Supplementary Appendix A

Technical Appendix for: Health economic impact of introducing single-dose HPV vaccination in India.

de Carvalho TM, Man I, Georges D, Saraswati LR, Bhandari P, Kataria I, Siddiqui M, Muwonge R, Lucas E, Sankaranarayanan R, Basu P, Berkhof J, Bogaards JA, Baussano I.

Table of Contents

List of figures	3
List of tables	4
A.1 HPV transmission model and progression model	5
A.1.1 HPV transmission model	5
A.1.2 Cancer progression model	5
A.1.3 Model Calibration	8
A.2 Demographic and Health Parameters	0
A.2.1 Demography	0
A.2.2 Hysterectomy	0
A.2.3 Cancer Survival	1
A.3. Economic Parameters 12	2
A.3.1 Currencies and conversions	2
A.3.2 Cervical cancer treatment costs	2
A.3.3 Costs of Vaccination	3
A.4. Vaccination Scenarios 1'	7
A.5 Computation of Model Outcomes	8
A.5.1 Cancer Incidence	8
A.5.2 Disability adjusted life years	0
A.5.3 Costs	1
A.5.4 ICER	1
A.6 HPV-FRAME Checklist	1
A.7 Details on Sensitivity Analyses	3
A.7.1 Vaccine cost reduction over time	3
A.7.2 Distributions of parameter values for probabilistic analysis	3
References	5

List of figures

Figure A.1: Natural history from infection to cervical cancer. Figure A.2: Observed and predicted cancer incidence per 100 000 women.

List of tables

Table A.1. List of model parameters.

- Table A.2: Stage distribution observed and predicted by the cancer progression model
- Table A.3: Hysterectomy rates by age group, adapted from Meher and Sahoo 2020.
- Table A.4: 5-year cervical cancer survival by cancer registry/hospital and data sources.
- Table A.5: Currencies and conversion rates.
- Table A.6: Initial Cervical Cancer Treatment Costs in INR.
- Table A.7: Additional input for treatment costs calculation.
- Table A.8: Cervical Cancer Treatment Costs per stage.
- Table A.9: Original cost items for communication and delivery costs of Sikkim programme.
- Table A.10: Calculations for two-dose and single-dose vaccination costs in Sikkim (2020 prices).
- Table A.11: Breakdown of estimated costs per dose for Sikkim.

Table A.12: Extrapolation delivery costs Sikkim to India based on costs of childhood vaccination programme.

- Table A.13: Overview of single-dose waning scenario parameters.
- Table A.14: Vaccination Scenarios.
- Table A.15: Age-specific cervical cancer incidence (per 100 000 women) by Indian state.

Table A.16: Disability weights and durations for different phases of cervical cancer in GBD 2017 study.

Table A.17: HPV-FRAME Checklist, Core Reporting Standard.

- Table A.18: HPV-FRAME Checklist, Reporting standard for HPV vaccination in adolescent individuals.
- Table A.19: HPV-FRAME Checklist, Reporting standard for models of HPV prevention in LMIC.

Table A.20: HPV-FRAME Checklist, Reporting standards for evaluations assessing alternative vaccine types or reduced-dose schedules.

Table A.21: Sampling distributions for model parameters included in probabilistic analysis.

A.1 HPV transmission model and progression model

A.1.1 HPV transmission model

The HPV transmission model (EpiMetHeos) is an extension of EpiModel, an open-source statistical framework that allows simulation of infectious disease transmission on dynamic contact networks ¹. This model is extensively described in Man et al ².

A.1.2 Cancer progression model

The cancer progression model is an individual-based discrete-time microsimulation model that simulates birth cohorts of women from age 10 to death, in six-month time steps. The pre-invasive part of the model consists of 13 parallel Markov chains, corresponding to an infection with HPV type 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68. The 6-month cumulative probabilities of type-specific HPV infection for each 6-month age-birth cohort were calculated by the HPV transmission model (EpiMetHeos).

The structure of the cancer progression model with regard to the natural history of type-specific high-risk HPV infection conforms to that of the HPV transmission model, up to CIN2/3 for each high-risk HPV type. The duration of infection follows a type-specific distribution with six parameters γ_i , η_i , $\delta_{i,1}$, $\delta_{i,2}$, $v_{i,1}$, $v_{i,2}$, where *i* denotes the HPV type. These parameters are shared between the HPV transmission model and the cancer progression model. Some of these parameters were estimated in Bogaards et al. 2010³ and also used in Bogaards et al. 2011⁴ and Berkhof et al. 2013⁵, namely: i) η_i which denote genotype-specific progression rates from state HPV infection (CIN0) to CIN1; ii) γ_i and $\delta_{i,1}$ which denote the clearance rates for CIN0 and CIN1 stages. Other parameters, namely, iii) $v_{i,1}$ and $v_{i,2}$ which denote the rates of progression from CIN1 to CIN2/3 regressive and non-regressive stages and iv) $\delta_{i,2}$ the clearance rate from the regressive CIN2/3 stage were calibrated simultaneously using data from the POBASCAM trial.⁶ This was done by comparing simulated model estimates to age-specific frequencies of CIN2/3 cases, cancer cases and the proportion of HPV16 positive and HPV18 positive CIN2/3 and cancer cases. Likelihood was maximised by stochastic optimisation where the exact likelihood is replaced by a simulation run estimate. For this we used the simultaneous perturbation stochastic approximation algorithm.⁷ Additionally, for this study, the progression, regression, and loss of immunity parameters of non-HPV16/18 infections were set equal across genotypes by weighted pooling.⁵

The duration between CIN2/3 and cervical cancer was modelled as a gamma distribution (distinct for HPV types 16 and 18 versus other types) and estimated based on Dutch cancer registry data.⁸ Progression between invasive cancer states FIGO1a, FIGO1b and FIGO2+ was based on national registry and screening data ⁵ (Figure A.1, TableA.1).

Figure A.1: Natural history from infection to cervical cancer.

Table A.1:	List of	model	parameters. ^a
------------	---------	-------	--------------------------

Notation	Description	Values	Reference
Natural History of Infection	n		
$r_{i,a,b}$	Forces of infection for HPV16, HPV18, cross-protected types and non-cross-protected types.	Range of values per HPV type (i) , age group (a) and birth cohort (b) .	Computed using EpiMetheos.
$\gamma_{16}, \gamma_{18}, \gamma_{other}$	Clearance rate from CIN0.	0·29 ; 0·34 ; 0·41 ^b	Berkhof et al 2013 ⁵
$\eta_{16},\eta_{18},\ \eta_{other}$	Progression rate from CIN0 to CIN1.	0.24 ; 0.19 ; 0.11	Berkhof et al 2013 ⁵
$\delta_{16,1},\delta_{18,1},\delta_{other,1}$	Clearance rate from CIN1.	0.06;0.17;0.21	Berkhof et al 2013 ⁵
$\delta_{16,2}, \delta_{18,2}, \delta_{other,2}$	Clearance rate from regressive CIN2/3.	0.65;0.65;0.65	Section A.1.2
$v_{16,1}, v_{18,1}, v_{other,1}$	Progression rate from CIN1 to regressive CIN2/3.	0.02;<0.01;0.02	Section A.1.2
$v_{16,2}, v_{18,2}, v_{other,2}$	Progression rate from CIN1 to non-regressive CIN2/3.	0.02;0.02;0.01	Section A.1.2
$\mu_{16},\mu_{18},\mu_{other}$	Rate of waning natural immunity.	0.02;0.01;0.02	Berkhof et al 2013 ⁵
Duration to Cancer	1	1	

$k_{16}, k_{18}, k_{other}$	Shape parameter of gamma distribution.	9·67; 9·67; 2·49 ^b	Vink et al 2013 ⁸
$ heta_{16}$, $ heta_{18}$, $ heta_{other}$	Scale parameter of gamma distribution.	3.33 ; 3.33 ; 9.14	Vink et al 2013 ⁸

Cancer progression & detection

d _{figo1a} , d _{figo1b} , d _{figo2p}	Detection rates for FIGO1a/FIGO1b/FIGO2+ health states in absence of screening.	0.0125;0.025;0.3	FIGO1a, FIGO1b: Calibrated (Table A.2). FIGO2+: Berkhof et al 2013 ⁵
tr_{figo1b} , tr_{figo2+}	Transition rate from FIGO1a to FIGO1b and from FIGO1b to FIGO2+	0-125;0-1	Berkhof et al 2013 ⁵

^a All rates per 6-month period, unless otherwise indicated.
 ^b Respectively, HPV16, HPV18 and Other HPV strains (31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68).

