Supplementary Materials

The impact of spectral basis set composition on estimated levels of cingulate glutamate and its associations with different personality traits

Verena Demler, Elisabeth F. Sterner, Martin Wilson, Claus Zimmer, Franziska Knolle

1 Introduction:

Table S1:

Metabolites	А	в	С	D	Е	F	G	Н	I.
Ala			Х	Х	Х	Х	Х	Х	Х
Asc			Х		Х				
Asp	Х	Х	Х	Х	Х	Х	Х	Х	Х
Ch	Х								
Cr	Х	Х	Х	Х	Х	Х	Х	Х	Х
GABA	Х	Х	Х	Х	Х	Х	Х	Х	Х
Glc		Х	Х	Х	Х	Х	Х	Х	Х
Gln	Х	Х	Х	Х	Х	Х	Х	Х	Х
Glu	Х	Х	Х	Х	Х	Х	Х	Х	Х
Gly					Х	Х		Х	
GSH		Х	Х	Х	Х	Х		Х	Х
GPC		Х	Х	Х	Х	Х	Х	Х	Х
Lac			Х	Х	Х	Х	Х	Х	Х
ml	Х	Х	Х	Х	Х	Х	Х	Х	Х
NAA	Х	Х	Х	Х	Х	Х	Х	Х	Х
NAAG	Х	Х	Х	Х	Х	Х	Х	Х	Х
PCh		Х	Х		Х	Х	Х	Х	Х
PCr	Х	Х	Х	Х		Х		Х	
PE			Х		Х	Х		Х	
sl	Х	Х	Х	Х	Х	Х	Х	Х	Х
Tau	Х	Х	Х	Х	Х	Х	Х	Х	Х
GA							Х		

Note: Composition of basis sets for the study of A) Cheng et al. (1), B) Maddock et al. (2), C) Reid et al. (3), D) LCModel Manual (4), E) Kozhuharova et al. 2021(5), F) Leptourgos et al. 2023 (6), G) Ford et al. 2017 (7), H) Shukla et al. 2019 (8) and I) Rowland et al. 2013 (9); Ala, alanine; Asc, ascorbate; Asp, aspartate; Cr, creatine; Glc, glucose; Glu, glutamate; Gln, glutamine; Gly, glycine; GSH, glutathione; GPC, glycerophosphocholine; Lac, lactate; mI, myo-Inositol; NAA, N-acetylaspartate; NAAG, Nacetylaspartylglutamate; PCh, phosphocholine; PCr, phosphocreatine; PE, phosphoroylethanolamine; sI, scyllo-Inositol; Tau, taurine; GA, guanidinoacetate. Grey background indicates example basis sets chosen for analysis in this study.

2 Methods

2.1 Participants

Inclusion criteria: native German speaker; right-handed; no diagnosis of schizophrenia, psychosis or autism, or any neurological disease or injury; not currently taking any psychoactive medication within at least the past six weeks and no contraindications for MRI scanning.

Subjects: Out of the participants, three had been previously diagnosed with depression, two had prior eating disorders, one was diagnosed with schizoid personality disorder along with adjustment disorder, and another reported having post-traumatic stress disorder and narcissistic personality disorder. However, only one of the participants was consistently taking antipsychotic medication (fluoxetine, atomoxetine) for attention deficit disorder.

Details of demographic data and symptom scores are shown in Table S2 and have been previously published in (10).

Table S2: Demographic data and clinical scores.

