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Spectral Dynamic Causal Modelling 

Dynamic causal modelling (DCM) is Bayesian framework that infers the directed (causal) 

connectivity among the neuronal systems – referred to as effective connectivity. We recently 

proposed a new DCM for resting state fMRI – based upon a deterministic model that generates 

predicted cross spectra – referred to as spectral DCM. In order to model resting state activity – in the 

absence of external stimuli – we will have to add a stochastic component, i.e. neural fluctuations, to 

the classical DCM based on ordinary differential equations. Mathematically, we can express the 

formulation of the stochastic generative model using a set of two equations. First is the neuronal state 

equation, namely 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝜃) + 	𝑣(𝑡),        (S1) 

and second is the observation equation, which is a static nonlinear mapping from the hidden 

physiological states in (1) to the observed BOLD activity and is written as: 



𝑦(𝑡) = ℎ(𝑥(𝑡), 𝜑) + 	𝑒(𝑡),          (S2) 

where �̇�(t) is the rate of change of the neuronal states 𝑥(𝑡), 𝜃 are unknown parameters (i.e. the 

effective connectivity) and 𝑣(𝑡) (resp. 𝑒(𝑡)) is the stochastic process – called the state noise (resp. the 

measurement or observation noise) – modelling the random neuronal fluctuations that drive the 

resting state activity.  In the observation equations, 𝜑 are the unknown parameters of the 

(haemodynamic) observation function and 𝑢(𝑡) represents any exogenous (or experimental) inputs 

that drive the hidden states – that are usually absent in resting state designs (Karl J. Friston, Kahan, 

Biswal, & Razi, 2014). Spectral DCM furnishes a constrained inversion of the stochastic model by 

parameterising the neuronal fluctuations	𝑣(𝑡). Spectral DCM simplifies the generative model by 

replacing the original timeseries with their second-order statistics (i.e., cross spectra). This means, 

instead of estimating time varying hidden states, we are estimating their covariance which is time 

invariant. Then we simply need to estimate the covariance of the random fluctuations; where a scale 

free (power law) form for the state noise (resp. observation noise) is used – motivated from previous 

work on neuronal activity (Beggs & Plenz, 2003; Shin & Kim, 2006; Stam & de Bruin, 2004) – as 

follows: 

𝑔!(𝜔, 𝜃) = 𝛼!𝜔"#!  

𝑔$(𝜔, 𝜃) = 𝛼$𝜔"#"          (S3) 

Here, {𝛼, 𝛽} ⊂ 𝜃 are the parameters controlling the amplitudes and exponents of the spectral 

density of the neural fluctuations. The parameterisation of endogenous fluctuations means that the 

states are no longer probabilistic; hence the inversion scheme is significantly simpler, requiring 

estimation of only the parameters (and hyperparameters) of the model.  

We used standard Bayesian model inversion to infer the parameters of the model in (1), (2) and 

(3), from the observed signal	𝑦(𝑡). The description of the Bayesian model inversion procedures based 

on variational Laplace can be found elsewhere for the interested readers (K. Friston, Mattout, Trujillo-

Barreto, Ashburner, & Penny, 2007; K. J. Friston, Harrison, & Penny, 2003; Razi & Friston, 2016).   

 

Parametric Empirical Bayes 



Empirical Bayes refers to the Bayesian inversion or fitting of hierarchical models. In hierarchical 

models, constraints on the posterior density over model parameters at any given level are provided by 

the level above. These constraints are called empirical priors because they are informed by empirical 

data. We recently introduced a second-level or between-subjects model over parameters, which 

represents how individual (within-subject) connections derive from the subjects’ group membership 

(K. J. Friston et al., 2016) – based on parametric empirical Bayes (PEB). This approach calls on 

Bayesian Model Reduction (BMR) to finesse the inversion of multiple models of a single dataset or a 

single (hierarchical) model of multiple datasets. BMR allows one to compute posterior densities over 

model parameters, under new prior densities, without explicitly inverting the model again. For 

example, one can invert a DCM for each subject in a group and then evaluate the posterior density 

over group effects, using the posterior densities over parameters from the single subject inversion. 