A.1.3 Model Calibration

The calibration of the HPV transmission model is extensively described in Man et al.² In short, since high quality HPV prevalence data is not available for every Indian state, we first applied a cluster analysis ("footprinting" as explained elsewhere⁹) to classify states into "high" and "low" cancer incidence clusters based on cancer registry data.^{10,11} We then selected one representative state of the high cancer incidence pattern (Tamil Nadu) and one of the low cancer incidence pattern (West Bengal), for which high quality HPV prevalence data was available ^{12,13} to calibrate the HPV transmission model. Finally, the estimates from these two models were used to extrapolate to all other states within the same cancer incidence pattern.

The natural history from HPV infection to cervical cancer is based on calibration to data in the Netherlands and was assumed to be applicable to India conditional on the local type-specific forces of infection which are computed using the HPV transmission model (EpiMetHeos). This approach was used before to adapt the model to several European countries.^{5,14} However, we also adjusted the cancer detection rates to match the observed stage distribution in India. This is justified by the fact that, in absence of organised screening, and due to financial and/or logistic constraints, women in India are likely to be diagnosed at a later time compared to women in the Netherlands.

In Figures A.2-A.3 we show the cancer incidence fit for the Tamil Nadu and West Bengal states. For Tamil Nadu there were several time periods available including 2008-2012,¹⁰ 2012-2013,¹⁵ 2012-2016 ¹¹ and 2017.¹⁶ For West Bengal there was only one time period available: 2012-2016.¹¹ In Table A.2 we show the stage distribution before and after adjustment of detection rates. The adjustment consisted of reducing the detection rates per 6-month time period for FIGO1a and FIGO1b by 50% (d_{figo1a} , d_{figo1b}).

Figure A.2: Observed and predicted cancer incidence per 100 000 women. ^{a,b}

^a 2008-2012: Average of Chennai and Dindigul registries. 2012-2013, 2012-2016: Chennai registry only, 2017: Tamil Nadu (state, average per district).

^b For West Bengal no data from other time periods was available.

Table A.2: Stage distribution observed and predicted by the cancer progression model.^a

	Localised (FIGO1ab)	Loco regional/Distant (FIGO2+)
Observed	33.5%	66.5%
Predicted before adjustment	45.7%	54.3%
Predicted after adjustment	28.9%	71.1%

^a Here given the data source (Report of National Cancer Registry Program 2012-2016¹¹), we assumed that localised cancers map 1 to 1 with FIGO1a and FIGO1b health states in the model, and that FIGO2+ denote loco regional and/or distant tumors.

A.2 Demographic and Health Parameters

A.2.1 Demography

Both the life table and age distribution for women are based on the 2019 version of World Population Prospects UN population projections for India.¹⁷ Life table is based on an estimate for birth cohorts 2005-2010 and age distribution is based on an estimate for 2020.

A.2.2 Hysterectomy

Women who undergo hysterectomy are removed from the risk set for cervical cancer. Hysterectomy rates in India are based on Meher and Sahoo 2020.¹⁸ This publication uses data from National Family Health Survey Round 4, a survey including more than 200 000 women. We extrapolated the numbers for all 6-month age groups, by assuming that the observed rates equal the rates in the middle of the age group. For example, 3.7% corresponds to the cumulative probability of hysterectomy at age 34.5 years. We also assume that the hysterectomy rate differs only between age groups 15–29, 30–39 and 40–49 years and that the hysterectomy rate beyond age 50 is similar to the rate in the age group 15–29 years.

	Table A.3: H	vsterectomy rates	by age group.	adapted from	Meher and S	Sahoo 2020. ¹⁸
--	--------------	-------------------	---------------	--------------	-------------	---------------------------

Age Group (years)	Percentage of women with hysterectomy	Sample Size
15-29	0.6%	205 603
30-39	3.7%	184 077
40-49	9.3%	150 991

A.2.3 Cancer Survival

Cancer survival is assigned at the time of diagnosis. Since stage-specific survival data for India is not available, we assign the same survival for every cancer stage. We calculated the five-year cancer survival by taking the weighted average of the SurvCan II registries,¹⁹ augmented with newer publications concerning cervical cancer cases diagnosed after the year 2000. For this we performed a literature search on PubMed using keywords "cervical cancer survival India". Out of 890 search results, only 8 results were relevant to our search. Of these, 2 studies were excluded: a) Balasubramaniam et al 2020 ²⁰ was excluded to avoid possible double counting with Nandakumar et al 2015 ²¹ (since Balasubramaniam et al 2020 ²⁰ uses data from one hospital which is included in Nandakumar et al 2015); b) Krishnatreya et al 2016 ²² was excluded since endpoint is 50 month survival and therefore it does not report 5-year survival.

Cancer Registry/Hospital	N	5-year Survival	Time of Diagnosis	Source
Barshi	406	0.351	1990-2000	SurvcanII ¹⁹
Bhopal	332	0.354	1990-2001	SurvcanII
Chennai	4438	0.594	1990-2000	SurvcanII
Mumbai	4436	0.461	1990-2000	SurvcanII
Maharashtra	192	0.432	2000-2013	Jayant et al ²³
Dindigul	223	0.350	2003-2006	Swaminathan et al 2009 ²⁴
12 Indian Hospitals	2562	0.620	2006-2008	Nandakumar et al 2015 ²¹
Guwahati	193	0.407	2010	Kataki et al 2018 ²⁵
Malabar Cancer Center, Kerala	227	0.668	2010–2011	Bindu et al 2017 ²⁶
Karunagapally	338	0.590	2010-2014	CONCORD3 27
Trivandrum	425	0.534	2012-2014	Matthew et al 2020 ²⁸
All	19 196	0.558		

Table A.4: 5-year cervical cancer survival by cancer registry/hospital and data sources.

A.3. Economic Parameters

A.3.1 Currencies and conversions

We value all costs in 2020 prices. Costs estimates from previous years are converted to 2020 prices using consumer price index for India as estimated by the World Bank.²⁹ In the base case we value all costs in 2020 \$USD. We use an exchange rate (INR per U.S. Dollar) of 74.1. We also value costs in IUSD, a currency which facilitates comparisons between different countries taking into account differences in purchasing power. We use a purchasing power parity exchange rate (Local Currency Units per International Dollar) of 22³⁰. In order to value costs in IUSD, we use the USD/INR exchange rate for tradable goods (e.g. vaccine dose cost), since the price of tradable goods is independent of the country setting and therefore in this case 1 USD = 1 IUSD. For non-tradable goods (e.g. costs medical staff), we use the purchasing power parity exchange rate. For more details on currency conversions to IUSD see the online supplement of Diaz et al 2008.³¹

Table A.5: Currencies and conversion rates.

Conversion	Conversion Rate	Source
USD/INR	74.1	World Bank 29
IUSD/INR	74.1 (tradable goods)	World Bank
	22 (non-tradable goods)	OECD ³⁰

A.3.2 Cervical cancer treatment costs

<u>Overview</u>

We consider three disease stages for treatment costs, FIGO1a, FIGO1b and FIGO2+ and two types of treatment: 1) radical hysterectomy (RH), which we assume to be performed only to FIGO1a patients, and 2) chemoradiotherapy (CRT), which is performed to patients with FIGO1b or FIGO2+ at diagnosis. Additionally, we consider rates of recurrence for FIGO1a, FIGO1b and FIGO2+ and we assume that in case of recurrence the patient is assigned to an additional round of treatment and corresponding costs. We distinguish between two types of hospitals, public and private, with different costs per treatment. Both the price differential between public and private hospitals and the proportion of public and private hospital users in the population is based on 75th National Sample Survey data ³² (Tables A.6-A.8).

Data Collection & Literature Search

Data from two hospitals (Delhi Surgical Centre of India International Hospital, Regional Cancer Center Trivandrum) was collected. Data from Tata Memorial Center was accessible online.³³ On February 2022, we performed a literature search on PubMed using the following keywords "cervical cancer treatment cost India". The search returned 65 results. We scanned each result's title and abstract to verify whether the article was related to cervical cancer treatment costs. Only one publication, Singh et al 2020 ³⁴ ("Cost of Treatment for Cervical Cancer in India") was related to cervical cancer treatment costs.

