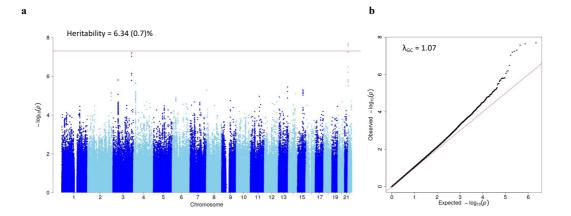
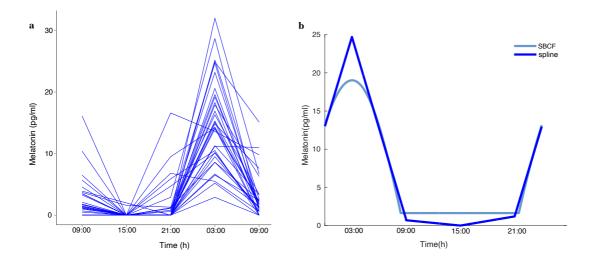

Supplementary Method

Determining a suitable method of signal decomposition.


We have used data from the melatonin dataset to compare the correlations between melatonin amplitude and CARE values derived from three signal decomposition methods: the Fourier transform (FFT), discrete wavelet transform (DWT), and singular spectral analysis (SSA). We found that SSA-derived CARE value was significantly associated with melatonin amplitude (Pearson's r = 0.48, P = 0.005), but not FFT-derived (Pearson's r = 0.20, P = 0.26) and DWT-derived CARE values (Pearson's r = 0.15, P = 0.41). Besides, unlike FFT and DWT, the SSA does not require a fixed base function for signal decomposition, which makes it entirely data-driven and flexible to use in practice. Thus, we chose SSA as the decomposition method in our pipeline.

Supplementary Figures


Supplementary Figure 1. Illustration of period, phase and amplitude of circadian rhythms.

Period is the length of a cycle, specifically, it is the time interval between two reference points within a recurring wave (for instance, between hormonal peaks). Phase is defined as the timing of a reference point in the cycle relative to a fixed event. In relation to the melatonin secretion cycle, for example, dim light melatonin onset (DLMO) is the gold standard for the phase of melatonin rhythms. Amplitude is defined as difference between crest and trough values of the cycle. In relation to the hormonal cycle, it would be the difference between the trough and peak hormone levels within a time period (i.e., 24 hours).

Supplementary Figure 2. Manhattan and QQ plots for relative amplitude associated-SNPs in the adult dataset (UK Biobank) (n = 85,361).

(a) The Manhattan plot shows association test ($-\log_{10} P$ -value on the y-axis against physical autosomal location on the x-axis). The red line represents genome-wide significance ($P < 5 \times 10^{-8}$). Heritability estimate was calculated using LDSC tool. (b) The QQ plot identifies a slight inflation ($\lambda_{GC} = 1.07$) in the test statistic.

Supplementary Figure 3. The melatonin profiles in the melatonin dataset.

(a) Subject-level melatonin profiles (observed values) in the melatonin dataset. Saliva melatonin were collected for five times (i.e., 9 am, 15 pm, 21 pm, 3 am, and 9 am of the next day; time window \pm 1 hour) during 24 hours for each participant. (b) Illustration of the daily melatonin profile of an individual. Five melatonin sample points were first linear interpolated and then fitted with the skewed baseline cosine function (SBCF) model to get the melatonin secretion curve. Melatonin amplitude was calculated by subtraction of the maximum and minimum values of the melatonin profiles.

Supplementary Tables

Covariates	Coefficient	SE	<i>P</i> value	Variance
Covariates	Coemickin	SE	r value	explained
CARE	58.38	20.24	0.007	21.16%
age	-0.15	0.12	0.21	4.3%
sex	-0.22	2.15	0.92	0.03%

Supplementary Table 1. Associations between CARE and melatonin amplitude in the melatonin dataset.

CARE = circadian activity rhythm energy, SE = standard error. Linear regression analysis was performed to examine the association between CARE and melatonin amplitude, adjusted for age and sex in the melatonin dataset. The significant level was set as P < 0.05.

