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S1 Text. Supporting Information 
 
S1.1. Background information on indoor movement and transmission models  
The following section describes the existing models. The first section (S1.1.1) discusses the state-of-the-art 
pertaining pedestrian strategic and tactical choice models for indoor environments. Section S1.1.2 continues with 
an elaboration on simulation models for operational movement behaviour. Section S1.1.3 reviews models that 
simulate the spread of respiratory viruses in indoor spaces. This section ends with an overview of the attempts to 
use pedestrian simulation models and virus spread models to determine SARS-CoV-2 transmission risks (Section 
S1.1.4). 
 
S1.1.1. Modelling pedestrian strategic and tactical choice behaviours 
The movements of individuals are governed by choices at three levels, namely strategic (activity, activity location, 
departure time choice), tactical (mode and route choice) and operational choices. In particular, this section will focus 
on the state-of-the-art of activity and route choice behaviour literature because these two choices are influential in 
the case of individuals' movement behaviour in indoor spaces. More specifically, we will focus on models that 
determine the order of individuals’ activities and their routing.  
 
S1.1.1.1. Activity scheduling and location choice modelling 
Most studies focussed on activity choice modelling to represent the movements of pedestrians across city-scale 
networks. Borgers and Timmermans (2010) were one of the first to develop a set of three connected models that 
jointly identify pedestrian movements in shopping areas. Dijkstra and Jessurum (2016) simulate visitor’s activity 
scheduling in shopping areas. Clifton et al. (2016) and Oyama and Hato (2018) determine pedestrian destination 
choices in a city-network. Vukadinovic et al. (2011) developed an activity simulation model for another leisure 
activity, namely theme parks. Danalet et al. (2014) and Danelet and Bierlaire (2014) adopted discrete choice models 
to identify the restaurant choices and activity patterns of students and staff of the university.  
 
More recently, several studies featured activity choice modelling inside buildings. Hoogendoorn and Bovy (2004), 
for instance, developed a continuous utility maximisation framework that makes a trade-off between activity 
performance and the waiting and walking costs. This model is often applied in real-life cases, where the parameters 
of the activity utility were estimated using data of a benchmark situation. Ton et al. (2015) established a set of single- 
and multi-factor MNL models to identify the activity schedules of travellers inside train stations. Kalakou et al. (2014) 
applies the same approach to model activity schedules at airports. Liu et al. (2014) used a nested logit model to 
predict activity travel patterns for airport travellers. Shelat et al. (2020) developed a markov-chain model to simulate 
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the activity scheduling of individuals working in an office building. The transition probabilities were derived from 
movement data inside the building. 
 
What all of these activity location & scheduling modelling approaches have in common is that they require large 
amounts of data to be correctly estimated and that they are often difficult to generalise. Yet, for indoor scenarios, 
and specifically restaurants, little data is available regarding individuals’ activity scheduling. Thus, the modelling 
approaches presented above are difficult to use. Yet, the literature also shows that if one can estimate the transition 
probabilities between activities, the resulting activity scheduling behaviour is relatively realistic. Thus, in this first, 
pragmatic attempt to model activity choices in restaurants, an expert-driven approach is adopted. For more 
information, see section 5.1. 

 
S1.1.1.2 Route choice modelling   
Early works on pedestrian route choice modelling, such as Hill (1984), indicate that route choice selection strategies 
are largely subconscious, but that directness is the most commonly identified reason for choosing a particular route. 
Various studies have afterwards identified the impact of the built environment on pedestrian route choices in city-
scale networks (e.g. Borgers and Timmermans (2005), Guo et al. (2013), Lue and Miller (2019), Shatu et al. (2019)). 
Often discrete choice models, such as the path size logic model and the multinomial probit models, are estimated. 
Some, more data-driven approaches directly infer the likelihood of a given path based on a large set of realised 
traces and their characteristics, such as speed distribution and nearby WiFi spots (e.g. Chen and Bierlaire (2015)).   
 
Yet, with respect to indoor route choice behaviour, most works empirically studied indoor navigation, see Kalakou 
and Moura (2014) for an overview. Additionally, some utility-based route choice models have been developed for 
specific contexts (e.g. Cheung and Lam (1998), Hughes (2000), Hoogendoorn and Bovy (2005) and Daamen et al. 
(2005)). Yet, given that the models are difficult to generalise and/or estimate due to their high data requirement. 
Consequently, the shortest route towards one's destination is frequently adopted in simulation approaches. Often 
local biases or forces are introduced to account for crowding at the scene (e.g., Campanella et al. (2009), Usher et 
al. (2010)). The adoption of the shortest-distance path can, however, lead to unrealistic ‘suboptimal’ pedestrian 
choice behaviour. Asano et al. (2010), Kretz et al. (2011) and Stubenschrott et al. (2014) developed more 
sophisticated route choice models that determine the shortest path dynamically, thus improving local route choice. 
 
Even though dynamic route choice models are most sophisticated, their computational effort is relatively high. 
Moreover, in case of low demand locations (due to physical distancing restrictions), we expect the adverse effects 
of suboptimal routing to be limited. Thus, because we favour fast computation times and expect limited routing 
issues, this study will apply the utility-based routing approach presented by Hoogendoorn and Bovy (2004), also 
coined Nomad, to globally route pedestrians between activity locations.  
 
S1.1.2. Modelling individuals’ operational movement dynamics 
Over the years various pedestrian movement models have been presented. The level of details pertaining to the 
spatial representation of the environment, agents’ choice behaviour and agents’ movement behaviour differs 
greatly. Six distinctive types of models can be identified, namely i) Graph-based models, ii) Continuous models, iii) 
Cellular Automata models, iv) Force-base models, v) Velocity-based models and vi) discrete choice models. All model 
types are discussed below, for a more in-depth discussion of the (dis)advantages of all model types the reader is 
referred to Duives et al. (2013). 
 
The first two types both make use of a macroscopic representation of pedestrian flows, using the fundamental 
relation between density and walking speed (P-FD) to determine the flow of pedestrians across boundaries. Graph-
based models simulate the movements of pedestrians along a simplified graph (e.g. Chalmet et al. (1982), Hanseler 
et al. (2017)) consisting of vertices and nodes. Continuous pedestrian simulation models discretize pedestrian spaces 
in cells along 2 dimensions, but still make use of a continuous representation of pedestrian flows (Hughes (2000; 
2002), Treuille et al. (2006)). Few macroscopic models can cope with heterogeneous crowds and multi-directional 
traffic, amongst which Hoogendoorn et al. (2014), Tordeux et al. (2018)). Continuous macroscopic models are best 
used for scenarios where large crowds move through relatively confined simply-shaped spaces.  
 