This may improve subject-specific parameter estimates, by using group-level estimates to rescue 

individual DCM from local optima. Mathematically, for DCM studies with N subjects and M 

parameters per DCM, we have a hierarchical model, where the responses of the i-th subject and the 

distribution of the parameters over subjects can be modeled as: 

𝑦% = Γ%
(')(𝜃(')) +	𝜀%

(')                        (S4) 

𝜃(') = Γ())<𝜃())= +	𝜀())  

𝜃()) = 𝜂 +	𝜀(*)  

where, 𝑦% 	is the BOLD time series from i-th subject and Γ%
(') is a nonlinear mapping from the 

parameters of a model to the predicted response 𝑦 for e.g. as shown in Eq. S1 above. 𝜀%
(')	is 

independent and identically distributed (i.i.d.) observation noise (equivalent to 𝑒(𝑡) in Eq. S2).  In this 

hierarchical form, empirical priors encoding second (between-subject) level effects place constraints 

on subject-specific parameters. The second level would be a linear model where the random effects 

are parameterised in terms of their precision: 

Γ())<𝜃())= = (𝑋⨂𝑊)𝛽  

where, 𝛽 ⊂ 𝜃 are group means or effects encoded by a design matrix with between 𝑋 and 

within-subject 𝑊parts. The between-subject part encodes differences among subjects or covariates 



such as age, while the within-subject part specifies mixtures of parameters that show random effects. 

We assume that the first column of the design matrix is a constant term, modelling group means and 

subsequent columns encode group differences or covariates such as age. 

 

Self-connections in DCM 

Please note that in DCM, the self-connections are always modelled as inhibitory (to preclude 

any run-away excitation), but these parameters in the model are log-scaled for the sake of numerical 

stability of the model fitting procedures. This (log) scaling means that these self-connections can 

take both positive (red) and negative values (blue). A positive self-connection means a relative 

increased inhibition, whereas a negative self-connection means a relative decreased inhibition (i.e., 

disinhibition). Inhibitory self-connections control the regions’ gain or sensitivity to inputs. Only the 

self-connections are log-scaled in DCM. 

 

Subjective Effects (5D-ASC) 

Elemental imagery and complex imagery were measured on the retrospective 5D-ASC 70 

minutes after the administration of psilocybin and scored between 1-4. Under 0.2mg/kg psilocybin 

group level elementary imagery averaged = 2.45/4; SD = 1.07; range = 1–4 and complex imagery 

averaged = 2.80/4; SD = 0.98; range = 1.33–4. Under placebo group level elementary imagery 

averaged 1.31/4; SD = 0.52; range = 1–3 and complex imagery averaged = 1.60/4; SD = 0.82; range = 

1–4.  

A long version of the 5D-ASC was also completed by the participants 360 min after drug 

treatment and scored between 0-100. Elementary imagery averaged = 54.96/100; SD = 31.31; range = 

0–97.67 and complex imagery averaged = 51.62/100; SD = 34.71; range = 1–100. Under placebo 

group level elementary imagery averaged 3.65/100; SD = 7.01; range = 0/00-24.33 and complex 

imagery averaged = 4.10/100; SD = 6.71; range = 0–26.67. 

 

Participants  



All participants were deemed healthy after screening for medical history, physical examination, blood 

analysis, and electrocardiography. The Mini-International Neuropsychiatric Interview (MINI-SCID) 

(Sheehan et al., 1998), the DSM-IV fourth edition self-rating questionnaire for Axis-II personality 

disorders (SCID-II) (Fydrich, Renneberg, Schmitz, & Wittchen, 1997), and the Hopkins Symptom 

Checklist (SCL-90-R) (Franke, 2002) were used to exclude subjects with present or previous psychiatric 

disorders or a history of major psychiatric disorders in first-degree relatives. Participants were asked to 

abstain from prescription and illicit drug use two weeks prior to first testing and throughout the duration 

of the study and abstain from alcohol use 24 hours prior to testing days. Urine tests and self-report 

questionnaires were used to verify the absence of drug and alcohol use. Urine tests were also used to 

exclude pregnancy. Further exclusion criteria included left-handedness, poor knowledge of the German 

language, cardiovascular disease, history of head injury or neurological disorder, history of alcohol or 

illicit drug dependence, MRI exclusion criteria, including claustrophobia, and previous significant 

adverse reactions to a hallucinogenic drug. All participants provided written informed consent 

statements in accordance with the declaration of Helsinki before participation in the study. Subjects 

received written and oral descriptions of the study procedures, as well as details regarding the effects 

and possible risks of drug treatment. 