Variables	Mean ± SD / n(%)
Device-derived features of circadian amplitude	
CARE	0.10 ± 0.04
Relative amplitude	0.91 ± 0.05
Cognitive scores	
BRI	48.86 ± 9.22
MI	51.60 ± 9.80
GEC	50.63 ± 9.71
Other confounders	
Parental education level	
Lower than high school	426 (25.0)
High school	482 (28.3)
College or higher	795 (46.7)
Income level	
<50,000 RMB	432 (25.4)
50,000 ~ 150,000 RMB	765 (44.9)
<i>≥150,000 RMB</i>	506 (29.7)
Main caregiver	
parents	1562 (91.7)
grandparents or others	141 (8.3)

Supplementary Table 2. Description of the analyzed variables in the adolescent dataset (Chinese SCHEDULE-A).

BRI = Behavioral Regulation Index, CARE = circadian activity rhythm energy, GEC = Global

Executive Composite, MI = Metacognition Index, SD = standard deviation.

Variables	Mean ± SD / n(%)
Device-derived features of circadian amplitude	
CARE	0.13 ± 0.04
Relative amplitude	0.87 ± 0.06
Cognitive scores	
Processing/reaction speed	545.50 ± 105.36
Fluid intelligence scores	7.58 ± 2.07
Reasoning ability	4.89 ± 0.72
Prospective memory results (number of attempts)	
1	29455 (86.2)
2	4735 (13.9)
Other confounders	
Townsend scores	-1.73 ± 2.82
BMI (kg/m ²)	26.71 ± 4.53
Average daily activity intensity	27.99 ± 8.24
Ethnicity	
White	89045 (96.6)
Non-white	3157 (3.4)
Qualification	
Below college	39587 (42.9)
College or higher	52070 (56.5)
Smoking status	
Never	52532 (57.0)
Previous	33090 (35.9)
Current	6334 (6.9)
Frequency of alcohol intake	
Never	5212 (5.7)
Regularly ('1-2 times a week' /'3-4 times a week')	47059 (51.0)
Occasionally ('1-3 times a month' / 'special	18796 (20.4)
occasions only')	18790 (20.4)
Daily ('daily' / 'almost daily')	21058 (22.8)
Season at the time when accelerometer monitoring	
started	
Spring	20032 (21.7)
Summer	19663 (21.3)
Autumn	24477 (26.5)
Winter	28030 (30.4)

Supplementary Table 3. Description of the analyzed variables in the adult dataset (UK Biobank).

CARE = circadian activity rhythm energy, SD = standard deviation.

	Df	Sum Sq	Mean Sq	F value	<i>P</i> value(>F)
Adolescent					
Subject	999	2.00	0.002	3.71	< 0.0001
Repetition	1	0.001	0.001	1.76	0.18
Residuals	999	0.54	0.001		
Adult					
Subject	999	2.93	0.003	2.34	< 0.0001
Repetition	1	0.002	0.002	1.34	0.25
Residuals	999	1.25	0.001		

Supplementary Table 4. The intra-subject and inter-subject variability of CARE values in the adolescent and adults dataset.

CARE = circadian activity rhythm energy, Df = degrees of freedom, Mean Sq = mean square, Sum Sq = sum of squares. Analysis of variance was performed in a subset of 1,000 individuals each from the adolescent and adult dataset who had at least six days of accelerometer data.

	Df	Sum Sq	Mean Sq	F value	P value(>F)
Group	3	0.02	0.006	3.39	0.02
Residuals	38752	66.39	0.002		

Supplementary Table 5. The between-group variability of CARE values.

CARE = circadian activity rhythm energy, Df = degrees of freedom, Mean Sq = mean square, Mean Sq = mean square. Analysis of variance was performed in individuals with psychiatric disorders, such as bipolar affective disorder (n = 147), schizophrenia(n = 42), depression(n = 2,252), and in a control group (n = 36,315) from the adult dataset.

Cognitive Scores	n	Coefficient	SE	P value
BRI	1,703	-7.13	7.65	0.35
МІ	1,703	-14.82	7.26	0.04
GEC	1,703	-11.65	5.61	0.04

Supplementary Table 6. Associations between relative amplitude and cognitive functions in the adolescent study (SCHEDULE-A).

BRI = Behavioral Regulation Index, GEC = Global Executive Composite, MI = Metacognition Index, SE = standard error. Median regression models were used with adjusting age, sex, parental education level, family income, and primary caregiver. The significance level was set at P < 0.017.

Cognitive Scores	n	Coefficient/OR	SE	P value
Processing/reaction speed	91,830	- 41.88	5.22	< 0.0001
Reasoning ability	34,656	1.30	0.23	0.08
Short-term memory	77,439	0.95	0.11	0.64
Prospective memory	34,173	1.10	0.37	0.71

Supplementary Table 7. Associations between relative amplitude and cognitive functions in the adult dataset (UK Biobank).