Besides that, four major streams of microscopic pedestrian simulation models have been developed in the last four 
decades. These models all simulate the movements of discrete pedestrians. Cellular automata models were first 
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developed by Blue and Adler (1998), and have been further specialized ever since (e.g. Song et al. (2005), 
Schadschneider (2002), Sarmady (2010), Bandini et al (2011)). The environment is often spatially discretized in a 
regular grid, which can limit CA’s validity in high-density situations and small or oddly shaped spaces. Force-based 
models have been on the rise since the seminal paper of Helbing et al. (1995). This second model type determines 
the next position of a pedestrian as the result of its current movement direction and force-based interactions with 
other agents, its destination and its surrounding. This popular model type has seen many extensions, amongst which 
other force-interpretations (e.g. Hoogendoorn and Bovy (2004)), interaction biases (e.g. Parisi et al. (2009), Chen et 
al. (2020)), stairway behaviour (e.g. Qu et al. (2014)), corner rounding behaviour (e.g. Chen et al. (2020), Dias et al. 
(2019)), travel time (Kretz et al. (2011)). Velocity-based models determine the next speed of an agent as the result 
of the agent’s destination, kinetic energy dispensal, and collision-risk (Karamouzas and Overmars (2010), Mousssaid 
et al. (2011), Paris et al. (2007)). Interactions directly influence the velocity of agent’s, which tends to make agents’ 
movements fairly unstable. The last type of microscopic model, i.e. discrete choice models, simulate pedestrians’ 
operational movements as an optimization of its choice utility (e.g. Antonini et al. (2004), Robin et al. (2009)), which 
are the weighted sum of various elements of the potential next positions. This model type is not often applied, as it 
is very difficult to create a flexible ‘simple’ movement model that can cope with the general interaction complexity 
of public spaces.  
 
For the modelling of virus transmission, a detailed description of pedestrians’ movements is essential. Thus, a 
microscopic model is better suited to simulate the necessary movements. Additionally, most SARS-CoV-2 
transmissions occur in indoor spaces, where a multitude of complex interaction behaviours occur. This vouches for 
a microscopic model for which many specialist behaviours have already been implemented (e.g. force-base or 
velocity-based). At the same time, the current physical distancing rules require the model to correctly simulate 
complex social interactions at a distance (no physical forces). A force-based model is better equipped to handle 
social interactions at a distance due to its setup. Thus, a generalisation of a force-base model will be used to simulate 
the pedestrian choice and movement dynamics in indoor spaces, in particular Nomad (Hoogendoorn and Bovy 
(2004)) in the implementation of Campanella et al. (2014). 
 
S1.1.3. Modelling indoor transmission of respiratory viruses  
Indoor transmission models have been developed to better understand transmission of respiratory viruses and 
assess the effectiveness of non-pharmaceutical interventions (NPIs) (Kriegel et al. 2021; Gao et al. 2021). Models 
differ in the types and extent of heterogeneity that is taken into account. In general, three main aspects are 
considered, namely i) the virus distribution in the environment, which can be assumed well-mixed or distributed in 
space according to underlying biophysical mechanisms, and individual homogeneity or heterogeneity in terms of ii) 
infectiousness and/or susceptibility, and iii) in terms of human movement. What model is best suited, depends on 
the objectives of the research. In this section, we discuss the pros and cons of each model type.   
 
In the most simple family of airborne transmission models, the Well-Riley models, one assumes that infectious 
particles are well-mixed and the quantities are at steady-state. It uses an analytical expression, the Well-Riley 
equation, to relate the number of infected and susceptible individuals in an indoor space, the ventilation rate and 
the amount of infectious particles in the air to the expected number of new cases over a certain time period. Wells 
(1955) used a hypothetical infectious dose unit “quantum of infection” to describe how many infectious particles an 
infected individual emits. A quantum unit is defined as the number of infectious particles required to cause 63% of 
people getting infected, and is usually back- calculated using data on numbers of individuals infected in well defined 
indoor outbreaks. The Well-Riley model has been extensively used for predicting the number of infected individuals 
expected at large gatherings and assessing the effect of interventions such as capping the occupancy and reducing 
the total event duration (Bazant and Bush 2021; Kriegel et al. 2021). It is often used for quick risk assessments of 
large events. However, since every individual has the same risk of infection, the Well-Riley models do not allow for 
assessing the role of individual behaviours (contact frequency and respiratory activities e.g.,) on transmission risks.  
 
Aerosol infectious dose-response models allow individual heterogeneity in infectiousness and respiratory activities. 
These models model the risk of getting infected from being exposed to different amounts of an airborne pathogen. 
This exposure dose, the amount of pathogen that reaches the susceptible individuals, depends on the infectious 
people’s emission rates, the room volume, the recipients’ pulmonary ventilation rate (i.e., the amount of air inhaled 
per unit time), and the exposure duration. Like the Well-Riley model, these models assume infectious particles to be 
distributed homogeneously with the virions concentration equal to the ratio between the emitted infectious 
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particles and the room volume. The probability of infection occurring given exposure to a certain dose can be 
modelled using mathematical formulations, e.g., exponential dose-response relationship (Sze To and Chao 2010). 
This approach is more flexible than Well-Riley models since it allows for individual-level heterogeneity in terms of 
infectiousness, respiratory activities, and exposure time, and can be used to calculate individuals’ infection risk 
(Lelieveld et al. 2020). This approach can be used to compare the relative exposure risk of common indoor 
environments such as classroom and office (Jones et al. 2021). However, the assumed homogeneous spatial 
distribution of infectious particles has the consequence that the distance between susceptible and infectious 
individuals does not affect exposure to the virus. Therefore, as with the Well-Riley models,  the impact of physical 
distancing cannot be evaluated with this family of models.  
 
Recently, more detailed infectious dose models have been developed that allow for spatial variation of the 
pathogen’s distribution in the environment as well as multiple transmission routes (Gao et al. 2021). Expansions of 
the Well-Riley model have been proposed that allow for individual heterogeneity in infectiousness and respiratory 
activities (Bazant and Bush 2021; C. Xu et al. 2022), for spatial variation of the virus distribution in the environment 
(Lau et al. 2022; X. Li et al. 2022), and the inclusion of multiple transmission routes (Gao et al. 2021). In addition to 
airborne transmission, which was implicitly assumed in models mentioned above, these models consider 
transmission via droplets (i.e., larger respiratory particles that do not remain airborne) and fomites (i.e. 
contaminated objects). The inclusion of different transmission routes allows for increased granularity of the spatial 
and temporal dynamics of respiratory disease pathogens in their environments. In an early example of this model 
family, Nicas and Sun model virus-laden aerosols to be evenly distributed in a room, while viruses in droplets only 
distribute near the infectious individual in their respiratory cone puff (Nicas and Sun 2006). The distribution of virus 
on fomites in turn depends on the deposition of these viral-laden droplets and may accumulate in time depending 
on the duration of stay of the infectious individual. This framework is formulated by discrete events and can be 
expanded on the details of the various processes involved, such as pathogens emission, pathogens survival in the 
environment, recipients’ uptake and causation of infection (Atkinson and Wein 2008; Sheng Li et al. 2009; Spicknall 
et al. 2010). Several event-based multiple routes infectious dose models have been built for COVID-19 (Arav, 
Klausner, and Fattal 2020; Gao et al. 2021), which shed light on how dominant routes depend on the duration and 
distance of infectious contacts.  
 