Calculation Steps

- Step 1: We set all costs to 2020 prices, which affected the costs extracted from the publication, which were collected in 2017. These costs are shown in Table A.6.
- Step 2: We multiply the cost by 4·1 (based on 75th NSS round data ³²) to obtain the costs for a private hospital and calculate the cost as a weighted average between public and private hospital with proportion of private hospital users based on NSS data (Table A.7).
- Step 3: We multiply the average costs with the rate of recurrence per stage, based on data from the literature. The end result is shown in Table A.8.

Table A.6: Initial Cervical Cancer Treatment Costs in INR.

Hospital	Radical Hysterectomy	Chemoradiotherapy
Delhi SCI	125 000	40 000
Tata Memorial	64 575	90 405
Trivandrum	67 000	89 067
Singh et al 2020 ³⁴ (not reported)	64 994	69 459

Table A.7: Additional input for treatment costs calculation.

Description	Value	Source
Cost multiplier private/public hospitals	4.1	75 th NSS round ³²
Proportion users private hospitals ^a	57%	75 th NSS round
Recurrence Rate FIGO 1a	1.5%	Taarnhoj et al 2017 ³⁵
Recurrence Rate FIGO 1b	7.9%	Uppal et al 2019 ³⁶
Recurrence rate FIGO2+	38%	De Foucher et al 2019 ³⁷

^a We do not consider charity hospitals as they represent a proportion of less than 5% of treated women.

Table A.8: Cervical Cancer	· Treatment	Costs pe	r stage.
----------------------------	-------------	----------	----------

Average Cost per Step	Radical Hysterectomy	Chemoradiotherapy	Chemoradiotherapy		
	(FIGO1a)	(FIGO1b)	(FIGO2+)		
Public Hospitals	80 392	72 233	72 233		
Private Hospitals	333 082	299 275	299 275		
Weighted average	224 007	201 271	201 271		
Public/Private					
Total (with recurrence)	227 307	217 193	277 754		

A.3.3 Costs of Vaccination

Overview

The cost of the vaccine is set equal to the GAVI price of \$4.5 USD. The delivery costs were extracted from a government pilot programme in Sikkim. In order to obtain a nationwide estimate for delivery costs in India, we extrapolated these, based on estimated delivery costs for the universal childhood vaccination programme.³⁸ For this, we assumed that the relative difference in delivery costs per capita between Sikkim and all other states would be the same for childhood vaccination and HPV vaccination.

Costs Supplied by the Sikkim Government

The total costs of the two-dose HPV vaccination programme for 2018-2019 were supplied by Sikkim government and are shown in Table A.9. The total number of target girls was calculated as 41 351. This is based on the census 2011 count (38 975) and projected population growth between 2011 and 2018 of 6%.³⁹ For the conversion from INR to IUSD, we considered vaccine, syringe and hub cutter to be tradable goods. All other cost categories were considered non-tradable.

Cost Item	INR
Vaccine Costs ^a	20 987 688
Program Launch	300 000
Vaccine transportation	250 000
Syringe and hub cutter b	555 000
Information and communication	1 850 000
Training	186 750
Cold Chain	498 658
Mobility Support for District and	520 000
state level monitors	
State overhead costs (14%)	3 464 733
District Level Costs	11 006 750
Total Costs	39 219 579

Table A.9: Original cost items for communication and delivery costs of Sikkim program.

^a 71 500 doses at GAVI price.

^b assuming 65 000 syringes and 400 hub cutters.

These costs occurred in 2018/2019 and had to be converted to 2020 prices. We also had to make some adjustments to the total cost, to obtain an estimate for single-dose delivery costs. These adjustments are described in Table A.10. In Table A.11 a breakdown of the costs per target girl for Sikkim is given, and in Table A.12 we show the extrapolation of the costs for the rest of India.

Table A.10: Calculations for two-dose and single-dose vaccination costs in Sikkim (2020 prices).

Step	Description	INR	Explanation
1	Total Costs	39 219 579	Raw total costs
2	Use 2020 INR/USD conversion rate for vaccine costs	42 170 770	Take depreciation of INR into account
3	Inflate non-vaccine costs from 2019 to 2020 prices	43 375 346	Using Indian CPI rate 1.07 (World Bank)
	Total Costs 2-dose 1st Year	43 375 346	
4	Total Costs 2-dose 2 nd Year and later	39 693 258	Removal of cold chain and programme launch cost, miscellaneous cold chain cost divided by 4 (every 4 years cost, e.g. cold chain maintenance), communication cost and training cost divided by 4. State overhead and district-level costs decrease proportionally to the reduction in costs in year > 1 .
5	Total Costs single-dose 1st Year	22 985 830	Removal of remove 50% vaccine costs, state overhead costs (these are proportional to the total cost), syringe costs, mobility support state-level monitors (this cost is by vaccination round), transportation costs and district level costs
6	Total Costs single-dose 2 nd Year and later	19 626 918	Removal of cold chain and programme launch cost, miscellaneous cold chain cost divided by 4 (every 4 years cost, e.g. cold chain maintenance), communication cost and training cost divided by 4. State overhead and district-level costs decrease proportionally to the reduction in costs in year > 1.

Table A.11: Breakdown of estimated costs per dose for Sikkim.	
---	--

	INR	USD
Two-dose costs		·
Vaccine Cost	667	9.0
Delivery/Programme Cost (Year 1)	330	4.4
Delivery Cost (Year>1)	293	3.9
Communication Cost (Year 1)	52	0.7
Communication Cost (Year>1)	11	0.5
two-dose cost (Year 1)	1049	14.1
Two-dose cost (Year >1)	960	12.9
Single Dose Costs		
Vaccine Cost	334	4.5
Delivery/Programme Cost (Year 1)	170	2.3
Delivery Cost (Year>1)	130	1.8
Communication Cost (Year 1)	52	0.7
Communication Cost (Year>1)	11	0.5
Single-dose cost (Year 1)	556	7.5
Single-dose cost (Year >1)	475	6.4

State	Delivery Costs (childhood	Population 0-6 census 2011	Population (%)	Costana dilla	Multiplier Relative difference compared to	Delivery Cost single-dose	Delivery Cost
Anderen and Mischen	vaccination)			Cost per clina	SIKKIIII	(year I)	(year >1)
Andaman and Nicobar Islands	79 624	40 878	002%	195	0.68	116	89
Andhra Pradesh	27 245 925	9 142 802	5.56%	2.98	1.05	178	136
Arunachal Pradesh	738 436	212 188	0.13%	3.48	1.22	208	159
Assam	17 402 022	4 638 130	2.82%	3.75	1.32	224	171
Bihar	85 989 369	19 133 964	11.63%	4.49	1.58	269	205
Chandigarh	418 226	119 434	0.07%	3.50	1.23	209	160
Chhattisgarh	17 061 430	3 661 689	2.23%	4.66	1.64	279	212
Dadra and Nagar Haveli	229 573	50 895	0.03%	4.51	1.58	270	206
Daman and Diu	106 840	26 934	0.02%	3.97	1.39	237	181
Goa	772 667	144 611	0.09%	5.34	1.88	319	244
Gujarat	31 427 760	7 777 262	4.73%	4.04	1.42	242	184
Haryana	16 896 497	3 380 721	2.05%	5.00	1.75	299	228
Himachal Pradesh	3 267 078	777 898	0.47%	4.20	1.47	251	191
Jammu and Kashmir	5 961 008	2 018 905	1.23%	2.95	1.04	176	135
Jharkhand	29 000 885	5 389 495	3.28%	5.38	1.89	322	245
Karnataka	32 025 944	7 161 033	4.35%	4.47	1.57	267	204
Kerala	11 352 691	3 472 955	2.11%	3.27	1.15	195	149
Lakshadweep	36 926	7255	0.00%	5.09	1.79	304	232
Madhya Pradesh	52 188 601	10 809 395	6.57%	4.83	1.70	289	220
Maharashtra	65 176 224	13 326 517	8.10%	4.89	1.72	292	223
Manipur	1 450 057	375 357	0.23%	3.86	1.36	231	176
Meghalaya	2 083 870	568 536	0.35%	3.67	1.29	219	167
Mizoram	630 416	168 531	0.10%	3.74	1.31	224	171
Nagaland	761 581	291 071	0.18%	2.62	0.92	156	119
Delhi	7 757 927	2 012 454	1.22%	3.85	1.35	230	176
Odisha	20 326 029	5 273 194	3.21%	3.85	1.35	230	176
Puducherry	776 065	132 858	0.08%	5.84	2.05	349	266
Punjab	12 476 012	3 076 219	1.87%	4.06	1.42	242	185
Rajasthan	43 844 044	10 649 504	6.47%	4.12	1.45	246	188
Sikkim	182 609	64 111	0.04%	2.85	1.00	170	130
Tamil Nadu	52 091 532	7 423 832	4.51%	7.02	2.46	419	320
Tripura	1 170 936	458 014	0.28%	2.56	0.90	153	117
Uttar Pradesh	140 126 528	30 791 331	18.72%	4.55	1.60	272	207
Uttarakhand	6 367 132	1355 814	0.82%	4.70	1.65	281	214
West Bengal	50 203 695	10 581 466	6.43%	4.74	1.67	284	216
India	737 626 159	164 515 253	100.00%	4.48	1.57	268	204

Table A.12: Extrapolation delivery costs of Sikkim to India based on costs of childhood vaccination programme.