OR = odds ratio, SE = standard error. Models were adjusted for age, sex, ethnicity, Townsend score, and the season when the participant started wearing the accelerometer. Linear regression for processing/reaction speed, ordinal logistic regression for reasoning ability and short-term memory scores, and logistic regression for prospective memory were employed. The significance level was set at P < 0.013.

SNP	Chr:position	Nearest gene(s)	Alleles (E/A)	BETA	SE	<i>P</i> value
3_49673081_ CCGGG_C	3:49673081	BSN, APEH	CCGGG/C	-0.001	0.0002	1.67 × 10 ⁻⁹

Supplementary Table 8. Lead variants associated with CARE in the adult dataset (UK Biobank).

CARE = circadian activity rhythm energy, Chr = chromosome, E/A = effect/non-effect alleles, position = base pair coordinate hg38, SE = standard error, SNP = single nucleotide polymorphism. Genetic association analysis was performed in related subjects of European ancestry using linear regression models adjusted for age, sex, 20 principal components of ancestry, genotyping array, and genetic correlation matrix. Only lead variants in each locus are shown above. Genes indicate all genes within the locus of interest.

SNP	Chr:position	Nearest gene(s)	Alleles (E/A)	BETA	SE	P value
rs1110666	22:17974954	MICAL3	G/T	0.002	0.0004	2.01× 10 ⁻⁸
rs9605481	22: 17982911	MICAL3, MIR648	A/G	0.002	0.0004	2.29× 10 ⁻⁸
rs12157484	22: 17972356	MICAL3	T/C	0.002	0.0004	2.67× 10 ⁻⁸

Supplementary Table 9. Significant variants associated with relative amplitude $(P < 5 \times 10^{-8})$ in the adult dataset (UK Biobank).

Chr = chromosome, E/A = effect/non-effect alleles, position = base pair coordinate hg38, SE = standard error, SNP = single nucleotide polymorphism. Genetic association analysis was performed in related subjects of European ancestry using linear regression models adjusted for age, sex, 20 principal components of ancestry, genotyping array, and genetic correlation matrix. Lead variants in each locus are shown in bold. Genes indicate all genes within the locus of interest.

Exposure	Outcome	Method	n SNPs	Beta	SE	P value
		Weighted median	109	-59.91	1.53	< 0.0001
		MR-Lasso	109	-59.6	0.76	< 0.0001
CARE	Reasoning ability	MBE	109	-60.15	3.96	< 0.0001
		MR-cML	109	-59.4	1.22	< 0.0001
		Inverse variance weighted	109	-59.6	0.76	< 0.0001
		Weighted median	109	7.94	0.53	< 0.0001
	Short-term memory	MR-Lasso	109	7.51	0.4	< 0.0001
CARE		MBE	109	8.03	1.4	< 0.0001
		MR-cML	109	7.5	0.45	< 0.0001
		Inverse variance weighted	109	7.51	0.4	<0.0001
CARE		Weighted median	109	16.85	1.23	< 0.0001
		MR-Lasso	109	16.97	0.94	< 0.0001
	Prospective memory	MBE	109	16.67	3.12	< 0.0001
		MR-cML	109	16.93	1.04	< 0.0001
		Inverse variance weighted	109	16.97	0.94	< 0.0001

Supplementary Table 10. Mendelian randomization analysis for CARE and cognitive functions using GWAS summary statistics in the adult dataset (UK Biobank).

CARE = circadian activity rhythm energy, GWAS = genome-wide association study, MR = mendelian randomization, SE = standard error.

Gene	Test score	P value
QARS	14.29695	3.20×10^{-7}
SEMA3F	14.19545	3.10×10^{-7}
TRAIP	17.88998	7.28×10^{-9}
USP4	13.72578	6.88×10^{-7}
COL7A1	13.0528	1.42×10^{-6}
DOCK3	12.91689	1.40×10^{-6}
FAM212A	13.2909	2.24×10^{-6}
GPX1	12.51486	8.85×10^{-7}
APEH	17.2256	9.14×10^{-9}
C3orf18	12.95729	9.04×10^{-7}
IMPDH2	16.09161	7.03×10^{-8}
МАРКАРКЗ	17.61598	1.67×10^{-8}
MST1	16.40505	1.83×10^{-8}

Supplementary Table 11. Significant genes associated with circadian activity rhythm energy (CARE) detected by cross-tissue transcriptome-wide association analysis using UTMOST in 44 GTEx tissues.