For the highly micro level but computationally-intense modelling of virus-laden airborne particles, one group of 
indoor transmission models follow the computational fluid dynamics (CFD) principles and simulate the flow of 
particles indoors in time and space (Mirzaie et al. 2021; H. Liu et al. 2021; Ren et al. 2021). These models have a clear 
advantage in detailed modelling of the distribution of particles, and allow for additional complexity such as airflows 
due to open windows. However, the computational requirements of these models limit their use for larger and 
longer lasting events.  
 
S1.1.4. Simultaneous modelling of individuals movement behaviour and SARS-CoV-2 transmission  
The models summarised typically consider static contacts between infected and susceptible individuals and thereby 
ignore the dynamic nature of human interactions. Combining detailed pedestrian models with viral transmission 
models can counter this issue and help investigate the role of the contact networks in indoor spaces.  
 
Pedestrian movement models have been integrated with viral transmission models before. Sallah et al. (2017) built 
a mathematical model that combines a graph-based mobility model and a SIR model to predict the spread of cholera 
in Haiti. While this model simulated the spread on (sub)national levels, other models are focussed on small-scale 
transmission, such as in indoor spaces. Harweg et al. (2021), Yang et al. (2020), Xiao et al. (2021), Romero et al. 
(2020), Ronchi et al. (2020), Xu and Chraibi (2020) developed hybrid models that combine microscopic movement 
models for simulating pedestrian dynamics with viral transmission models. Most often, the distance and duration 
of, what is considered an infectious contact, is predefined. One group of hybrid models estimate the exposure time, 
as it relates to different definitions of ‘risky contacts’. In the case of Xiao et al. (2021) a force-based model was built 
to model pedestrian movement, and the total duration of risky contacts was calculated to assess the impact of 
interventions such as shortening opening hours. Similarly, in Fang et al. (2020), the duration of risky contacts is 
calculated based on cut-off distance, with different cut-off distances assumed for breathing and coughing (one metre 
and two and a half metres, respectively). Ronchi et al. (2020) classified exposure into five types with different 
distances, which reflect different transmission mechanisms. The exposure time for each type of exposure was 
calculated to show the general exposure risk in the same indoor space. 
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Another group of hybrid models estimates infection probabilities, either by defining a probability per risky contact 
or assuming infection probabilities to be linearly related to the exposure time. Fang et al. (2020) applied an infection 
probability curve that increases with the duration of the contact and assumed that people can get infected only 
when they have close contact with infectious individuals (less than one metre), while Bouchnita and Jebrane (2020) 
assumed a cut-off distance of two metres. The total exposure time is calculated based on cut-off distance and 
compared to a confirmed duration within which close contact will definitely cause infection. Similarly, Ying and 
O’Clery (2021) model the infection probability of an exposed customer as a linear function of the exposure time, 
depending on the duration that the susceptible and the infectious agents spend in the same zone. The relation 
between exposure and infection is, however, hard to calibrate against epidemiological data and often not done 
explicitly.  
 
Most hybrid models presented above predominantly assume contact transmission and ignore indirect transmission 
routes such as via aerosols and fomites. We will add to the state-of-the-art by developing an individual-based model 
that combines a pedestrian movement model and a multi-route transmission model. By allowing for spatial and 
temporal heterogeneity in both human behaviour and viral spread, we aim to better understand the impact of 
human behaviours on transmission risks. 

 
S1.2. Experiment setting for static contacts 
In the static contact experiments (Fig 2), susceptible and infectious individuals stand still in a 10*10 m indoor space. 
There are tables next to both individuals, but individuals do not share any common surfaces. The benchmark contact 
is defined as a scenario where susceptible and infectious individuals arrive concurrently in an indoor space and have 
a contact at a distance of 1.5 metres for 15 minutes, which is broadly used as an indicator of ‘a risky contact’ (RIVM 
2021). Both infectious and susceptible individuals are assumed to talk and breathe for 50% of the time each (akin to 
an interaction in a restaurant for instance). The indoor space has an average ventilation level of 3 ACH (air change 
per hour).  
 
To examine the impact of contact intensity on exposure, we conduct three experiments in Section 3.1.1. The first 
experiment compares exposure at different contact distances with the benchmark contact settings. The susceptible 
individual is placed at different distances away from the infectious individuals, from 0.5 metres to 4 metres, to 
examine the impact of contact distances. In the second experiment, we examine the impact of contact duration by 
placing susceptible and infectious individuals in the indoor space for different durations from 5 mins to 120 mins, 
while the rest of the settings are the same as the benchmark contact settings. Finally, we repeat the first two 
experiments but introduce the infectious individual in the indoor space 3 hours prior to the susceptible individuals 
to examine the impact of virus contamination accumulation in the environment on exposure.  
 
We thereafter explored the impact of respiratory activities on transmission between static contacts. Compared to 
breathing, active respiratory activities, such as singing and talking loudly, are associated with increased emission and 
subsequent exposure to viral particles by proximate susceptible individuals (Hamner et al. 2020; Charlotte 2020). 
Moreover, active respiratory activities result in higher tidal volume (inhalation rate), which can further increase virus 
exposure. We used estimates from exhaled breath samples by (Coleman, Tay, Sen Tan, et al. 2021) and a systematic 
literature review (P. Z. Chen et al. 2021) to parametrize emission, particle composition, and inhalation upon different 
respiratory activities (See Table 3). We simulated exposure upon the benchmark contact (1.5 metres for 15 minutes) 
as a result of 15 minutes of the respective activity. Specifically, in the experiments in Section 3.1.2, the susceptible 
and infectious individuals are placed in an indoor space with benchmark contact settings, and both the infectious 
and susceptible individuals only conduct one type of respiratory activity for 15 minutes (either breathing, talking or 
singing). 
 