	Female (n = 26)	Male (n = 27)	P-value ^a	W
Age	23.31 (3.54)	23.93 (4.21)	0.7266	331
SPQ: Positive-like Symptoms (/132)	35.96 (23.54)	28.70 (25.20)	0.1846	426
SPQ: Negative-like	27 85 (15 57)	24 22 (20 49)	0 2454	404
Symptoms (/100)	57.85 (15.57)	54.55 (20.49)	0.5454	404
SPQ: Disorganized	23.19 (14.27)	21.22 (13.12)	0.7285	371
Traits (/64)				
AQ: Total Score (/50)	21.65 (6.99)	20.96 (7.65)	0.7017	373

Note: Values are mean (SD)

SPQ, Schizotypal Personality Questionnaire; AQ, Autism Spectrum Quotient

^a Wilcoxon rank sum test

2.2 ¹H-MRS Processing

Figure S1:

Note: Processing, modeling, and basisset workflow, summarizing the differences between the applied algorithms and basis sets; colors indicate the toolboxes used: orange, Spant; red, Osprey; green, MARSS in INSPECTOR; MRS, Magnetic resonance spectroscopy; ECC, Eddy current correction; MM, Macromolecules; Ala, alanine; Asc, ascorbate; Asp, aspartate; Cr, creatine; Glc, glucose; Glu, glutamate; Gln, glutamine; Gly, glycine; GSH, glutathione; GPC, glycerophosphocholine; Lac, lactate; mI, myo-Inositol; NAA, N-acetylaspartate; NAAG, N-acetylaspartylglutamate; PCh, phosphocholine; PCr, phosphocreatine; PE, phosphoroylethanolamine; sI, scyllo-Inositol; Tau, taurine; SNR, Signal-to-Noise Ratio; CRLB, Cramer-Rao lower bounds; FWHM, full width at half maximum, measurement for the water linewidth; tNAA_lw, measurement for the tNAA (NAA + NAAG) linewidth

3 Results

3.1 Spectral quality

We applied the paired Wilcoxon signed-rank test for multiple pairwise comparisons of the CRLB and the multiple pairwise paired t-tests for the SNR between basis sets. P-values were adjusted using the Bonferroni multiple-testing correction method. An adjusted p-value of less than 0.05 was considered significant. Results are presented in Table S3 and Table S4.

Table S3: Summary spectral quality parameter distributions of the basis se	ets
--	-----

Quality		Rowland	LCModel	Maddock	Reid	Kozhuha.	Gro	oup
Parameter							compa	arisons
Analysis	n	Mean ±	Statistic	P-value				
method		SD	SD	SD	SD	SD		
Glu CRLB (%)								
Spant + ABfit	53	4.04 ±	3.79 ±	3.87 ±	3.62±	3.83 ±	X ² ₄ =	<0.0001
		0.88	0.74	0.68	0.86	0.78	40.33ª	
Osprey +	53	5.32 ±	5.25 ±	5.25 ±	5.09 ±	5.25 ±	X ² ₄ =	0.0016
LCM		0.58	0.52	0.52	0.66	0.55	17.45ª	
Glx CRLB (%)								
Spant + ABfit	53	1.83 ±	1.77 ±	1.89 ±	1.81 ±	1.62 ±	X ² ₄ =	0.0146
		0.67	0.51	0.47	0.59	0.56	12.40ª	
Osprey +	53	5.17 ±	5.21 ±	5.23 ±	4.98 ±	4.93 ±	X ² ₄ =	<0.0001
LCM		0.67	0.50	0.51	0.69	0.76	27.47ª	
SNR								
Spant + ABfit	53	149.18 ±	148.02 ±	147.88 ±	149.23 ±	149.89 ±	F _{1.68, 87.49}	<0.0001
		18.01	18.33	18.20	18.36	18.05	= 31.03 ^b	

Osprey +	53	101.06 ±	101.06 ±	101.06 ±	101.06 ±	101.06 ±	NaN ^b	NaN
LCM		13.88	13.88	13.88	13.88	13.88		
FWHM (ppm)								
Spant + ABfit	53	0.042 ±	0.041 ±	0.041 ±	0.041 ±	0.042 ±	$X^{2}_{4} =$	<0.0001
		0.01	0.01	0.01	0.01	0.01	150.7ª	
FWHM (Hz)								
Osprey +	53	6.18 ±	6.18 ±	6.18 ±	6.18 ±	6.18 ±	NaN ^a	NaN
LCM		0.44	0.44	0.44	0.44	0.44		