A.4. Vaccination Scenarios

The vaccination scenarios were based on data from the IARC India trial 40 and are extensively described in Man et al.² The scenarios are shown in Tables A.13 and A.14.

	HPV 16			HPV 18			HPV 31/33/45			
Assumption	VE _{initial}	<i>VE_{plateau}</i>	rate	VE _{initial}	<i>VE_{plateau}</i>	rate	VE _{initial}	$VE_{plateau}$	rate	
А	0.95	0.95	0	0.95	0.95	0	0.09	0.09	0	
В	0.95	0.60	0.02	0.95	0.45	0.02	0.09	0.45/0.95*0.09	0.02	
С	0.90	0.55	0.02	0.85	0.35	0.04	0.09	0.35/0.85*0.09	0.04	
D	0.85	0.50	0.02	0.55	0.25	0.08	0.09	0.25/0.55*0.09	0.08	

Table A.13: Overview of single-dose waning scenario parameters.^a

^a The assumptions of single-dose initial protection were derived based on the lower bound of the vaccine efficacy estimate of the IARC India vaccine trial. Waning of single-dose vaccine protection was informed by trial immunogenicity data based on the time until the antibodies levels of HPV 16/18 have decreased below different antibody detection thresholds. ^{9,16} The following parametric form was used for the decrease of vaccine efficacy: $(VE_{initial} - VE_{plateau}) * e^{-rate*time} + VE_{plateau}$, with *time* in years. Vaccine protection per HPV strain are shown for a) period immediately after vaccination ($VE_{initial}$); and b) in the long term, ie, approximately 50 years after vaccination ($VE_{plateau}$).

Table A.14: Vaccination Scenarios.

	Single dose protection duration		Number
Name	assumption*	Routine coverage	of scenarios
A90 (base-case)	Life-long (A)	90%	1
A60, A70, A80, A100	Life-long (A)	60, 70, 80, 100%	4
B60, B70, B80, B90, B100	Weak waning (B)	60, 70, 80, 90, 100%	5
C60, C70, C80, C90, C100	Intermediate waning (C)	60, 70, 80, 90, 100%	5
D60, D70, D80, D90, D100	Worst-case waning (D)	60, 70, 80, 90, 100%	5
A90.CU15, A90.CU15	Life-long (A)	90% (CU: 60%, 90%)	2
A90.CU20, A90.CU20	Life-long (A)	90% (CU: 60%, 90%)	2
D90.CU20, D90.CU20	Worst-case waning (D)	90% (CU: 60%, 90%)	2

A.5 Computation of Model Outcomes

A.5.1 Cancer Incidence

In section A.1.3 we described how the model was calibrated to national cancer incidence patterns. In projecting outcomes of vaccination, we ran simulations with two submodels, one representative of the low cancer incidence pattern (West Bengal) and one representative of the high cancer incidence pattern (Tamil Nadu). We extrapolated cancer incidence to all other states, using the results of the clustering exercise ⁹ shown in Table A.15. The main idea is to compute the ratio of cancer incidence per age group (denoted with index *a*) between the Indian state of interest (*cancerobs*_{s,a}) and the representative state of the cluster (either Tamil Nadu or West Bengal, *cancerobs*_{cluster,a}). Then we multiply this ratio by the predicted cancer incidence (*cancerpred*_{cluster,a,y}). For this we used the following procedure:

For each state s do:

Step 1: Verify to which cluster state *s* belongs : cluster = [High, Low]

Step 2: Select the cancer model projection (cancerpred_{cluster}) corresponding to cluster

For each age group *a* do:

Step 3: $cancerinc_{s,a,y} = \left(\frac{cancerobs_{s,a}}{cancerobs_{cluster,a}}\right) cancerpred_{cluster,a,y}$.

End loop a

End loop s

To obtain the Indian cancer incidence we do the following step,

Step 4: indiancancerinc_{*a*,*y*} = $\sum_{s} cancerinc_{s,a,y}$ weightpop_{*s*},

Where weightpops denotes the weight of state s in the total Indian population. We also applied an age adjustment in order to obtain cancer incidence by year (inc_y) , which is necessary to compute the ICER,

Step 5: $inc_y = \sum_a indiancancerinc_{a,y} weightage_a$

									Ag	e group						
State/group of states *	Source	Cluster	15- 19	20- 24	25- 29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84
Andhra Pradesh	Extracted	Low	0	0.1	1.5	3.6	11.2	15.7	20.3	35.3	44.6	51	43.8	55.7	25.7	12.8
Assam	Extracted	Low	0	0.2	1.5	5.1	7.9	15.1	24.1	27.9	28.2	33.2	36.1	25.5	13.9	7
Bihar	Inferred	Low	0	0.3	1	4.3	8.4	16.2	22.2	28.6	30.7	34.9	31.9	31.9	15.3	7.6
Chhattisgarh	Inferred	Low	0	0.3	1	4.3	8.4	16.2	22.2	28.6	30.7	34.9	31.9	31.9	15.3	7.6
Delhi	Extracted	High	0	0.6	1.2	4.4	11.2	21.8	32.3	38.5	45.4	62.3	57	51.4	31.9	16
Goa + Daman & Diu	Inferred	Low	0	0.3	1	4.3	8.4	16.2	22.2	28.6	30.7	34.9	31.9	31.9	15.3	7.6
Gujarat + Dadra & Nagar Haveli	Extracted	Low	0	0	0.8	7.9	14	24.2	19.7	34.4	19.6	30.6	25.7	30.6	13.6	6.8
Haryana	Inferred	Low	0	0.3	1	4.3	8.4	16.2	22·2	28.6	30.7	34.9	31.9	31.9	15.3	7.6
Himachal Pradesh	Inferred	Low	0	0.3	1	4.3	8.4	16.2	22.2	28.6	30.7	34.9	31.9	31.9	15.3	7.6
Jammu & Kashmir	Inferred	Low	0	0.3	1	4.3	8.4	16.2	22.2	28.6	30.7	34.9	31.9	31.9	15.3	7.6
Jharkhand	Inferred	Low	0	0.3	1	4.3	8.4	16.2	22.2	28.6	30.7	34.9	31.9	31.9	15.3	7.6
Karnataka	Extracted	High	0	0.2	0.9	4.9	10	23.8	40.4	52·2	63·7	64	79.6	74·1	30.2	15.1
Kerala + Lakshadweep	Extracted	Low	0	0.2	0.4	0.3	2.5	9.2	15	19.1	30	38.4	31.9	39.3	11.7	5.8
Madhya Pradesh	Extracted	High	0.2	0.2	2	4.3	12.8	23.8	30.4	53·3	48.8	65	61.8	76.4	17.7	8.8
Maharashtra	Extracted	Low	0	0.4	1.3	3.8	10.8	20.8	27.1	35.4	36.8	50.5	51.7	43·3	22.4	11.2
Manipur	Extracted	Low	0	0.6	0.1	4.2	7.4	12.2	14.8	21.3	25.1	35	32.7	39.4	23.2	11.6
Orissa	Inferred	Low	0	0.3	1	4.3	8.4	16.2	22·2	28.6	30.7	34.9	31.9	31.9	15.3	7.6
Other North Eastern States §	Extracted	High	0	1.1	1.9	10.7	20.3	40.9	50	54.3	52·2	47.8	31.9	44	16.6	8.3
Punjab + Chandigarh	Extracted	High	0	0.1	2.2	3	13	23.8	32.3	47·2	47.8	48·7	52.8	35.2	33.3	16.6
Rajasthan	Inferred	Low	0	0.3	1	4.3	8.4	16.2	22·2	28.6	30.7	34.9	31.9	31.9	15.3	7.6
Sikkim	Extracted	Low	0	0	0.7	4.3	12	26.1	29	24.6	42.8	26.5	20.8	12.4	0	0
Tamil Nadu + Puducherry	Extracted	High	0	0.4	0.9	4.3	13.4	33.7	48.1	60.8	68·9	75.5	67·1	65·1	19.9	9.9
Uttar Pradesh	Inferred	Low	0	0.3	1	4.3	8.4	16.2	22·2	28.6	30.7	34.9	31.9	31.9	15.3	7.6
Uttarakhand	Inferred	Low	0	0.3	1	4.3	8.4	16.2	22·2	28.6	30.7	34.9	31.9	31.9	15.3	7.6
West Bengal + Andaman & Nicobar Islands	Extracted	Low	0	0.3	0.6	3.5	6.2	15.9	23.7	27.5	26.7	29.1	34.8	31.7	21.5	10.8