Interventions such as ventilation and facemasks are also implemented in the PeDVis model. Susceptible and 
infectious individuals are placed in an indoor space with a benchmark contact set-up under different ventilation 
settings. Ventilation was modelled assuming a constant, spatially homogeneous renewal of air. This is reflected by 
the air change rate per hour (ACH), which is a measure of the number of times the air in a space is fully replaced per 
hour. For reference, the ACH in Dutch residential dwellings is roughly 0.1-1.9 (Van Ginkel and Hasselaar 2006) versus 
3 in most indoor public settings such as classrooms and supermarkets (CIRES 2020). The recommended ACH in home 
and business is 6 (Arboportaal 2020; RIVM 2020). We assumed that ventilation only affects the amount of viral-laden 
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aerosols built up in the environment. In the first set of experiments in Section 3.1.3, susceptible and infectious 
individuals are placed in a benchmark contact setting with half-time breathing and half-time talking. The ventilation 
of the room is set to changing values from 0 to 25. 
 
Lastly, in the second set of experiments in section 3.1.3, we examine the impact of different facemasks on exposure 
in a benchmark contact. Face masks can influence both the emission and inhalation processes. The reduction of 
emission and inhalation rate is determined by face masks’ filter efficiency (FE, the proportion of particles filtered 
out) (Bezek et al. 2021; Drewnick et al. 2021). This depends on the materials used, among others, and can range 
from as low as 20% for thin acrylic mask to more than 95% for N95 masks (Pan et al. 2020). Mask fit is also an 
important indicator of FE (Darby et al. 2021). As face masks reduce the number of big particles more than small 
particles emitted by breathing and talking (Asadi et al. 2020), we assume that face masks reduce the large particles 
ten times more efficiently than they do small particles (i.e., (1-FEdroplets ) = 10*(1-FEaerosols)) (Asadi et al. 2020). Unless 
otherwise stated, we used the filter efficiency values given in Table 3 in the experiments. Additionally, we simulated 
a benchmark contact with both infectious and susceptible individuals wearing a mask with FE ranging from 0% to 
100% for aerosols and the corresponding FE for the droplets. 

 
S1.3. Description of SamenSlimOpen tool   
The PeDViS model is also available as an online tool (see SamenSlimOpen.nl/de-tool for the latest release), 
specialised for impact assessment of restaurants (see S1 Fig). S1 Fig presents a visualisation of the web-based 
interface via which users can design and simulate a restaurant. Users are asked to make a simplified representation 
of their venue in an accessible manner. The users can select a scenario or make one themselves which determines 
the length of the simulation and the occupancy over time, among others. After setting up their restaurant, the users 
start the simulation. The output of the simulation is a heatmap of the cumulative virus exposures that occurred over 
the course of the simulation, as well as summary statistics of the simulation.  
 
The goal of the SamenSlimOpen project is not only to inform users about the relative virus exposure risks of their 
current setup but also to learn about what measures to use in conjunction to limit SARS-CoV-2 transmission in their 
venue. The SSO app allows users to try different configurations and compare results. Users can change their 
restaurant layout or change the scenario: the occupancy, how long guests are staying, or what measures are taken.  
 

Table A. Implemented measures in the SSO app to limit SARS-CoV-2 transmission 
 

Measure Option A Option B 

Face masks Guests don’t wear masks Guests wear masks when they walk 

Payment At the register At the table 

Coats On the coat rack Taken to the table 

Shifts Tables are used multiple times per evening Tables are used once per evening 

Air change rate A continuous slider which sets the times of air change per hour  

Cleaning tables A continuous slider which sets the interval time of tables being cleaned 

 
In order for the SSO app to simulate, the user input for the PeDVis model is collected in the graphical user interface. 
The user first identifies the layout of the restaurant. Here, the location of all objects and functional spaces (e.g., 
toilet, coat rack, cash register) are determined. All objects can be scaled and rotated to best resemble the layout of 
their restaurant. The number of tables and chairs placed in the restaurant constrain the number and sizes of groups 
that can be accommodated in the restaurant. Moreover, their placement and size affect the walking routes of the 
simulated individuals. Accordingly, the user indicates the actual maximum occupancy, the average duration of stay 
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in the restaurant, and the time slots at which groups are expected to arrive at the restaurant. Lastly, the user can 
indicate whether to use intervention measures, including wearing face masks when walking (Table A). 
 
S1.4. Case study description  
In the presented case study, the SSO app was used to create the restaurant scenario’s. The underlying PeDViS model 
was then used to simulate and compare the impact of various measures to limit SARS-CoV-2 spread in restaurants.  
 
For this case study, a small (10 * 9 meters) conceptual restaurant is adopted (S2 Fig). The restaurant contains four 
tables, which are distributed over the space. Each table has four chairs, all of which can be simultaneously occupied 
by visitors. The restaurant also has a bar with four stools. The capacity is determined by the number of chairs/stools 
in the restaurant, so twenty visitors can be present simultaneously . The main entrance and exit of the restaurant 
are on the northern side of the restaurant, with a coat rack next to the entrance. The cash register is on the left side 
of the bar, and two toilets are located on the southern side of the restaurant. The material of the chairs, tables, and 
bar is assumed to be wood. The objects in the room are disinfected one time before the restaurant opens, and not 
cleaned again during the following six-hour shift. 
 
At the restaurant, the main activity of all individuals is sitting on a chair. Besides that, individuals can perform three 
intermediate activities. They can hang their coat on the coat rack, go to the toilet, or pay at the cash register. In the 
case study below, all individuals hang their coats on chairs and pay at tables. The probability that an individual visits 
the toilet is assumed to be 0.6. The timing to go to the toilet is random, and the time spent there is drawn from a 
normal gaussian distribution with a mean of 120 seconds and a standard deviation of 60 seconds, with a maximum 
of 240 seconds. Consequently, individuals move to these two locations and thereafter move back to their main 
activity location. 
 
The simulated walking behaviour of the population is homogeneous in all aspects, except for the desired walking 
speed. In particular, the same parameter settings are used for each individual in the crowd. As a result, all agents 
have a similar mass, understanding of the surrounding space, collision avoidance, rotation, and acceleration 
behaviour. For each individual, the desired walking speed is drawn from a normal gaussian distribution with a mean 
speed of 0.9 m/s and a standard deviation of 0.2 m/s. The maximum speed is set to 1.4 m/s. They are not obliged to 
comply with the 1.5 metre distancing rules, which means individuals will use all available space to move. This is in 
line with observations from crowd monitoring that individuals in confined indoor spaces have difficulty complying 
to distancing rules and no big differences in pedestrian behaviour despite the introduction of distancing measures 
(van Schaik et al. 2022; Villena Gonzales 2022). 
 