Note: Kozhuha.., Kozhuharova; SNR, Signal-to-Noise Ratio; CRLB, Cramer-Rao lower bounds; FWHM,

full width at half maximum, in Spant: measurement for the tNAA (NAA + NAAG) linewidth in Osprey: measurement for the water linewidth

^a Calculated using the Friedman test

^b Calculated using the repeated measures ANOVA

Table S4: Pairwise comparisons for the SNR

		spant+ABfit		Ospr	ey+LCM
group1	group2	statistic	P-value adj.	statistic	P-value adj.
Rowland	LCModel	5.20	<0.0001	NA	NA
Rowland	Maddock	5.57	<0.0001	NA	NA
Rowland	Reid	-0.24	1	NA	NA
Rowland	Kozhuharova	-5.03	<0.0001	NA	NA
LCModel	Maddock	1.88	0.662	NA	NA
LCModel	Reid	-8.84	<0.0001	NA	NA
LCModel	Kozhuharova	-6.76	<0.0001	NA	NA
Maddock	Reid	-9.36	<0.0001	NA	NA
Maddock	Kozhuharova	-6.84	<0.0001	NA	NA

Reid	Kozhuharova	-2.27	0.272	NA	NA
Note: Mult	iple pairwise paired	t-tests for the SNR	of spant+ABfit an	d Osprey+LCN	∕I analyses; SNR,
Signal-to-N	oise Ratio; P-value ac	lj.; adjusted p-value	using the Bonferro	ni multiple-tes	sting correction.

Table CE, Dainuice	comparicone	for	<u></u>	CDID
TUDIE 55. PUITWISE	compansons	jui	GIU	CLLD

		spant+ABfit		Ospr	ey+LCM
group1	group2	statistic	P-value adj.	statistic	P-value adj.
Rowland	LCModel	352	0.201	38.5	1
Rowland	Maddock	285	0.971	38.5	1
Rowland	Reid	409	0.005	97.5	0.014
Rowland	Kozhuharova	85.5	0.277	17.5	1
LCModel	Maddock	3.5	1	0	NA
LCModel	Reid	66	0.226	49.5	0.121
LCModel	Kozhuharova	138.5	1	18	1
Maddock	Reid	85	0.034	49.5	0.121
Maddock	Kozhuharova	188	1	18	1
Reid	Kozhuharova	94	0.459	13	0.212

Note: Wilcoxon signed-rank test pairwise comparisons for the glutamate CRLB of spant+ABfit and Osprey+LCM analyses; CRLB, Cramer-Rao lower bounds; P-value adj., adjusted p-value using the Bonferroni multiple-testing correction.

Table S6: Pairwise comparisons for Glx CRLB

		spant+ABfit		Ospr	ey+LCM
group1	group2	statistic	P-value adj.	statistic	P-value adj.
Rowland	LCModel	132	1	45	1

Rowland	Maddock	120	1	35	1
Rowland	Reid	121	1	110.5	0.135
Rowland	Kozhuharova	79	0.132	98	0.018
LCModel	Maddock	4.5	0.411	0	1
LCModel	Reid	13.5	1	119	0.03
LCModel	Kozhuharova	123.5	0.628	228	0.019
Maddock	Reid	38.5	1	135	0.018
Maddock	Kozhuharova	178.5	0.019	218.5	0.007
Reid	Kozhuharova	142.5	0.349	110	1

Note: Wilcoxon signed-rank test pairwise comparisons for the Glx CRLB of spant+ABfit and Osprey+LCM analyses; CRLB, Cramer-Rao lower bounds; P-value adj., adjusted p-value using the Bonferroni multiple-testing correction.