Table A.15: Age-specific cervical cancer incidence (per 100,000 women) by Indian state. ^a

^a Other North Eastern States include Arunachal Pradesh, Nagaland, Meghalaya, Mizoram, and Tripura.
 ^b Extracted from CI5 or NCDIR or inferred based on clustering framework ("footprinting") described in Man et al 2022.⁹

A.5.2 Disability adjusted life years

Disability weights and their durations are shown in Table A.15 and are based on Global Burden and Disease (GBD) 2017 update, adapted from Abbas et al.⁴¹ Life years are calculated as the total number of persons alive in a year $(LY_{a,y})$. In order to obtain disability adjusted life years per year (y) and age group (a) $(DALY_{a,y})$ we subtract the unweighted life years lived with disability (*YLDunw*), and add weighted years lived with disability, with weights and durations given in Table A.16 (*YLDw*):

 $YLDunw_{a,y} = incidence_{a,y} LY_{a,y} + prevalence_{a,y} LY_{a,y} + mortality_{a,y} LY_{a,y}$

 $\begin{aligned} &YLDw_{a,y} = incidence_{a,y} LY_{a,y} \left(weight_{inc} duration_{inc} + weight_{prev} \left(1 - duration_{inc} \right) \right) + \\ & prevalence_{a,y} LY_{a,y} weight_{prev} + mortality_{a,y} LY_{a,y} \left(weight_{term} duration_{term} + \\ & weight_{metast} duration_{metast} + weight_{prev} \left(1 - duration_{term} - duration_{metast} \right) \right), \end{aligned}$

 $DALY_{a,v} = LY_{a,v} - YLDunw_{a,v} + YLDw_{a,v}$

In order to calculate incremental health gains (IH) we sum $DALY_{a,y}$ over all age groups first,

$$tDALY_y = \sum_a DALY_{a,y}$$
 weightage_a.

Then we obtain incremental health gains as the difference in DALYs between the no vaccination scenario and the vaccination scenario of interest:

$$IH_{y,scen} = tDALY_{y,novacc} - tDALY_{y,scen}$$
.

Table A.16: Disability weights and durations for different phases of cervical cancer in GBD 2017 study. a

Health State	Weight Name	Value	Duration	
Diagnosis and primary therapy phase	weight _{inc}	0.288	4.8 months	
Controlled phase	weight _{prev}	0.049	Remainder of time	
Metastatic phase	weight _{metast}	0.451	9.21 months	
Terminal phase	weight _{term}	0.54	1 month	

^a Based on Abbas et al 2020.⁴¹ GBD = Global Burden of Disease.

A.5.3 Costs

Costs include two main categories, costs of vaccination and costs of cervical cancer treatment. Costs of vaccination per year (*Vacy*) are calculated by multiplying the sum of vaccine dose cost and delivery cost by the weight of girls aged 10 in the population. For two-dose we applied the two-dose cost described in Table A.11. For catch-up we use the weight in the population of girls in the catch-up cohort of interest (either 11-15 or 11-20 years). For the first two years we assume that the government buys a number of vaccine doses sufficient for the whole population, independently of the coverage, since the government is unlikely to know in advance what will be the uptake of vaccination. Yearly costs of cervical cancer treatment (*CCCy*) are obtained by multiplying the cancer incidence (by stage) by the costs described in Table A.8. Incremental costs per year and scenario (*ICy,scen*) are given by:

$$IC_{y,scen} = Vac_{y,scen} - (CCC_{y,novacc} - CCC_{y,scen}).$$

A.5.4 ICER

ICER (Incremental Cost-effectiveness ratio) is computed as the ratio between incremental costs and DALYs averted compared to the scenario without vaccination. These are summed over all the years of the 100-year time horizon:

$$ICER_{scen} = \frac{(\Sigma_y^{100} IC_{y,scen})}{(\Sigma_y^{100} IH_{y,scen})}.$$

A.6 HPV-FRAME Checklist

Table A.17: HPV-FRAME Checklist, Core Reporting Standard.

Core Reporting Standard			
Inputs	Reported by age?	Report by sex?	Comments
Target population for	Y	Y	Only vaccination in girls and women were considered. Age of
intervention			routine and catch-up vaccination were reported.
Sexual behavior	Y	Y	HPV incidence computed based on EpiMetHeos model (See Man
			et al ²)
Cohort examined for evaluation	Y	Y	Multicohort model representing age distribution of Indian
/ time horizon			population; time horizon 100 years.
Quality of life assumptions	Ν	NA	Based on Global Burden of Disease 2017 ⁴¹ (Table A.15); No
			disability adjusted weights by age were available.
Calibration	Y	NA	For calibration of transmission model see Man et al. ² Cervical
			Cancer progression model calibration is described in sections A1.2
			and A1.3.
Validation (where possible)	Y	NA	Cervical cancer incidence predicted by the model checked against
			observed cervical cancer incidence in two Indian states, Tamil
			Nadu and West Bengal (Figure A.2)
Costs	Ν	NA	See Section A.3. All costs valued in USD, and discounted at 3%
			according to WHO guidelines. Costs also valued in IUSD as a
			sensitivity analysis.

^a Y= Yes, N=No, NA=Not Applicable.

Table A.18: HPV-FRAME Checklist, Reporting standard for HPV vaccination in adolescent individuals.^a

Reporting standard for HPV vaccin	nation in adolescen	t individuals		
Inputs	Reported	Reported by age?	Report by sex?	Comments
Vaccine uptake	Y	Y	Y	Single- and two-dose schedules were considered. Only vaccination in girls and women were considered. Uptake between 60-100% were considered for routine vaccination. Uptake of 60% and 90% were considered for catch-up vaccination
Vaccine efficacy	Y	NA	NA	Efficacy by dose schedule and HPV type was considered. Efficacy was independent of age.
Vaccine cross-protection	Y	Y	NA	Level of cross-protection for HPV 31/33/35 was reported.
Duration vaccine protection and waning	Y	N	NA	Waning assumption by dose schedule and HPV type was considered.
Vaccine and delivery costs	Y	NA	NA	Vaccine price is equal to GAVI price. Delivery costs extrapolated from the state of Sikkim, based on state-specific delivery costs estimates of childhood vaccination. ³⁸
Pre-vaccination disease burden (including population attributable fractions for HPV)	Y	Y	NA	Current cervical cancer incidence considered as baseline.
Duration of natural immunity	Y	Ν	NA	Natural immunity was independent of age.
Outputs	Reported	Reported by age?	Report by sex?	Report as calibration or validation target? (Y/N)
Absolute reductions in HPV infections, and/or warts, post- vaccination	N	N	N	Reduction in HPV infection reported in Man et al. ²
Absolute reductions in CIN2+ post- vaccination	N	N	N	CIN2+ reduction is not reported as it is not detected in a context without screening.
Absolute reductions in invasive cancer (cervical and other HPV cancers, as relevant)	Y, for cervical cancer	N	NA	Yes, it was a validation target for cancer progression model calibration. (See Figure A 2)

^a Y= Yes, N=No, NA=Not Applicable, F= Female, ICER= Incremental Cost Effectiveness Ratio.

Table A.19: HPV-FRAME Checklist, Reporting standard for models of HPV prevention in LMIC.

Inputs	Reported	Reported by	Report by sex?	Comments
HIV prevalence rates if endemic in	N	age:	NA	The effects of HIV are not modelled because
country	1	1	1111	of the low cervical cancer attributable
				fraction due to HIV in the whole of India. 42
Description of any opportunistic or	Y	N	NA	We assume no screening in this study, which
pilot/demonstration screening				is justified by the very low screening
project ongoing				coverage (2% in women aged 35–49 years)
				in India

Table A.20: HPV-FRAME Checklist, Reporting standards for evaluations assessing alternative vaccine types or reduced-dose schedules.