The simulation lasts for 6 hours of service at a restaurant, in which some tables are used twice. Thus, in one complete 
simulation run, 32 individuals have entered the simulation. At the end of the simulation, some individuals might still 
be present in the restaurant.  
 
Only one infectious individual enters the simulation during its runtime, which is randomly assigned at the beginning 
of QVEmod. For that reason, the SSO app normally runs in multiple replications and then generates results for the 
expected number of infections. However, for the case study results to be comparable, being infectious is assigned 
to a fixed agent (ID= 9), the time spent by whom at the restaurant corresponds to approximately the middle part of 
the simulation runtime (enters the restaurant approximately at the beginning of the 2nd hour and leaves at the 
beginning of the 4th hour) (Fig 5C), and sits on a table which is approximately in the middle of the restaurant (Fig 
5A). All other characteristics are similar to that of other individuals and are randomly drawn at the entrance of the 
simulation. 
 
S1.5. Parameter description in QVE-MOD 
 
Emission rate ( ) represents the relative viral load of an infector emitting per hour. In the case study,  is scaled to 
1 per hour for a typical infectious person with a typical respiratory activity for the restaurant context, which is 
assumed to be half-time breathing and half-time talking. 
 
Emission quantity ( ) is set to a default value of 106 copies per hour. This value is based on work done by Ma et al. 
(2020). They collected 20 minutes of exhaled breath samples from COVID-19 patients and estimated emissions to 
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range from 1.13*105 to 2.25*107 copies per hour (Ma et al. 2020). This range was in agreement with other studies 
including that of (Evans 2020), who measured viral load in the saliva (1000 /nl) and multiplied this with the average 
volume of emitted saliva per hour (330 nl/hour). This resulted in estimates of around 3.3*105 copies per hour, when 
people spend half of their time talking and the other half breathing (Evans 2020). A more recent study quantified 
that the emission rate from omicron patients is around 5*107 copies per hour (Zheng et al. 2022). As there is 
substantial heterogeneity in emission quantity between individuals, we performed a sensitivity analysis spanning 
emission rates for 105 to 107 copies (S6 Fig).  
 
Respiratory activity scaler ( ) is a relative scale representing the differences in emission rates among different 
respiratory activities. It is quantified based on work by Coleman et al. (2021) who specified the relative difference of 
RNA copies in breath samples (n=13) during the different respiratory activities. According to the study, an individual 
singing emits 16415.5 RNA copies during 15 minutes of continuous singing, while emitting 12655.9 RNA copies during 
15 minutes of talking and 1959.3 copies during 30 minutes of tidal breathing. These findings indicate that singing 
and talking result in 16.7 times and 12.9 times more viral particle emissions, respectively, compared to breathing. In 
our simulation experiments, the default respiratory activity is defined as half-time breathing and half-time talking 
and the corresponding respiratory activity scaler ( ) is set to 1. The respiratory activity scaler for other scenarios can 
be calculated based on the emission rates of different activities relative to the default activity. We used the findings 
from Coleman, Tay and Tan et al. (2021) in our simulation experiments to calculate these relative activity scalers. 
Other studies that shed light on the relative emission by respiratory activity include  (Gregson et al. 2021; Mürbe et 
al. 2021; Schijven et al. 2021). These measured the particle mass, but not the virus amount emitted, during different 
respiratory activities and were considered less direct estimates for this parameter.  
 
The infectiousness scaler ( ) is used to scale individual infectiousness. 0 represents a susceptible individual who 
cannot emit the virus and 1 represents a “typical infectious” individual. Values of  that are greatly larger than 1 can 
be used to reflect super-shedding individuals.  
 
The proportions of aerosols ( ) and droplets ( ) during emission represent how the emitted viral 
particles are partitioned in aerosols and droplets, respectively. These were parameterized based on three factors: i) 
a predetermined cut-off size between aerosols and droplets, ii) the relative amounts of aerosols and droplets 
expelled by humans, and iii) the difference in viral copies carried by aerosol and droplet particles (P. Z. Chen et al. 
2021). According to the results presented in the systematic literature review studies (Pöhlker et al. 2021; P. Z. Chen 
et al. 2021), particles can be classified into droplets (>100um), buoyant aerosols (<10um), short-range aerosols 
(50um<d<100um) and long-range aerosols (10um<d<50um). Recent studies that used laser particle counters to 
quantify the respiratory particles’ size distribution among different respiratory activities showed that most of the 
particles could be classified as aerosols having small sizes (Mürbe et al. 2021). In our study, we defined one cut-off 
size for the particles, and classified them into two categories: i) buoyant aerosol particles having a dry size of < 10um 
(assumed to float in the air layer), and ii) droplets having a dry size of > 10um (assumed to float in the air first but 
then fall onto the surface layer in time). The calculated proportions in different respiratory activities and the 
corresponding respiratory activity scaler values are listed in Table B. When different scenarios require changing the 
composition of respiratory activities, the proportions can be recalculated by considering the duration-based weights 
of each activity and the corresponding respiratory activity scaler. For example,  in a scenario including a 
different set of respiratory activities can be calculated as shown below. 
 

 
 
For sensitivity analysis purposes, we tested the impact of different proportions of aerosols and droplets on our case 
study results and reperformed the case study simulations with changing aerosol proportions of 50% lower and higher 
values with corresponding droplet proportions (S7 Fig). 
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Table B. The proportions of particles in aerosols and droplets among different respiratory activities 
 

Scenario p (aerosols)  p (droplets) Respiratory activity scaler 

Talking 17.1% 82.9% 1.86 

Singing 6.52% 93.48% 2.4 

Breathing 97.8% 2.2% 0.14 

Half-time breathing 
+ half-time talking 

22.9% 77.1% 1 

 
Unit decay rates of virus on surfaces ( ) and aerosols ( ) were set based on experimental studies 
investigating the stability of SARS-CoV-2 in the environment. The survival of SARS-CoV-2 in different environmental 
conditions depends on the type of surface, the presence of organic matrix, temperature, and humidity (Chin et al. 
2020; Ijaz et al. 2021; Kasloff et al. 2021; Pastorino et al. 2020; Matson et al. 2020; Harbourt et al. 2020; Y. Liu et al. 
2021; Riddell et al. 2020; Ranjan 2022). The viral particles lose infectiousness at decay rates that depend on the 
environment and the surface material. The decay rates can be calculated based on experimental studies estimating 
the half-life of particles. 
 