Table S7: FWHM

		spant+ABfit		Osprey+LCM	
group1	group2	statistic	P-value adj.	statistic	P-value adj.
Rowland	LCModel	1428	<0.0001	NA	NA
Rowland	Maddock	1428	<0.0001	NA	NA
Rowland	Reid	1430	<0.0001	NA	NA
Rowland	Kozhuharova	966	0.269	NA	NA
LCModel	Maddock	723	1	NA	NA
LCModel	Reid	994	0.139	NA	NA
LCModel	Kozhuharova	4	<0.0001	NA	NA
Maddock	Reid	819	1	NA	NA
Maddock	Kozhuharova	1	<0.0001	NA	NA

Reid	Kozhuharova	0	<0.0001	NA	NA			
Note: Wilcoxon signed-rank test pairwise comparisons for the FWHM of tNAA for spant+ABfit and of								
water for Osprey+LCM analyses; FWHM, full width at half maximum; P-value adj., adjusted p-value								
using the Bonferroni multiple-testing correction.								

3.2 Group differences between the metabolite concentration estimates

Comparisons between the estimates for Glu/tCr, Glu, and Glx are summarized in Figure 5, results are presented in Table S8-S11.

Metabo-		Rowland	LCModel	Maddock	Reid	Kozhuha.	Group compariso	ons
lite								
Analysis	n	Mean ±	Statistic P-valu	ue				
method		SD	SD	SD	SD	SD		
Glu/tCR								
Spant +	53	1.71 ±	1.49 ±	1.46 ±	1.46 ±	1.76 ±	X ² ₄ = 72.15 <0.0	001
ABfit		0.22	0.22	0.22	0.27	0.22		
Osprey +	53	1.69 ±	1.56 ±	1.55 ±	1.53 ±	1.68 ±	X ² ₄ = 166.88 <0.00	001
LCM		0.11	0.10	0.10	0.11	0.10		
Glu								
Spant +	53	20.53 ±	18.18 ±	17.72 ±	18.01 ±	21.48 ±	X ² ₄ = 79.98 <0.0	001
ABfit		2.87	2.95	2.93	3.54	2.86		
Osprey +	53	30.21 ±	28.12 ±	28.01 ±	28.13 ±	30.13 ±	X ² ₄ = 151.02 <0.00	001
LCM		1.93	1.91	1.90	1.89	1.81		
Glx								
Spant +	53	24.28 ±	21.28 ±	20.81 ±	21.37 ±	26.39 ±	X ² ₄ = 89.51 <0.0	001
ABfit		3.34	3.23	3.21	4.01	4.01		

Table S8: Differences between the metabolite concentration distributions of the basis sets

Osprey +	53	36.56 ±	33.37 ±	33.28 ±	33.20 ±	36.50 ±	X ² ₄ = 149.69 <0.0001
LCM		2.31	2.07	2.06	216	2.17	

Note: Statistics are calculated using the Friedman test; all values were rounded to two decimal places. For Glu/tCr the glutamate concentration is referenced to tCr, except for Rowland and Kozhuharova (Glu/Cr). The absolute Glu and Glx values are given in mol/kg. Kozhuha., Kozhuharova; Glu, glutamate; tCr, total creatin (creatin + phosphocreatine); Glx, glutamate + glutamine

Table S9: Pairwise comparisons for Glu/tCr

		span	t+ABfit	Osprey+LCM		
group1	group2	statistic	P-value adj.	statistic	P-value adj.	
Rowland	LCModel	1309	<0.0001	1428	<0.0001	
Rowland	Maddock	1329	<0.0001	1429	<0.0001	
Rowland	Reid	1292	<0.0001	1428	<0.0001	
Rowland	Kozhuharova	491	0.474	1224	<0.0001	
LCModel	Maddock	936	0.515	1406	<0.0001	
LCModel	Reid	977	0.209	1256	<0.0001	
LCModel	Kozhuharova	53	<0.0001	10	<0.0001	
Maddock	Reid	777	1	1172	0.0005	
Maddock	Kozhuharova	59	<0.0001	4	<0.0001	
Reid	Kozhuharova	98	<0.0001	8	<0.0001	

