of the vaccine on subgroups of the vaccinated 

population and the entire population. We used numerical simulations that consist of 𝟗. 𝟐 · 𝟏𝟎𝟔 

particles (which simulates the number of residents in Israel), where each particle has a number 

from 1 to 𝟗. 𝟐 · 𝟏𝟎𝟔 under the assumption of three infection circuits (arranged according to the 

likelihood of infection from high to low): a household infection cycle involving five people 

(which is the average in Israel); community based-infection, an infection cycle of 25 people; and 

infections in a remote community – an infection circle of 125 people. We define the model to 

generate half of all infections in the simulation to occur within households, by assuming that 

particle 1 interacts mostly with particles 2-5 (i.e., particles 1-5 resemble a household, so any 

group of 5 particles). Still, there is almost no contact between 1 and particle number 2000. 

Modelling the spread of COVID-19 in the presence of effective vaccines 

For modeling the spread of a pandemic, the most essential input required to define is 𝑅, the 

reproduction rate; when 𝑅 is above 1, one individual infects, on average, more than one other 

individual, which indicates the disease is spreading. We distinguish between 𝑅0 , the basic 

reproduction number; and 𝑅𝑡, the theoretical reproduction rate of the disease. 𝑅𝑡 is an estimation 

of the rate of encounters between infected and non-infected individuals that would have resulted 

in an infection without vaccinations. In MAM, 𝑅𝑡 is the particle density or the size of the area for 

the particles, which is similar for all age groups. In this work, following the easing of social 

restrictions in Israel in February 2021, we estimate the theoretical 𝑅𝑡  in Israel from January 2021 

until February 2021 to be 1.2 (34). Another inputs required for modeling the spread of COVID-

19 in the presence of effective vaccine is the effectiveness of the vaccine (𝑉𝐸). We assumed the 
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protection from the vaccine starts seven days after the first dose and reached its maximum after 

seven days from the second dose (1,3,24). Also, the vaccination rate of the population is required, 

as detailed in the next subsection. 

Adjustment for real-world data 

We use publicly available data from Israel (25) for 1,578 different statistical areas, which are 

communities defined by the Central Bureau of Statistics of Israel and include communities of 

about 5,000 individuals on average (26). Using this data allows us high resolution of the 

heterogeneity in vaccinations uptake. We use the community-level vaccination data between the 

end of December 2020 and March 2021 to calculate the daily number of confirmed cases in Israel 

for each statistical area. We assume that most infections are local, and half of the infections occur 

at home, and only less than 1% of the infections occur outside the statistical area. 

For modeling the spread of COVID-19 using real-world data, we create for each particle a vector 

𝐴𝑖 , similar to that introduced for the analytical infection model. However, since this is a time-

dependent model, for that case 𝐴𝑖 → 𝐴𝑖(𝑡), which the rate of vaccination is determined by the real 

vaccination rate in Israel. For each community, the number of people vaccinated each day is 

determined by the actual vaccination rates. Still, we can choose who will be vaccinated that day 

from that area. As a result, we developed ten different vaccination scenarios, which differ in the 

degree of mixing between vaccinated and non-vaccinated over time. Hence, for each scenario, we 

created a different array of 𝐴𝑖(𝑡) according to the real vaccination rate, which differ from each 

other by 𝐼(𝑡), which is one of the inputs needed for simulation (see (24)) which affect the number 

of interactions between vaccinated and unvaccinated (differentI ⟨𝐼⟩ levels). Consequently, the 

vaccination order within each community is important since the greatest chance of infection is 

between two adjacent serial numbers. Since not all populations were vaccinated simultaneously 

in reality, ⟨ 𝐼⟩ =  ⟨ 𝐼(𝑡)⟩ . As a result, we define for every day a mean value of 𝐼, ⟨𝐼(𝑡)⟩, which 

represents the daily average percentage of vaccined-unvaccinated interactions for the vaccinated 

population. Note that we assume that half of all infections occur in the first infection circuit (at 

home). Therefore, the contribution from the second and third circuits is lower than the contribution 

from the first circuit.  

All the data and code used in these analyses are available on: https://github.com/hdeleon1/Over-

and-under-estimation- 

https://github.com/hdeleon1/Over-and-under-estimation-
https://github.com/hdeleon1/Over-and-under-estimation-
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Calculation of the observed vaccine effectiveness 

For calculating vaccine effectiveness, we defined 𝑉�̂�, seven days after the second dose for each 

day as:  

 

where: 

• 𝐶𝐶𝑣𝑎𝑐(𝑡) - daily number of particles who became infected seven days or more after receiving 

the second dose of the vaccine. 

• 𝐶𝐶𝑛𝑜𝑛(𝑡) - daily number of particles who became infected before receiving the first dose of 

the vaccine. 

• 𝐴𝑙𝑙𝑣𝑎𝑐(t) - daily number of fully vaccinated particles in the population (seven days or more 

from receiving the second dose of the vaccine). 

