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Supplementary Methods 

Independent associations from public GWAS 
To select lung disease-associated variants for clustering analysis, we mined results from public 
GWAS of COPD1, lung function phenotypes2 and asthma3,4. Methods to identify independent 
associations varied across studies. The COPD GWAS1 revealed 82 independent genome-wide 
significant loci (P < 5 × 10−8). Secondary signals were then obtained by conditional and joint 
analysis at each of the 82 loci, adding other 82 secondary variants and resulting in the total 
number of 164 variants for COPD. The GWAS of four lung function phenotypes2, forced expired 
volume in 1 second (FEV1), forced vital capacity (FVC), FEV1/FVC and peak expiratory flow (PEF), 
reported 139 independent genome-wide significant loci (P < 5 × 10−9) associated at least with one 
phenotype. Further follow-up joint analysis of the 139 loci identified 140 additional variants, 
resulting in a total of 279 lung function variants. Our custom meta-analysis of two asthma GWAS 
from UK Biobank4 and the GABRIEL consortium3 yielded 45 independent variants. It was not 
enriched for secondary signal at those loci. 
 

Enrichment analysis with FUMA 
We used FUMA5 SNP2GENE function (https://fuma.ctglab.nl/snp2gene) to associate SNPs with 
protein coding genes based on two criteria, the physical position (in 30kb radius of a gene) and 
eQTLs (all significant cis-eQTL from GTEx up to a distance of 1Mb). For the latter, we restrained 
the eQTLs to the one that were found in relevant tissue for the trait under study (COPD, Asthma, 
lung function), including immune cells, blood vessels, lung, and adipocyte. Note that the FUMA 
SNP2GENE function requires association p-values. Here we used the minimum p-value reported 
across the three studied traits. For genes mapped within each clusters, we then performed a 
functional enrichment for pathways defined in KEGG6, GO7, BioCarta, Reactome8, databases, and 
the ad hoc immunologic_signature gene sets, using the FUMA GENE2FUNC function. For the 
enrichment p-values, the cluster’s gene were compared against a background of protein coding 
genes.  

https://fuma.ctglab.nl/snp2gene


Supplementary Figures  

Figure S1. Distribution of Z-scores for asthma, FEV1 and FEV1/FVC as a function of COPD Z-score 
across the 377 independent variants 
Association Z-score for COPD across 377 independent variants plotted as a function of association 
Z-score for asthma (a), FEV1 (b) and FEV1/FVC (c). Variants selected from the COPD GWAS are 
indicated by a black circle. Variants nominally significant with COPD are indicated in orange. 

 
 

 

  



Figure S2. Heatmap of the Z-scores matrix for the 44 traits and 482 variants  
The color encodes the gradient of association Z-scores from positive (blue) to negative (red) 
between the 482 variants and the 44 traits. Rows and columns were ordered using a hierarchical 
clustering based on Ward.D2 methods applied to Euclidean distance. The resulting clustering of 
SNPs is indicated on the right side of the figure. 
 

  



Figure S3. Alluvial plot illustrating the assignment of variants in the three clusters. 
The alluvial plot provides an overview of the assignment of the 164, 279, and 45 variants for 
COPD, lung function, and asthma, into the clusters 1, 2 and 3. Note that the three clusters 
included 156, 148 and 78 variants, respectively, with a subset of 106 variants that could not be 
formally assigned to any cluster. 
 

 
  



Figure S4. Marginal effect of genetic risk score across COPDgene phenotypes 
We plotted the association Zscore for the 61 phenotypes for which at least one GRS reaches the 
Bonferroni corrected p-value threshold of 7 x 10-5. The red dash lines indicate the significance p-
value threshold. Phenotypes are ordered based on the largest absolute Zscore across the four 
GRS. Phenotypes for which one of GRS1-3 was more associated than GRS0 are indicated by a star. 



Figure S5. Frequency of treatments in COPDGene conditional on the genetic risk score 
We derived the frequency of COPD treatments in the whole COPDgene cohort (red bars) and in 
sub-samples defined based on the three genetic risk scores (GRS). Frequencies in the top 5% 
percentile of GRS1 (g1+), GRS2 (g2+), and GRS3 (g3+) are indicated by grey bars, and frequencies 
in the lowest 5% percentiles of GRS1 (g1-), GRS2 (g2-), and GRS3 (g3-) are indicated by orange 
bars. Final Gold stage (panel top left) was included for comparison purposes. 
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