In our case study, the main material used for the surfaces is wood, with an exponential decay rate of 0.969 hr-1 (Chin 
et al. 2020). The surface types in our model are configurable to common materials used in restaurant settings, such 
as plastic, glass, cloth, paper, cardboard, copper, and steel, and the corresponding decay rates are calculated using 
literature (van Doremalen et al. 2020; Y. Liu et al. 2021). Considering the range of decay rates on different surfaces, 
a sensitivity analysis was performed within the -90% and +90% range of the base decay rate (S8 Fig). 
 
Estimates for decay rates of SARS-CoV-2 particles in aerosols vary greatly. According to van Doremalen et al. (2020), 
using TCID50 experiments, SARS-CoV-2 can survive in the suspended aerosols for a few hours with a median half-life 
of 1.09 hours which corresponds to an exponential decay rate of 0.636 hr-1. In another study with TCID50 
experiments, Smither et al. (2020) observed half-life durations between 0.50-1.25 hours (indicating decay rates 
between 0.555-1.386 hr-1) using tissue culture media under different relative humidity conditions. Dabisch et al. 
(2021) found that in an environment without sunlight at 30 oC temperature and 70% relative humidity (which 
represents an approximate condition that can also be observed in indoor settings), the time needed for a 90% 
decrease in infectious virus is 35 minutes, which corresponds to a decay rate of 3.947 hr-1. In a more recent study, 
Oswin et al. (2022) found that the airborne infectivity of SARS-CoV-2 falls to 50% within 5 seconds on average in 
medium humidity conditions and 5 minutes in high humidity conditions, and observed a decrease in infectivity to 
approximately 10% in 20 minutes in both cases, which corresponds to a decay rate as high as 6.908 hr-1. Considering 
this range of estimates, we applied a default decay rate of 1.5 hr-1, which corresponds to a half life of about half an 
hour. To assess the sensitivity to this assumption, we applied aerosol decay rates 50% lower and higher than the 
default to our case study (S9 Fig). Since the decay rate is directly related to how long aerosols remain airborne and 
thus how far they get to travel, we performed the sensitivity analysis of the aerosol decay rate across levels of the 
diffusion coefficient (S9 Fig). 
 
Infectious dose ( ) is the minimum dose needed to reach the target cells to cause an infection. It is set to 1000 
based on estimates of the founding virus population size required to cause infection in a recipient host (Popa et al. 
2020). 
 

 is the proportion of viral particles someone is exposed to that reach the respiratory tract cells by route 
(aerosols, droplets, fomites). The baseline c values are assumed to be 10% for all the transmission routes based on 
the model analysis results in presented Section 3.2.3 and given in Table 1. This assumption aligns with other 
modelling studies and studies on aerosol deposition in lungs (Zuo, Uspal, and Wei 2020; Hinds 1999; Kraay et al. 
2021). 
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The volume of a cell (L) is the volume of a grid cell, with a default value of 125 L, since each side of grid cells has a 
default length of 0.5 m. 
 
Air change rate (ACH) is a measure of how many times the air in a defined space is fully replaced per hour. In our 
study, it takes values between 0-24 depending on the simulation experiment settings. ACH is estimated to be 
between 0.5 to 1.5 inside houses and between 3 to 15 with windows open (CIRES 2020). 
 
Filter efficiency (FE) represents the proportion of particles filtered out in case of mask use. In our model, FE is used 
to calculate the reduction of emission and inhalation rate. The baseline FE is assumed to be 40% for aerosols (Ueki 
et al. 2020) and 94% for droplets. Here, we assume that the FE of both particle types are related according to (1-
𝐹𝐸!"#$%&'() = 10%*(1-𝐹𝐸)&"#(#%(). 
 
Unit deposition rate of viruses in droplets ( ) is the deposition rate of droplets from the air layer onto 
surfaces. This is a physical process where the sedimentation time depends on the height, and particle size (Xie et al. 
2007). The sedimentation time is proportional to the particle size d: (1/d2). In this study, particles with d>10 um are 
classified as droplets. The average sedimentation time of these particles is calculated by using the distribution of the 
particle sizes that vary across different respiratory activities. In order to estimate the average sedimentation time, 
the particle size distribution data were extracted from the distribution figures for different activities (Morawska et 
al. 2009). The corresponding sedimentation time for each particle size was paired and the expected average 
sedimentation times were calculated for each respiratory activity based on the probability distribution of particle 
sizes. Considering the particle size distribution during each activity, the average sedimentation time for breathing, 
talking, and singing activities are calculated as 88.22 s, 101.64 s, and 137.46 s, respectively. Then, the corresponding 
deposition rates are quantified as 40.8 per hour, 35.4 per hour, and 20.18 per hour. Since the baseline scenario 
represents half an hour of breathing and half an hour of talking, the deposition rate in the baseline scenario is 
calculated as 37.93 per hour or otherwise put, half of the particles have deposited after 0.8 minutes.  
 
For sensitivity analysis purposes, we tested the impact of different deposition rates on our case study results and 
reperformed the case study simulations with deposition rates of 50% lower and higher values (S10 Fig). Since the 
deposition rate is directly related to the time spent in the air by droplets, the sensitivity analysis of deposition rates 
is performed with the combined effects of changing diffusion coefficient values (S10 Fig). 
 
Diffusion coefficient ( ) defines how fast viruses diffuse in the air. Both droplets and aerosols can disperse into their 
surroundings. For diffusion equations, we adapted a model from Vuorinen et al. (2020), who investigated aerosol 
transport in indoor spaces and built a Monte-Carlo model to incorporate spatial-temporal aerosol dispersion. The 
diffusion coefficient used in Vuorinen et al. (2020) is  = 0.05 m2/s, whereas an experimental study reports that the 
effective diffusion coefficient value for aerosol particles is 0.0016 m2/s (O. B. Kudryashova et al. 2015). A later study 
suggests that the effective diffusion coefficient for SARS-CoV-2 can be set to 0.0016 m2/s, but can be high as 0.01 
m2/s when the convection is high in the indoor space (Olga B. Kudryashova et al. 2021). We set D to 0.0016 m2/s as 
our baseline estimate and performed a sensitivity analysis for the case study with 0.01 m2/s, which is approximately 
6 times faster than the baseline, as well as a diffusion coefficient value that is 6 times smaller than the baseline (S9 
and S10 Fig). As mentioned previously, since the diffusion coefficient is directly related to the time spent by the 
particles in a grid cell in the air, the sensitivity analysis of diffusion coefficients is performed with the combined 
effects of changing aerosol decay rate (S9 Fig) and droplet deposition rate (S10 Fig) values. 
 
