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Spectral Dynamic Causal Modelling 13 

Dynamic causal modelling (DCM) is a Bayesian framework that infers the directed connectivity among 14 

the neuronal systems – referred to as effective connectivity. . Mathematically, the stochastic state-space 15 

generative model consists of two equations. First is the neuronal state differential equation, namely 16 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝜃) +  𝑣(𝑡),        (1) 17 

and second is the observation equation, which is a static nonlinear mapping from the hidden physiological 18 

states in (1) to the observed BOLD activity and is written as: 19 

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝜑) +  𝑒(𝑡),          (2) 20 

where �̇�(t) is the rate of change of the neuronal states 𝑥(𝑡), 𝜃 are the unknown effective connectivity 21 

parameters, and 𝑣(𝑡)  is the state noise, i.e. a stochastic process that models the random neuronal 22 

fluctuations that drive the resting state activity.   The term 𝑢(𝑡) represents any exogenous (or 23 

experimental) inputs that drive the hidden states – that are usually absent in resting state designs (Karl J. 24 

Friston, Kahan, Biswal, & Razi, 2014). In the observation equation, 𝜑 are the unknown parameters of the 25 

haemodynamic observation function ℎ and 𝑒(𝑡)  is the measurement (observation) noise. 26 



 

 

This study employed spectral DCM for resting state fMRI, which simplifies the generative model by 27 

replacing the original timeseries with their second-order statistics (i.e., their cross spectra, which are the 28 

transformed cross-covariance terms in the frequency domain).  Note that the cross-spectra are time 29 

invariant and their estimation is easier than that of the time-varying neuronal hidden states. A constrained 30 

inversion of the stochastic model is made possible by assuming power law form for the cross-spectra of 31 

the state noise (resp. observation noise) – motivated from previous work on neuronal activity (Beggs & 32 

Plenz, 2003; Shin & Kim, 2006; Stam & de Bruin, 2004) – as follows: 33 

𝑔𝑣(𝜔, 𝜃) = 𝛼𝑣𝜔−𝛽𝑣  34 

𝑔𝑒(𝜔, 𝜃) = 𝛼𝑒𝜔−𝛽𝑒          (3) 35 

Here, {𝛼, 𝛽} ⊂ 𝜃 are the parameters controlling the amplitudes and exponents of the spectral density of 36 

the state noise and the observation noise. The parameterisation of endogenous fluctuations means that the 37 

states are no longer probabilistic; hence the inversion scheme is significantly simpler, requiring estimation 38 

of only the parameters (and hyperparameters) of the model.  39 

Standard Bayesian model inversion is used to infer the parameters of the model in (1), (2) and (3) 40 

from the observed signal 𝑦(𝑡). The description of the Bayesian model inversion procedures based on a 41 

variational Laplace scheme can be found elsewhere for the interested readers (K. Friston, Mattout, 42 

Trujillo-Barreto, Ashburner, & Penny, 2007; K. J. Friston, Harrison, & Penny, 2003; Razi & Friston, 43 

2016).   44 

 45 

Parametric Empirical Bayes 46 

Empirical Bayes refers to the Bayesian inversion or fitting of hierarchical models. In hierarchical 47 

models, constraints on the posterior density over model parameters at any given level are provided by the 48 

level above. These constraints are called empirical priors because they are informed by empirical data. 49 

We recently introduced a second-level or between-subjects model over parameters, which represents how 50 

individual (within-subject) connections derive from the subjects’ group membership (K. J. Friston et al., 51 



 

 

2016a) – based on parametric empirical Bayes (PEB). This approach calls on Bayesian Model Reduction 52 

(BMR) (K. J. Friston et al., 2016b) to finesse the inversion of multiple models of a single dataset or a 53 

single (hierarchical) model of multiple datasets. BMR allows one to compute posterior densities over 54 

model parameters, under new prior densities, without explicitly inverting the model again. For example, 55 

one can invert a DCM for each subject in a group and then evaluate the posterior density over group 56 

effects, using the posterior densities over parameters from the single subject inversion. This may improve 57 

subject-specific parameter estimates, by using group-level estimates to rescue individual DCM from local 58 

optima. Mathematically, for DCM studies with N subjects and M parameters per DCM, we have a 59 

hierarchical model, where the responses of the i-th subject and the distribution of the parameters over 60 

subjects can be modelled as: 61 

𝑦𝑖 = Γ𝑖
(1)

(𝜃(1)) +  𝜀𝑖
(1)

                        (4) 62 

𝜃(1) = Γ(2)(𝜃(2)) +  𝜀(2)  63 

𝜃(2) = 𝜂 +  𝜀(3) , 64 

where, 𝑦𝑖 is the BOLD time series from i-th subject and Γ𝑖
(1)

 is a nonlinear mapping from the parameters 65 

of a model to the predicted response 𝑦 for e.g. as shown in Eq. 1 and Eq. 2 above. 𝜀𝑖
(1)

 is independent and 66 

identically distributed (i.i.d.) observation noise.  In this hierarchical form, empirical priors encoding 67 

second (between-subject) level effects place constraints on subject-specific parameters. The second level 68 

would be a linear model where the random effects are parameterised in terms of their precision: 69 

Γ(2)(𝜃(2)) = (𝑋⨂𝑊)𝛽 , 70 

where 𝛽 ⊂ 𝜃 are group means or effects encoded by a design matrix with between-subject (𝑋) and within-71 

subject (𝑊) parts. The between-subject part encodes differences among subjects or covariates such as 72 

age, while the within-subject part specifies mixtures of parameters that show random effects. We assume 73 

that the first column of the design matrix is a constant term modelling group means and subsequent 74 

columns encode group differences or covariates such as age. 75 

 76 



 