Inputs	Reported	Reported by age?	Report by sex?	Comments	
Vaccine efficacy/waning	Y	N	NA	See Table A.17	
Timing between doses (for 2-dose)	NA	NA	NA	Timing between the two doses under two- dose vaccination schedule was not modelled	
Vaccine cross-protection	Y	Ν	NA	See Table A.17	
Cost	Y	NA	NA	Costs per single-dose and two-dose schedule are reported in Table A.11. Willlingness to pay threshold based on WHO guideline (100% GDP per capita) and on Jit 2021 ⁴³ (30% GDP per capita);	
Outputs	Reported	Reported by age?	Report by sex?	Report as calibration or validation target (Y/N)?	
Threshold cost per dose	Ν	N	N		

A.7 Details on Sensitivity Analyses

A.7.1 Vaccine cost reduction over time

The idea of this sensitivity analysis is to compute the ICER under a scenario where vaccine cost reduces over time, where the rate of price reduction is informed by past price reductions for GAVI-supported pneumococcal vaccine.⁴⁴ The rate of vaccine price reduction was calculated based on the observed price reduction between 2010 and 2019. In 2010 ("First Supply Agreement") the contracted vaccine price per was \$3.5 USD.This reduced incrementally to \$2.9 USD in 2019 ("Fifth Supply Agreement"). The rate of price reduction per year equals 2%. For this sensitivity analysis we assume that this rate of vaccine price reduction would also occur for HPV vaccine.

A.7.2 Distributions of parameter values for probabilistic analysis

For this analysis we only included a few influential model parameters. It would be unfeasible to include all model parameters, as this would make this task computationally prohibitive given the high number of simulation runs per scenario required. Where available we used published 95% confidence intervals for the model parameters included in the analysis, namely for the durations from CIN2/3 to cervical cancer. For other parameters, namely, for costs, we used the heterogeneity in the data to construct a 95% confidence interval for each model parameter. The parameters for the sampling distributions of each parameter are obtained via simulation based on the lower and higher bounds of the confidence interval (shown in Table A.20).

Model Parameter	Values for mean and uncertainty bounds	Sampling Distribution	Source
Duration to Cancer			
$k_{16}, k_{18}, k_{other}$	Mean: 9·67 ; 9·67 ; 2·49 Lower bound: 4·74 ; 4·74 ; 1·54 Higher bound: 24·0 ; 24·0, 3·95	Gamma	Confidence intervals in Vink et al 2013 ⁸
θ_{16} , θ_{18} , θ_{other}	Mean: 3·33 ; 3·33 ; 9·14 Lower bound: 2·28 ; 2·28 ; 5·91 Higher Bound: 5·06 ; 5·06 ; 13·6	Gamma	Confidence intervals in Vink et al 2013 ⁸
Survival			
5-year Cancer Survival	Mean: 0·55 Lower Bound: 0·35 Higher Bound: 0·67	Beta	See Table A.4. Confidence interval based on lower/highest survival.
Costs			
Radical Hysterectomy	Mean: 80 392 Lower Bound: 64 994 Higher Bound: 125 000	Lognormal	Lower and upper bounds of the confidence interval based on hospitals with low/highest cost (Table A.6)
Chemo-radiotherapy	Mean: 72 233 Lower Bound: 40 000 Higher Bound: 90 405	Lognormal	Lower and upper bounds of the confidence interval based on hospitals with low/highest cost (Table A.6)
Delivery Costs (Year 1, Year > 1)	Mean: 320, 216 Lower Bound: 230, 147 Higher Bound: 374, 256	Lognormal	Lower and upper bounds of the confidence interval based on states with 2 nd highest and 2 nd lowest delivery cost (i.e., 5 th and 95 th percentile). ³⁸
Cost multiplier private vs public	Mean: 4·1 Lower Bound: 3·6 Higher Bound: 5·3	Lognormal	Lower and upper bounds of the confidence interval based on urban and rural private vs public cost multipliers. ³²

Table A.21: Sampling distributions for model parameters included in probabilistic analysis.

References

1. Jenness SM, Goodreau SM, Morris M. EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks. *J Stat Softw* 2018; **84**.

2. Man I, Georges D, de Carvalho T, et al. Evidence-based impact projections of single-dose human papillomavirus (HPV) vaccination in India. *Lancet Oncol* 2022; Accepted.

3. Bogaards JA, Xiridou M, Coupe VM, Meijer CJ, Wallinga J, Berkhof J. Model-based estimation of viral transmissibility and infection-induced resistance from the age-dependent prevalence of infection for 14 high-risk types of human papillomavirus. *Am J Epidemiol* 2010; **171**(7): 817-25.

4. Bogaards JA, Coupe VM, Xiridou M, Meijer CJ, Wallinga J, Berkhof J. Long-term impact of human papillomavirus vaccination on infection rates, cervical abnormalities, and cancer incidence. *Epidemiology* 2011; **22**(4): 505-15.

5. Berkhof J, Bogaards JA, Demirel E, Diaz M, Sharma M, Kim JJ. Cost-effectiveness of cervical cancer prevention in Central and Eastern Europe and Central Asia. *Vaccine* 2013; **31 Suppl 7**: H71-9.

6. Rijkaart DC, Berkhof J, Rozendaal L, et al. Human papillomavirus testing for the detection of highgrade cervical intraepithelial neoplasia and cancer: final results of the POBASCAM randomised controlled trial. *The Lancet Oncology* 2012; **13**(1): 78-88.

7. Spall J. Implementation of the simultaneous perturbation algorithm for stochastic optimization. *IEEE Transactions on Aerospace and Electronic Systems* 1998; **34**(3).

8. Vink MA, Bogaards JA, van Kemenade FJ, de Melker HE, Meijer CJ, Berkhof J. Clinical progression of high-grade cervical intraepithelial neoplasia: estimating the time to preclinical cervical cancer from doubly censored national registry data. *Am J Epidemiol* 2013; **178**(7): 1161-9.

9. Man I, Georges D, Bonjour M, Baussano I. "Footprinting" missing epidemiological data for cervical cancer: a case study in India. *medRxiv* 2022: 2022.06.28.22276994.

10. Bray F, Colombet M, Mery L, et al. Cancer Incidence in Five Continents, Vol. XI. 2017.

11. National Centre for Disease Informatics and Research. Report of National Cancer Registry Programme (2012-2016). 2020. <u>https://www.ncdirindia.org/All_Reports/Report_2020/resources/NCRP_2020_2012_16.pdf</u> (accessed January 2022.

12. Dutta S, Begum R, Mazumder Indra D, et al. Prevalence of human papillomavirus in women without cervical cancer: a population-based study in Eastern India. *Int J Gynecol Pathol* 2012; **31**(2): 178-83.

13. Franceschi S, Rajkumar R, Snijders PJ, et al. Papillomavirus infection in rural women in southern India. Br J Cancer 2005; **92**(3): 601-6.

14. Qendri V, Bogaards JA, Baussano I, Lazzarato F, Vänskä S, Berkhof J. The cost-effectiveness profile of sex-neutral HPV immunisation in European tender-based settings: a model-based assessment. *The Lancet Public Health* 2020; **5**(11): e592-e603.

15. National Centre for Disease Informatics and Research. Three-year report of population based cancer registries. 2016.

https://ncdirindia.org/All Reports/PBCR REPORT 2012 2014/ALL CONTENT/Annexure/Chennai Ann.pdf (accessed January 2022.

16. Sampath P, Swaminathan R, TNCRP Study Group. Cancer incidence and mortality (Year 2017), incidence trend (2012-2017) and estimates (2018-2021) for Tamil Nadu state. Chennai: Tamil Nadu Cancer Registry Project, Cancer Institute (W.I.A). 2021.

17. United Nations. World Population Prospects 2019. 2019.

https://population.un.org/wpp/Download/Archive/Standard/ (accessed January 2022.

18. Meher T, Sahoo H. Regional pattern of hysterectomy among women in India: Evidence from a recent large scale survey. *Women Health* 2020; **60**(5): 585-600.

19. Sankaranarayanan RS, R.; Lucas, E. Cancer Survival in Africa, Asia, the Caribbean and Central America; 2011.

20. Balasubramaniam G, Gaidhani RH, Khan A, Saoba S, Mahantshetty U, Maheshwari A. Survival rate of cervical cancer from a study conducted in India. *Indian Journal of Medical Sciences* 2020; **73**: 203-11.