Inhalation (pickup) rate of virus from the air ( ) is defined as the ratio of human tidal volume over the cell volume 
per time step (here per hour). The tidal volume is defined as the amount of air that moves in or out of the lungs in 
each respiratory cycle and is estimated to be 0.4 L on average for an adult (Hallett, Toro, and Ashurst 2020). The 
respiratory rate per minute is, on average, 12 times (Hallett, Toro, and Ashurst 2020). Thus, the human ventilation 
volume is calculated as 0.4*12 = 4.8L per minute or 288L per hour. Individuals are thus assumed to inhale 2.304 
times the cell volume (125L) each hour. The human ventilation volume increases 1.5 times while singing (Bernardi 
et al. 2017); hence  can be set to 432L/125L per hour if an individual is to sing continuously for one hour. 
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Proportion of pathogen secreted to hands ( ) represents the proportion of pathogen contamination that is 
deposited on infectious agents’ hands as a result of virus emission. It is quantified as 0.15 (Kraay et al. 2018; Shuai 
Li et al. 2021)). 
 
Ratio of finger pad size over the reachable surface area ( ), transfer efficiency between hands and surfaces ( ), 
and surface touching frequency ( ) constitute the parameter set defining the virus transfer rate between hands and 
surfaces. Hands can constitute an important route for SARS-CoV-2 transmission (Lin et al. 2022) and viruses on 
infectious people’s hands can be transferred to surfaces (Winther et al. 2007).  
 
The ratio of finger pad size over the reachable surface area ( ) is calculated as 0.0196, which is the result of the 
calculation (average hand area*fraction of hand area used for transfer)/reachable surface area. The average hand 
size is set to 0.0049 m2 (U.S. Environmental Protection Agency 2011; Beamer et al. 2015; Wilson et al. 2021), the 
fraction of hand area used for transfer is set to 0.1 (AuYeung, Canales, and Leckie 2008), and the reachable surface 
area is calculated as 0.5*0.5 = 0.25 metre squares based on the reachable distance assumption of 0.5 metres.  
 
The transfer efficiency between hands and surfaces ( ) depends on the surface materials. No empirical data is 
available on the transfer efficiency for SARS-CoV-2, but it is assumed to be diverse (Marzoli et al. 2021; Belluco et al. 
2021). For instance, transfer efficiency was observed to change between <0.01%-80% for bacteriophages (Rusin, 
Maxwell, and Gerba 2002). Julian et al. (2010) conducted an experiment on the transfer of virus between hands and 
glass in both directions and found the mean transfer efficiency to be 0.23 with a standard deviation of 0.22 using 
microphages. Some SARS-CoV-2 modelling studies (Harvey et al. 2021; Ana K. Pitol and Julian 2021) refer to Pitol et 
al. (2017) and use the empirical transfer efficiency data for the transfer of bacteriophage MS2 from hand to saliva, 
which has a mean of 0.20. The transfer efficiency is also highly dependent on virus species. (P. Liu et al. 2013) 
examined transfer efficiency for norovirus and found that 0.25 of hand rinses samples are positive . We applied a 
transfer efficiency value of 0.25 per transfer. 
 
The frequency of touching surfaces ( ) in a restaurant is estimated as 0.25 per minute (Lei et al. 2020), which 
corresponds to 15 touches per hour.  
 
Monitoring data is being collected to get a more thorough and empirical understanding of this parameter in various 
settings and between individuals. Zhang et al. (2021) recently examined video data related to a restaurant associated 
with a COVID-19 outbreak in Guangzhou. The data shows that touch frequency for closer surfaces can go up to 
10^(1.41) = 25.7. Therefore, we conducted a sensitivity analysis for the combination of virus transfer parameters (

) within the range of -75% and +75% (S11 Fig). 
 
Fractional virus transfer rate from hands to facial membranes ( ) is a parameter that is hard to quantify since the 
relevant data is not available. When the nature of the transfer process and the available modelling studies in the 
literature are considered, the virus transfer rate from hands to facial membranes has mainly four dimensions: (i) 
touching surface ratio between the hands and facial membranes, (ii) the frequency of touching the face, (iii) virus 
transfer efficiency from hands to face and (iv) inactivation rate of virus on the skin. Due to identifiability issues of 
these four dimensions, the virus transfer rate from hands to facial membranes is defined as an aggregate value of 
these four. 
 
The parameters (i) and (ii) are not pathogen-specific, but dependent on human behaviour and attributes. For (i) 
touching surface ratio between the hands and facial membranes, many recent SARS-CoV-2 modelling studies use 
the fraction of front partial fingers (Harvey et al. 2021; Ana K. Pitol and Julian 2021) and for the parameter values, 
they refer to the empirical work AuYeung et al. (2008) and the measurements in U.S. Environımantal Protection 
Agency (2011). These modelling studies assume that one finger is used in each transfer, and the parameters they 
use correspond to a mean touching surface ratio value of 0.01. To parametrize the (ii) face touching frequency, the 
measurements in two previous empirical studies are frequently used in the literature: 15.7 touches per hour (Nicas 
and Best 2008) and 23 touches per hour (Kwok, Gralton, and McLaws 2015). 
 
For the parameters of (iii) transfer efficiency between hands and face and (iv) the inactivation rate on the skin, 
reliable pathogen-specific data are not available (Kraay, 2021). For (iii) transfer efficiency, some SARS-CoV-2 
modelling studies (Harvey et al. 2021; Ana K. Pitol and Julian 2021) refer to Pitol et al.(2017) and use the empirical 
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transfer efficiency data for the transfer of bacteriophage MS2 from hand to saliva, which has a mean of 0.20. Some 
others (e.g., Wilson et al. 2021, (King et al. 2022) refer to the transfer efficiency of phage PRD-1 in Rusin et al. (2002), 
which has a mean of 0.339. 
 
For the (iv) inactivation rate on skin, some SARS-CoV-2 modelling studies (e.g., Li et al., 2021) refer to the inactivation 
rate values used in MERS and other coronavirus related modelling studies (S. Xiao et al. 2018; Wolff et al. 2005), 
which corresponds to an exponential decay rate of 0.8 hr-1, while some other researchers (e.g., (Kraay et al. 2021) 
refer to the inactivation rate of influenza (Weber and Stilianakis 2008; Nicas and Jones 2009) which corresponds to 
88 hr-1. These two values differ by two orders of magnitude. 
 
In this context, the multiplication of best estimates of different components results in a fractional transfer rate of 
0%-3.5%, however, an analysis with a wider range is required since good reference data is not available yet. The base 
value for effective hand-to-face transfer rate is assumed to be 1% (i.e., 1% of the virus on hands effectively reaches 
to facial membranes on the average), and then a sensitivity analysis is conducted for 0.1%, 0.5%, 5% and 10% (S12 
Fig). 
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A - Landing page 

 
B - Scenario selection 

 
C - Scenario modelling 

 
D - Demand input 

S1 Fig. Screenshots of the SamenSlimOpen app.  
A) introduction screen, B) scene selection screen, C) scene development screen, D) developed scenario. 
 