 

 

  



Figure S1. 

 
 
Group-level region effective connectivity.  Left panel shows placebo matrix. Right panel shows 70 

min post psilocybin administration matrix. Values are posterior expectations measured in Hz. 

*Denotes posterior probability threshold = .50. All other values are posterior probability threshold = 

.99. These results correspond to figures in the main manuscript.  



Figure S2. 

Associations of group-level region effective connectivity to elementary imagery and complex 

imagery. Scores were measured on the 5D-ASC at the end of the scan. Warm colours represent 

positive associations between directed connection and imagery, cold colours represent negative 

association between directed connection and imagery. Positive associations between behavioural 

measures and effective connections are outlined and are the values reported in the manuscript. Left 

panel shows region effective connectivity associations to elemental imagery 70 minutes post 

psilocybin. Right panel shows region effective connectivity associations to complex imagery 70 

minutes post psilocybin. *Denotes posterior probability threshold = .50. All other values are posterior 

probability threshold = .99. 

 

 

 

  



Figure S3. 
 
Alternative design matrix. Respective design matrix and effective connectivity posterior expectation 

matrices are demonstrated. (A) Designated the placebo group to serve as the baseline. Regressors in 

change design matrix encode: 1) placebo group 2) the additive effect of being in the second group 

(psilocybin after 70 min) relative to the placebo group. See (B) for results. (C) Regressors in the 

contrast design matrix encode: 1) the group mean and 2) group difference relative to the mean. See 

(D) for results. Values are posterior expectations measured in Hz. *Denotes posterior probability 

threshold = .50. All other values are posterior probability threshold = .99.

 

 
  



Figure S4

 

 
Group-level region effective connectivity with global signal regression. (A) placebo, (B) 70 min 

and post psilocybin administration. Values are posterior expectations measured in Hz. *Denotes 

posterior probability threshold = .50. All other values are posterior probability threshold = .99. 

  



Figure S5.

 
 
Alternative design matrix and group-level region effective connectivity with global signal 

regression. Respective design matrix and effective connectivity posterior expectation matrices are 

demonstrated with global signal regression applied. (A) Designated the placebo group to serve as the 

baseline. Regressors in change design matrix encode: 1) placebo group 2) the additive effect of being 

in the second group (psilocybin after 70 min) relative to the placebo group. See (B) for results. (C) 

Regressors in the contrast design matrix encode: 1) the group mean and 2) group difference relative to 

the mean. See (D) for results. Values are posterior expectations measured in Hz. *Denotes posterior 

probability threshold = .50. All other values are posterior probability threshold = .99. 

       



Table S1. 

Mean region effective connectivity. All results are for posterior probability > 0.99. 

 

  

 Placebo   

 
 
 
Connection 

 
 
 
Valence & Effect Size 

 
 
 
Credible Intervals (low/high) 

EVA → EVA +0.24  0.183/0.303 
FG → EVA +0.34  0.277/0.369 
IFG → EVA -0.24 -0.305/-0.175 
IFG → FG -0.45 -0.526/-0.377 
FG → IPS -0.15 -0.204/-0.090 
IFG → IPS -0.35 -0.402/-0.296 
EVA → IFG 
 
 
 
Connection 

-0.13 
 
Psilocybin 
 
Valence & Effect Size 

 0.084/0.172 
 
 
 
Credible Intervals (low/high) 

EVA → EVA +0.44  0.371/0.507 
FG → EVA +0.29  0.247/0.331 
IPS → EVA -0.13 -0.186/-0.080 
EVA → FG -0.14 -0.196/-0.091 
FG → FG +0.41  0.341/0.482 
IPS → FG -0.21 -0.283/-0.135 
IFG → FG -0.13 -0.190/-0.063 
IPS → IPS +0.18  0.118/0.274 
IFG → IPS -0.18 -0.249/-0.113 
FG → IFG -0.13 -0.188/-0.079 
IFG → IFG +0.36  0.275/0.437 
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