21. Nandakumar ARGKK, A., Bapsy, P.; Gupta, PC.; Gangadharan, P. ; Mahajan, R.C.;. Concurrent Chemoradiation for Cancer of the Cervix: Results of a Multi-Institutional Study From the Setting of a Developing Country (India). *J Glob Oncol* 2015; **1**: 11-22.

22. Krishnatreya M, Kataki AC, Sharma JD, Nandy P, Gogoi G. Association of educational levels with survival in Indian patients with cancer of the uterine cervix. *Asian Pac J Cancer Prev* 2015; 16(8): 3121-3.
23. Jayant K, Sankaranarayanan R, Thorat RV, et al. Improved Survival of Cervical Cancer Patients in a

Screened Population in Rural India. Asian Pac J Cancer Prev 2016; 17(11): 4837-44.

24. Swaminathan R, Selvakumaran R, Esmy PO, et al. Cancer pattern and survival in a rural district in South India. *Cancer Epidemiol* 2009; **33**(5): 325-31.

25. Kataki AC, Sharma JD, Krishnatreya M, et al. A survival study of uterine cervical patients in the North East India: Hospital-cancer registry-based analysis. *J Cancer Res Ther* 2018; **14**(5): 1089-93.

26. Bindu T, Kumar SS, Ratheesan K, Balasubramanian S. Factors associated with survival and lost to follow-up of cervical cancer patients in a tertiary cancer centre in rural Kerala. *Indian J Public Health* 2017; **61**(1): 43-6.

27. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. *The Lancet* 2018; **391**(10125): 1023-75.

28. Mathew A, George PS, Kunnambath R, et al. Educational Status, Cancer Stage, and Survival in South India: A Population-Based Study. *JCO Glob Oncol* 2020; **6**: 1704-11.

29. The World Bank. The World Bank, India Overview. 2022.

https://data.worldbank.org/country/india?view=chart (accessed June 2022.

30. The Organization for Economic Cooperation and Development. Purchasing power parities (PPP). 2022. https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm.

31. Diaz M, Kim JJ, Albero G, et al. Health and economic impact of HPV 16 and 18 vaccination and cervical cancer screening in India. *Br J Cancer* 2008; **99**(2): 230-8.

32. National Statistical Office (Government of India). Key Indicators of Social Consumption in India: Health (NSS 75th Round). 2019.

33. Tata Memorial Center. Schedule of Charges 2020. <u>https://actrec.gov.in/schedule-charges</u> (accessed January 2022.

34. Singh MP, Chauhan AS, Rai B, Ghoshal S, Prinja S. Cost of Treatment for Cervical Cancer in India. *Asian Pac J Cancer Prev* 2020; **21**(9): 2639-46.

35. Taarnhoj GA, Christensen IJ, Lajer H, et al. Risk of recurrence, prognosis, and follow-up for Danish women with cervical cancer in 2005-2013: A national cohort study. *Cancer* 2018; **124**(5): 943-51.

36. Uppal S, Gehrig PA, Peng K, et al. Recurrence Rates in Patients With Cervical Cancer Treated With Abdominal Versus Minimally Invasive Radical Hysterectomy: A Multi-Institutional Retrospective Review Study. *J Clin Oncol* 2020; **38**(10): 1030-40.

37. de Foucher T, Bendifallah S, Ouldamer L, et al. Patterns of recurrence and prognosis in locally advanced FIGO stage IB2 to IIB cervical cancer: Retrospective multicentre study from the FRANCOGYN group. *Eur J Surg Oncol* 2019; **45**(4): 659-65.

38. Schueller E, Nandi A, Summan A, et al. Public Finance of Universal Routine Childhood Immunization in India: District Level Cost Estimates. *Health Policy Plan* 2021.

39. Census Organization of India. Sikkim Population 2011.

https://www.census2011.co.in/census/state/sikkim.html (accessed January 2022).

40. Basu P, Malvi SG, Joshi S, et al. Vaccine efficacy against persistent human papillomavirus (HPV) 16/18 infection at 10 years after one, two, and three doses of quadrivalent HPV vaccine in girls in India: a multicentre, prospective, cohort study. *The Lancet Oncology* 2021; **22**(11): 1518-29.

41. Abbas KM, van Zandvoort K, Brisson M, Jit M. Effects of updated demography, disability weights, and cervical cancer burden on estimates of human papillomavirus vaccination impact at the global, regional, and national levels: a PRIME modelling study. *The Lancet Global Health* 2020; **8**(4): e536-e44.

42. Stelzle D, Tanaka LF, Lee KK, et al. Estimates of the global burden of cervical cancer associated with HIV. *The Lancet Global Health* 2021; **9**(2): e161-e9.

43. Jit M. Informing Global Cost-Effectiveness Thresholds Using Country Investment Decisions: Human Papillomavirus Vaccine Introductions in 2006-2018. *Value Health* 2021; **24**(1): 61-6.

44. Global Alliance for Vaccines and Immunisation. Supply agreements. 2020.

https://www.gavi.org/investing-gavi/innovative-financing/pneumococcal-amc/manufacturers/supply-agreements (accessed January 2022).

Supplementary Appendix B

Additional Model Results for: Health economic impact of introducing single-dose HPV vaccination in India.

de Carvalho TM, Man I, Georges D, Saraswati LR, Bhandari P, Kataria I, Siddiqui M, Muwonge R, Lucas E, Sankaranarayanan R, Basu P, Berkhof J, Bogaards JA, Baussano I.

Table of Contents

List of figures	29
List of tables	30
Section 1: Life years gained and reduction in cancer incidence per scenario	31
Section 2: Additional Results	37
Section 3: Results in \$IUSD	41

List of figures

Figure B.1: Life years gained.

Figure B.2: Projected cervical cancer incidence reduction after introduction of single-dose HPV vaccination in India for vaccine protection assumption A (no waning).

Figure B.3: Projected cervical cancer incidence reduction after introduction of single-dose HPV vaccination in India for vaccine protection assumption B.

Figure B.4: Projected cervical cancer incidence reduction after introduction of single-dose HPV vaccination in India for vaccine protection assumption C.

Figure B.5: Projected cervical cancer incidence reduction after introduction of single-dose HPV vaccination in India for vaccine protection assumption D.

Figure B.6: Projected cervical cancer incidence reduction after introduction of single-dose HPV vaccination in India by catch-up scenario.

Figure B.7: Undiscounted incremental costs and health effects of single- and two-dose vaccination versus no vaccination.

Figure B.8: Incremental Costs and incremental health effects for two-dose versus single-dose schedule.

Figure B.9: Incremental Costs and incremental health effects for catch-up scenarios under a single-dose schedule.

Figure B.10: Undiscounted incremental costs and health effects of single- and two-dose vaccination versus no vaccination (\$IUSD).

Figure B.11: Incremental costs and health effects of single- and two-dose vaccination versus no vaccination (\$IUSD).

Figure B.12: Incremental costs and health effects of two-dose versus single-dose vaccination (assuming lifetime protection for two-dose vaccination) (\$IUSD).

Figure B.13: Health economic outcomes by catch-up scenario (\$IUSD).

Figure B.14: Univariate sensitivity analysis on the ICER for cost variables (\$IUSD).

List of tables

Table B.1 : Health economic outcomes by Indian state for the base case scenario.

Section 1: Life years gained and reduction in cancer incidence per scenario

Figure B.1: Life years gained.

LYs gained (discounted) per 100 000 women

% coverage

LYs gained per 100 000 women (undiscounted)

^a Life-years gained relative to no vaccination are discounted at 3%.

Figure B.2: Projected cervical cancer incidence reduction after introduction of single-dose HPV vaccination in India for vaccine protection assumption A (no waning).^a

^a Vaccine protection assumption A denotes a 95% vaccine efficacy against HPV16/18 with no waning, and 9% cross-protection for types HPV 31/33/45. Cancer incidence is age-standardised using Indian population weights.

Figure B.3: Projected cervical cancer incidence reduction after introduction of single-dose HPV vaccination in India for vaccine protection assumption B.^a

^a Vaccine protection assumption B denotes a 95% vaccine efficacy against HPV16/18, and 9% cross-protection for types HPV 31/33/45. Vaccine protection wanes during the first 20 years since vaccination with remaining efficacy of 80% of the initial efficacy. Cancer incidence is age-standardised using Indian population weights.

^a Vaccine protection assumption C denotes 90% vaccine efficacy against HPV16, 85% vaccine efficacy against HPV18, with exponentially decreasing efficacy during the first 20 years since vaccination until 55% (HPV16) and 35% (HPV18). Cross-protection for types HPV 31/33/45 starts at 9% with efficacy waning at the same rate as for HPV18. Cancer incidence is age-standardised using Indian population weights.