 
S2 Fig. The case study restaurant layout.  
The green rectangles and round brown circles signify the seats, the green arrows the entrances, the blue toilets the 
entrance to the toilets and the brown rectangles the tables. 
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S3 Fig. Snapshot of contamination maps in the case study.  
Virus contamination in the environment in aerosols, droplets, and on fomites over time in minutes. Contamination 
is expressed as the virion quantity relative to an average infectious individual’s hourly emission. 
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S4 Fig. Snapshots of contamination maps in the case study for ventilation and face mask scenarios.  
(A,B,C) are the scenarios where individuals do not wear face masks and ACH is 0 per hour in the restaurant in (A), 3 
in (B), and 6 in (C). (D, E) are the scenarios where people wear face masks while moving and ACH is 3 per hour in the 
restaurant in (D) and 6 in (E). Within each scenario, the impact of intervention on viral spread is presented: (a, b, c) 
show virus concentration in the aerosols, droplets, and fomites, respectively. 
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S5 Fig. The analysis of relative contribution of transmission routes in the case study.  
Each row shows a parameters setting for  (A)  is the same for all routes (   is 
10%:10%:10%). (B)  is smaller for fomites (   is 10%:10%:1%). (C)  is smaller for 
fomites and droplets (   is 10%:1%:1%). (D)  is smaller for fomites and aerosols (

 is 1%:10%:1%). Each column shows an intervention scenario: (a) poor ventilation 
scenario, ACH = 0, (b) baseline scenario, ACH =3, (c) scenario with recommended ventilation, ACH =6, (d) baseline 
scenario with face masks worn while moving, (e) scenario with recommended ventilation and with face masks worn 
while moving.  
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S6 Fig. Sensitivity analysis of emission rate.  
The distributions of the expected number of infected individuals in the case study with different emission quantities 
. (A) to (E) show the results for changing  values from 10^5 to 10^7. This may reflect the heterogeneity in viral 

load of the index patients. The black solid lines indicate the mean value of the infected number in the baseline 
scenario and the dashed lines show the mean value corresponding to each respective scenario. 
 

 
S7 Fig. Sensitivity analysis of proportions of aerosols.  
The distributions of the expected number of infected individuals in the case study with different proportions of virus 
emitted in the form of aerosols . In the baseline  scenario,  is 22.91%. (A) to (E) shows the results for from 
50% lower to 50% higher (namely 11.45%, 17.18%, 22.91%, 28.63%, 34.37%) representing the heterogeneity due to 
respiratory activities or individual variation. The black solid lines indicate the mean value of the infected number in 
the baseline scenario and the dashed lines show the mean value corresponding to each respective scenario. 
 

 
S8 Fig. Sensitivity analysis of virus decay rate on surfaces.  
The distributions of the expected number of infected individuals in the case study with different virus decay rates 
on surfaces . In the baseline scenario  for wood is 0.969 per hour. (A) to (E) shows the results for 
changing  from 90% lower to 90% higher (namely 0.0969, 0.4845, 0.969, 1.4535, 1.8411 per hour) 
representing the heterogeneity due to different surface materials. The black solid lines indicate the mean value of 
the infected number in the baseline scenario and the dashed lines show the mean value corresponding to each 
respective scenario. 
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S9 Fig. Sensitivity analysis of diffusion rate and virus decay rate in aerosols.  
The distributions of the expected number of infected individuals in the case study with different diffusion rates  
and virus decay rates in aerosols . Each row shows a parameter setting for diffusion: (A) Diffusion rate is 
0.000278 m2/s, 6 times smaller than the baseline scenario. (B) Diffusion rate is at the baseline scenario 0.0016m2/s. 
(C) Diffusion rate is 0.01 m2/s as an upper bound from literature (Olga B. Kudryashova et al. 2021), 6 times larger 
than the baseline scenario. Each column shows a parameter setting for virus decay rate in aerosols . (a) Decay 
rate is 0.755/hour, 50% lower than the baseline scenario (b) Decay rate is 1.51/hour as the baseline scenario. (c) 
Decay rate is 2.27/hour, 50% higher than the baseline scenario. The black solid lines indicate the mean value of the 
infected number in the baseline scenario and the dashed lines show the mean value corresponding to each 
respective scenario. 
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S10 Fig. Sensitivity analysis of diffusion rate and deposition rate for droplets.  
The distributions of the expected number of infected individuals in the case study with different diffusion rates  
and deposition rates . Each row shows a parameter setting for diffusion: (A) Diffusion rate is 0.000278 m2/s, 
6 times smaller than the baseline scenario. (B) Diffusion rate is at the baseline scenario 0.0016m2/s. (C) Diffusion 
rate is 0.01 m2/s as an upper bound from literature (Olga B. Kudryashova et al. 2021), 6 times larger than the baseline 
scenario. Each column shows a parameter setting for deposition: (a) Deposition rate is 18.97/hour, 50% lower than 
the baseline scenario (b) Deposition rate is 37.93/hour as baseline scenario. (c) Deposition rate is 56.90/hour, 50% 
higher than the baseline scenario. The black solid lines indicate the mean value of the infected number in the 
baseline scenario and the dashed lines show the mean value corresponding to each respective scenario. 
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S11 Fig. Sensitivity analysis of virus transfer rate between hand and surface.  
The distributions of the expected number of infected individuals in the case study with different virus transfer rates 
between hand and surface ( ). The baseline transfer rate between hand and surface is 0.0735 (0.0196*0.25*15) 
per hour. (A) to (E) shows the results for changing transfer rates from 75% lower to 75% higher (namely 0.0184, 
0.0368, 0.0735, 0.1103, 0.1286 per hour) representing the heterogeneity of touching surface behaviour. The black 
solid lines indicate the mean value of the infected number in the baseline scenario and the dashed lines show the 
mean value corresponding to each respective scenario. 
 

 
S12 Fig. Sensitivity analysis of fractional virus transfer rate from hand to facial membranes.  
The distributions of the expected number of infected individuals in the case study with different fractional virus 
transfer rates from hand to facial membranes . The baseline transfer rate from hand to facial membranes is 1%. (A) 
to (E) shows the results for changing  from 0.1%, 0.5%, 1%, 5% and 10% representing the heterogeneity of touch 
face behaviour. The black solid lines indicate the mean value of the infected number in the baseline scenario and 
the dashed lines show the mean value corresponding to each respective scenario. 