 

Subjective Effects (5D-ASC) 77 

Two subcategories of oceanic boundlessness (ego dissolution) were measured on the retrospective 78 

5D-ASC 360 minutes after the administration of psilocybin. These subcategories were blissful state and 79 

changed meaning of precepts. Under 0.2 mg/kg oral psilocybin, we found group level blissful state, 80 

average = 44.23/100; SD = 35.87; range = 3.33–100, changed meaning of precepts average = 37.56/100; 81 

SD = 36.32; range = 0.00–100, and anxiety average = 4.28/100; SD = 6.60; range = 0.00–22.00.  82 

Under placebo we found group level blissful state, average = 2.85/100; SD = 4.81; range = 0.00–16, 83 

changed meaning of precepts average = 0.45/100; SD = 1.20; range = 0.00–5.33, and anxiety average = 84 

0.69/100; SD = 2.65; range = 0.00–11.83. 85 

 86 

Self-connections in DCM 87 

Please note that in DCM, the self-connections are always modelled as inhibitory (to preclude any 88 

run-away excitation), but these parameters in the model are log-scaled for the sake of numerical stability 89 

of the model fitting procedures. This (log) scaling means that these self-connections can take both 90 

positive (red) and negative values (blue). A positive self-connection means a relative increased inhibition, 91 

whereas a negative self-connection means a relative decreased inhibition (i.e., disinhibition). Inhibitory 92 

self-connections control the regions’ gain or sensitivity to inputs. Decreased self-inhibition suggests 93 

increased synaptic gain or sensitivity to inputs, while increased self-inhibition suggests reduced synaptic 94 

gain or sensitivity to inputs. Importantly, only the self-connections are log-scaled in DCM. See 95 

Supplementary Fig. 2 for region connectivity matrices. 96 

 97 

ROI Identification using Neurosynth   98 

Terms used to identify ROI coordinates using neurosynth automated meta analysis 99 

(https://neurosynth.org/analyses/terms/): posterior cingulate, medial prefrontal, anterior cingulate, 100 

anterior insula, dlpfc, posterior parietal, amygdala. 101 

https://neurosynth.org/analyses/terms/


 

 

 102 

MRI Data Acquisition and Preprocessing Additional Details 103 

T1-weigthed images were collected via a 3D magnetization-prepared rapid gradient-echo sequence (MP-104 

RAGE) with the following parameters: voxel size= 0.7x0.7x0.7 mm3, time between two inversion 105 

pulses= 3123 ms, inversion time= 1055 ms, inter-echo delay= 12 ms, flip angle= 8°, matrix= 320x335, 106 

field of view= 224x235 mm2, 236 sagittal slices. Furthermore T2-weighted images were collected using 107 

via a turbo spin-echo sequence with the following parameters: voxel size= 0.7x0.7x0.7 mm3, repetition 108 

time= 2500 ms, echo time= 415 ms, flip angle= 90°, matrix= 320x335, field of view= 224x235 mm2, 236 109 

sagittal slices.  110 

  111 



 

 

Figure S1. 112 

 113 
Design matrix used to infer changes from placebo. Our design matrix designated the placebo group to 114 

serve as the baseline. Regressors in our design matrix encode: 1) placebo group 2) the additive effect of 115 

being in the second group (psilocybin after 70 min) relative to the placebo group. 116 
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Figure S2. 118 

A)                                                             B) 119 

      C)  120 

            121 

 122 

 123 
Group level effective connectivity (EC) change from placebo 70 min post psilocybin administration. 124 

A) DMN B) CEN C) SN change from placebo EC. Posterior probability threshold = 0.99. See Table S1 125 

for posterior expectations (effect size) and credible intervals. 126 
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Figure S3. 128 

A)     Blissful state                    Changed meaning of precepts 129 

 130 

      B) 131 

 132 

      C) 133 

 134 
Behavioural associations to group level effective connectivity (EC) change from placebo 70 min post 135 

psilocybin administration. A) DMN B) CEN C) SN change from placebo EC.  Posterior probability 136 

threshold = 0.99. 137 

 138 



 

 

Table S1. 139 

Between regions effective connectivity change from placebo 70 min post psilocybin administration. 140 

All results are for posterior probability > 0.99. 141 
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DMN-AMG Connections 

 
Valence & Effect Size 

 
Credible Intervals (low/high) 

PCC → PCC  -0.21 -0.321/-0.095 

PCC → lAMG  -0.18 -0.270/-0.080 

lAMG → PCC  -0.33 -0.460/-0.201 

 
CEN-AMG Connections 
 

 
Valence & Effect Size 

 
Credible Intervals (low/high) 

rLPPC → rDLPFC   0.20  0.118/0.283 

rLPPC → rAMG  -0.39 -0.512/-0.261 

lLPPC → lLPPC   0.20 -0.384/-0.024 

lLPPC → lAMG  -0.22 -0.344/-0.104 

rDLPFC → rDLPFC   0.17  0.040/0.301 

rDLPFC → lDLPFC   0.15  0.074/0.232 

lDLPFC → lDLPFC   0.19  0.051/0.329 

lDLPFC → lLPPC   0.23  0.096/0.363 

lDLPFC → rAMG  -0.16 -0.300/-0.028 

rAMG → lLPPC   0.28  0.167/0.384 

 
SN-AMG Connections 
 

 
Valence & Effect Size 

 
Credible Intervals (low/high) 

dACC → rAMG  -0.19 -0.310/-0.063 

rAI → rAI   0.23  0.131/0.320 

lAI → rAMG  -0.24 -0.362/-0.117 

lAMG → lAMG   0.31  0.153/0.464 

rAMG → rAMG   0.16  0.046/0.269 
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