• 𝐴𝑙𝑙𝑛𝑜𝑛(𝑡) - daily number of unvaccinated people in the population (before receiving the first 

dose of the vaccine). 

We used two methods for calculating the daily vaccine effectiveness for each vaccination 

scenarios using two different methods (Figure 2). The crude approach, which is just counting 

daily infections, and the matched approach, where similar amount of vaccinated and unvaccinated 

individuals are chosen randomly from each statistical area. Matching across statistical areas 

reduces the effect of the heterogeneity in vacciations uptake, and in theory should eliminate the 

overestimation caused by this. However, since our model consists of a ’family’ circuit, the 

matching is insufficient for avoiding the overestimation. We note that this is most probably true. 

For example, if one partner is vaccinated, most likely, the other partner will be vaccinated as well. 

  

𝑉�̂�(𝑡) = 1 −
𝐶𝐶𝑣𝑎𝑐(𝑡)/𝐴𝑙𝑙𝑣𝑎𝑐(𝑡)

𝐶𝐶𝑢𝑛𝑣𝑎𝑐(𝑡)/𝐴𝑙𝑙𝑢𝑛𝑣𝑎𝑐(𝑡)
 

(4) 
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Full analysis of the vaccine effectiveness: 

In the main result section, we presented vaccine effectiveness estimations for three cases (SI, PB, 

and PB+limited). Here we present the full analysis for each method (PB and SI). We used three 

approaches in PB and SI for the calculations: crude analysis, matching and matching + families.  

The scenarios simulated infections throughout February 2021.  In each date we calculated the 

observed vaccine effectiveness, 𝑉�̂� using the population-based approach (PB) and the secondary 

infection approach (SI). The analysis showed a clear negative correlation between 𝑉�̂� and ⟨𝐼⟩ for 

both the PB and SI analysis (Figure S2A-B). Interestingly, in the PB analysis we observed that 

for all the range of ⟨𝐼⟩, 𝑉�̂� was higher than 𝑉𝐸, which was 85%. The explanation for this result is 

that there was high heterogeneity in vaccination uptake across communities in Israel (Figure S1). 

While most communities have reached high vaccination rates rapidly, there were some 

communities with low vaccination uptake, leading to a bimodal distribution of vaccinations rates, 

and in turn of the distribution of ⟨𝐼⟩ (Figure S2C). In those low vaccinated communities, there is 

low indirect protection, and the heterogeneity across the population is what is causing the high 

overestimation across the whole range of ⟨𝐼⟩ . This result should warrant that crude vaccine 

effectiveness estimations in heterogenous population are bound to overestimate vaccine 

effectiveness.  

When using the SI approach for calculating 𝑉�̂�, we observed an even stronger negative correlation 

between 𝑉�̂� and ⟨𝐼⟩. In this analysis we only consider infections within the close-contact circuit, 

which is similar to a situation of 𝛿 = 0 in analytical model (Eq S.19). Thus, low ⟨𝐼⟩ represents a 

scenario where most close-contacts circuits are partially vaccinated (i.e., a family with only one 

parent vaccinated), and high ⟨𝐼⟩ represents a scenario where most close-contact circuits are either 

fully vaccinated or not vaccinated at all. Similar to the analytical analysis we see in our real-world 

modeling that if ⟨𝐼⟩ > 0.5 , the observed 𝑉�̂� is lower than 𝑉𝐸. 

We next performed the same analysis, but this time 𝑉�̂� was calculated by matching the number of 

vaccinated and unvaccinated in each community, which eliminates the heterogeneity in 

vaccination rates among communities, and is similar to a matched analysis of 𝑉�̂� , where 

individual-level data is available (Figure S2A-B). After matching  for both SI and PB analyses, 

𝑉�̂� could still be both under- and overestimated. The estimations of 𝑉�̂� in the matched analysis 

was from ~60% to 95%, depending on ⟨𝐼⟩. 𝑉𝐸 was only obtained for ⟨𝐼⟩ at levels around 0.5 and 

0.3 for PB and SI, respectively. The reason why matching is still insufficient to retrieve 𝑉𝐸 stems 
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from the additional circuits we added in the modelling that aim to mimic household contacts. This 

creates heterogeneity of ⟨𝐼⟩  at the close contacts-level, not just at the community-level. To 

overcome this issue, we derived an additional analysis that considers the level of mixing. Since it 

is not simple to adjust for different ⟨𝐼⟩ levels in real-world data for PB analysis, we performed the 

analysis by include only close-contact circuits with over 50% vaccinated individuals. This analysis 

showed that for PB, it is possible to achieve relatively accurate estimations of 𝑉𝐸  with this 

relatively simple approach. Of note, in SI analysis, both ⟨𝐼⟩ and 𝜈 can be theoretically obtained for 

each family (and 𝛿 = 0) , therefore, 𝑉�̂� can be adjusted more easily in real-world data. 