Figure B.5: Projected cervical cancer incidence reduction after introduction of single-dose HPV vaccination in India for vaccine protection assumption D.^a

^a Vaccine protection assumption D denotes a 85% vaccine efficacy against HPV16, 55% against HPV18 and 9% cross-protection for types HPV 31/33/45. Vaccine protection wanes during the first 20 years since vaccination with remaining efficacy of 65% of the initial efficacy. Cancer incidence is age-standardised using Indian population weights.

^a Catch-up vaccination until age 15 or 20 is shown for 60% or 90% coverage catch-up coverage, 90% coverage for regular vaccinated girls and with efficacy and waning as in the Scenario A. We also show two scenarios with vaccine efficacy and waning as in Assumption D.

Section 2: Additional Results

Figure B.7: Undiscounted incremental costs and health effects of single- and two-dose vaccination versus no vaccination (USD).^a

		DALYs averted per 100 000 women (undiscounted)								
Б	A	-	2454	2705	2916	3180	3325			
assumpt	в	$\left\ \right\ $	2137	2479	2701	2982	3117			
otection	С	-	1886	2210	2447	2689	2921			
ccine pro	D	$\left\ \right\ $	1664	1907	2078	2347	2478			
2-dos	ie (A)	-	2454	2705	2916	3180	3325			
			60	70	80 % coverage	90	100			
		Incren in thous	nental Cost (undisc sands of USD, per 100	ounted) 000 women						
otion	A		-393	-409	-405	-388	-339			
assump	в	-	-231	-262	-272	-284	-238			
otection	С		-117	-136	-123	-136	-111			
ccine pr	D		7	27	53	41	93			
2-dos	ie (A)		446	566	705	857	1041			
			60	70	80 % coverage	90	100			
		ICER	in USD (undiscoun	ted)				_		
tion	A	$\left\ \cdot \right\ $	-162	-148	-135	-121	-108			
assumpl	в	$\left\ \right\ $	-108	-108	-94	-94	-81			
otection	С	$\left - \right $	-67	-67	-54	-54	-40			
ccine pro	D		0	13	27	13	40			
ĕ 2-dos	ie (A)	-	175	216	243	270	310			
			60	70	80 % coverage	90	100			

^a Costs are given in \$USD at 2020 prices. Costs and disability-adjusted life years (DALYs) averted are not discounted. ICER denotes incremental cost-effectiveness ratio per DALY averted relative to no vaccination.

Indian state / group of Indian states	DALYs	Incremental Costs (thousands USD)	ICER (USD)
India (all states)	412	167	405
Andhra Pradesh	380	84	220
Assam	367	162	440
Bihar	368	184	501
Chhattisgarh	368	190	516
Delhi	549	158	288
Goa + Daman & Diu	368	213	578
Gujarat + Dadra & Nagar Haveli	374	142	378
Haryana	368	201	547
Himachal Pradesh	368	175	475
Jammu & Kashmir	368	134	363
Jharkhand	368	214	581
Karnataka	559	140	251
Kerala + Lakshadweep	353	207	587
Madhya Pradesh	555	169	305
Maharashtra	382	139	364
Manipur	359	200	556
Orissa	368	163	444
Other North Eastern States	572	40	70
Punjab + Chandigarh	551	158	287
Rajasthan	368	172	467
Sikkim	376	99	264
Tamil Nadu + Puducherry	569	191	336
Uttar Pradesh	368	186	506
Uttarakhand	368	191	519
West Bengal + Andaman & Nicobar Islands	364	210	577

Table B.1: Health economic outcomes by Indian state for the base case scenario.^a

^a Base-case scenario denotes single-dose vaccination with 90% uptake among 10-year-old girls, a 95% vaccine efficacy against HPV16/18 with no waning, and 9% cross-protection for types HPV 31/33/45. Costs are given in \$USD at 2020 prices. Costs and disability-adjusted life years (DALYs) averted are discounted at 3%. ICER denotes incremental cost-effectiveness ratio per DALY averted relative to no vaccination.

Figure B.8: Incremental Costs and incremental health effects for two-dose versus single-dose schedule.^a

^a Costs are given in \$USD at 2020 prices. Costs and disability-adjusted life years (DALYs) averted are discounted at 3%. See Figure 3 for the corresponding ICER.

Figure B.9: Incremental Costs and incremental health effects for catch-up scenarios under a single-dose schedule.^a

^a Costs are given in \$USD at 2020 prices. Costs and disability-adjusted life years (DALYs) averted are discounted at 3%. See Figure 3 for the corresponding ICER.

Section 3: Results in \$IUSD

We present our results in USD, since the main goal of this analysis is to inform Indian health officials' decisions about cervical cancer prevention in India. This results in higher ICERs than in studies that present results in IUSD, due to the purchasing power parity conversion rate from INR to IUSD used for non-tradable goods, which makes cervical cancer treatment costs (e.g. salary of medical staff) relatively more expensive than tradable goods (e.g. vaccine dose).

Figure B.10: Undiscounted incremental costs and health effects of single- and two-dose vaccination versus no vaccination (\$IUSD).^a

	DALYs	averted per 100 0	00 women (undiscou	unted)			
Б		2454	2705	2916	3180	3325	
assumpt B		2137	2479	2701	2982	3117	
of ection of		1886	2210	2447	2689	2921	_
ccine pro		1664	1907	2078	2347	2478	
2-dose (A)		2454	2705	2916	3180	3325	
		60	70	80	90	100	

				% coverage			
	Increm in thous	ental Costs (undis ands <mark>\$</mark> USD, per 100 0	counted) 100 women				
otion	A	-1538	-1664	-1742	-1784	-1745	
assump	B	-1123	-1290	-1402	-1520	-1486	
otection	c	-835	-968	-1021	-1142	-1165	
cine pr	D	-516	-551	-571	-688	-645	
2-d	lose (A)	2765	3234	3709	4172	4645	
		60	70	80	90	100	

% coverage

	ICER in	silUSD (undiscou	unted)				
cine protection assumption	A	-627	-615	-597	-561	-525	-
	в-	-526	-520	-519	-510	-477	
	c-	-443	-438	-417	-425	-399	
	D	-310	-289	-275	-293	-260	
2-d	lose (A)	60	107	166	224	307	
		60	70	80	90	100	

% coverage

^a Costs are given in \$IUSD at 2020 prices. Costs and disability-adjusted life years (DALYs) averted are not discounted. ICER denotes incremental cost-effectiveness ratio per DALY averted relative to no vaccination.

Figure B.11: Incremental costs and health effects of single- and two-dose vaccination versus no vaccination.

^a Costs are given in \$IUSD at 2020 prices. Costs and disability-adjusted life years (DALYs) averted are discounted at 3%. ICER denotes incremental cost-effectiveness ratio per DALY averted relative to no vaccination. We consider two cost-effectiveness thresholds for the ICER, a) 100% of Indian GDP per capita, as per WHO recommendation (\$IUSD 6504), and b) 30% of Indian GDP per capita (\$IUSD 1951).

Figure B.12: Incremental costs and health effects of two-dose versus single-dose vaccination (assuming lifetime protection for two-dose vaccination).^a

^a Costs are given in \$IUSD at 2020 prices. Costs and disability-adjusted life years (DALYs) averted are discounted at 3%. ICER denotes incremental cost-effectiveness ratio per DALY averted relative to no vaccination. We consider two cost-effectiveness thresholds for the ICER, a) 100% of Indian GDP per capita, as per WHO recommendation (\$IUSD 6504), and b) 30% of Indian GDP per capita (\$IUSD 1951).

Figure B.13: Health economic outcomes by catch-up scenario.^a

^a Costs are given in \$IUSD at 2020 prices. Costs and disability-adjusted life years (DALYs) averted are discounted at 3%. ICER denotes incremental cost-effectiveness ratio per DALY averted relative to no vaccination. We consider two cost-effectiveness thresholds for the ICER, a) 100% of Indian GDP per capita, as per WHO recommendation (\$IUSD 6504), and b) 30% of Indian GDP per capita (\$IUSD 1951).

^a Costs are given \$IUSD at 2020 prices. Costs and disability-adjusted life years (DALYs) averted are discounted at 3%. ICER denotes incremental cost-effectiveness ratio. The dashed lines denote the range for cost-effectiveness thresholds, 30% of Indian GDP per capita in \$IUSD (orange) and 100% of Indian GDP per capita in \$IUSD (red). PPP=purchasing power parity.