The heterogeneity of ⟨𝐼⟩ is also a function of time. As vaccination rates increase, the distribution 

of 𝐼  changes. A possible real-world scenario that illustrates this is when vaccinations were 

provided for 12-17 year old children. In families with children in those ages, the ⟨𝐼⟩ values were 

reduced, while ⟨𝐼⟩ did not change in families with younger children.  

 

Heterogeneity in vaccination uptake in Israel 

The vaccination campaigns started by vaccinating older individuals before moving to younger 

populations. Further, there is a significant association between vaccine uptake and 

socioeconomic status (SES) and other factors (35). In Israel, based on the data from (26) for the 

population of each statistical area and the data from (25) for the daily A vaccinated people for 

each of the 1,578 statistical areas, we can calculate, on a daily basis what is the percentage of the 

population which is vaccinated with two doses of vaccine. We found that the distribution of the 

percentage of the population that was vaccinated with two vaccine doses on April 1, 2021, 

manifested in a somewhat bi-modal distribution of vaccine uptake across the population: while 

in the majority of the statistical regions (>90%), we observe a normal distribution around 60% 

with standard deviation of 10% 4 months after the beginning of the campaign, in 10% of 

regions, the vaccination rate was only <25% (Figure S2A). This heterogeneity in vaccine uptake 

is even more pronounced in the first 45 days of the vaccination campaign.  
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Supplementary Figure 1 

 

Figure S1. Distribution of vaccination in Israel. Vaccine uptake for COVID-19 in Israel is not 

uniform across the population. A. Distribution of the rate of fully vaccinated individuals in 

1,578 communities in Israel on April 1, 2021. B. Daily vaccination rates in Israel for each of the 

1,578 statistical. Rows represent statistical communities, columns represent days, and the color 

is the cumulative percentage of vaccinated individual in the community. 

  

Daily vaccination rates in Israel 
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Supplementary Figure 2 

 

Figure S2. A. Estimations of 𝑉�̂� as a function of ⟨𝑰⟩ using population-based analysis. Yellow 

line: crude analysis; red line: with matching of vaccinated and unvaccinated individuals in each 

statistical area; blue line: matching for statistical areas and additionally filtering out 

individuals in close-contact circuits with more than 50% vaccination. Grey line: input VE 

=0.85; Grey band: VE within a 5% uncertainty. B. Similar to A, but for secondary infection-

based analysis. C. Distribution of ⟨𝐼⟩ in all vaccinated individuals on February 1, 2021, in three 

scenarios of mixing vaccinations across the population. 
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Supplementary Table 3 

 Nodes 

No. 

Binary 

variable for 

vaccination, 𝑨𝟏
𝒊  

No. of edges with 

unvaccinated nodes 

in inner clique, 𝑨𝟐
𝒊  

No. of edges with 

unvaccinated nodes 

in remote clique, 𝑨𝟑
𝒊  

𝑰(𝑨𝟏
𝒊 ) 

Network 

No. 
  A B C A B C A B C A B C 

Clique 1 

1 1 0 0 0 0 2 15 14 13 0 0 0.5 

2 1 1 0 0 1 2 15 14 13 0 0.25 0.5 

3 1 1 0 0 1 2 15 14 13 0 0.25 0.5 

4 1 1 1 0 1 3 15 14 13 0 0.25 0.75 

5 1 1 1 0 1 3 15 14 13 0 0.25 0.75 

Clique 2 

6 1 0 0 0 1 2 15 13 13 0 0.25 0.5 

7 1 0 0 0 1 2 15 13 13 0 0.25 0.5 

8 1 1 1 0 2 3 15 13 13 0 0.5 0.75 

9 1 1 1 0 2 3 15 13 13 0 0.5 0.75 

10 1 1 0 0 2 2 15 13 13 0 0.5 0.5 

Clique 3 

11 0 1 1 4 3 3 10 12 13 1 0.75 0.75 

12 0 1 1 4 3 3 10 12 13 1 0.75 0.75 

13 0 0 0 4 2 2 10 12 13 1 0.5 0.5 

14 0 0 0 4 2 2 10 12 13 1 0.5 0.5 

15 0 0 0 4 2 2 10 12 13 1 0.5 0.5 

Clique 4 

16 0 0 1 4 3 3 10 11 13 1 0.75 0.75 

17 0 1 0 4 4 2 10 11 13 1 1 0.5 

18 0 0 0 4 3 2 10 11 13 1 0.75 0.5 

19 0 0 0 4 3 2 10 11 13 1 0.75 0.5 

20 0 0 1 4 3 3 10 11 13 1 0.75 0.75 

Clique 5 

21 0 0 1 4 4 3 10 10 13 1 1 0.75 

22 0 0 0 4 4 2 10 10 13 1 1 0.5 

23 0 0 0 4 4 2 10 10 13 1 1 0.5 

24 0 0 0 4 4 2 10 10 13 1 1 0.5 

25 0 0 1 4 4 3 10 10 13 1 1 0.75 

Table S3. The values of vector 𝐴𝑖, for each node, in each of the networks on figures 1 A-C.  