Note: Wilcoxon signed-rank test pairwise comparisons for Glu/tCr of spant+ABfit and Osprey+LCM analyses; Glu, glutamate; tCr, total creatin (creatin + phosphocreatine); P-value adj.; adjusted p-value using the Bonferroni multiple-testing correction.

		span	t+Abfit	Osprey+LCM		
group1	group2	statistic	P-value adj.	statistic	P-value adj.	
Rowland	LCModel	1268	<0.0001	1426	<0.0001	
Rowland	Maddock	1303	<0.0001	1429	<0.0001	
Rowland	Reid	1186	0.0003	1420	<0.0001	
Rowland	Kozhuharova	277	0.001	936	0.515	
LCModel	Maddock	1055	0.027	1370	<0.0001	
LCModel	Reid	873	1	719	1	
LCModel	Kozhuharova	32	<0.0001	5	<0.0001	
Maddock	Reid	598	1	551	1	
Maddock	Kozhuharova	34	<0.0001	2	<0.0001	
Reid	Kozhuharova	128	<0.0001	19	<0.0001	

Note: Wilcoxon signed-rank test pairwise comparisons for absolute Glu values of spant+ABfit and Osprey+LCM analyses; Glu, glutamate; P-value adj.; adjusted p-value using the Bonferroni multiple-testing correction.

Table S11: Pairwise comparisons for Glx

		span	t+Abfit	Osprey+LCM		
group1	group2	statistic	P-value adj.	statistic	P-value adj.	
Rowland	LCModel	1295	<0.0001	1429	<0.0001	

Rowland	Maddock	1324	<0.0001	1429	<0.0001
Rowland	Reid	1166	0.0006	1424	<0.0001
Rowland	Kozhuharova	118	<0.0001	802	1
LCModel	Maddock	1030	0.054	1232	<0.0001
LCModel	Reid	748	1	940	0.474
LCModel	Kozhuharova	9	<0.0001	1	<0.0001
Maddock	Reid	536	1	855	1
Maddock	Kozhuharova	8	<0.0001	0	<0.0001
Reid	Kozhuharova	118	<0.0001	5	<0.0001

Note: Wilcoxon signed-rank test pairwise comparisons for absolute Glx values of spant+ABfit and Osprey+LCM analyses; Glx, glutamate+glutamine; P-value adj.; adjusted p-value using the Bonferroni multiple-testing correction.

4 Discussion

4.1 Group differences between the metabolite concentration estimates

Comparisons between the estimates for Glx are summarized in **Figure S2**. Adding PCr to the basis sets leads to a decrease in the Glx concentrations for both the Rowland(9) and the Kozhuharova(5) basis sets as well as in both toolboxes. Estimates were consistently lower for the analysis in spant+ABfit compared to the ones analyzed with Osprey+LCM. Necessary to note is also that the Rowland+PCr and LCModel basis sets are now identical, which can be nicely seen in the boxplots.

4.2 Correlations of each metabolite estimate between the basis sets

As already mentioned in the manuscript, the correlations between metabolite (Glu/tCr, absolute Glu, Glx) and basis set per toolbox revealed that the metabolite concentrations between the basis sets had higher correlations using Ospreys LCM integration than spant+ABfit. For Osprey+LCM, we found strong

correlations between all basis sets (r>0.75). Comparing the Rowland (9) and Kozhuharova (5) basis sets with added PCr to the ones without, the "new" basis sets show higher correlations with the three visually best-fitting basis sets (LCModel Manual (4), Maddock et al. (2), and Reid et al. (3); **Figure 3 B, C, and D**) with Spearman correlation coefficients between 0.95-1 for Osprey+LCM and 0.87-0.97 for spant+ABfit, the three visually best-fitting basis sets (LCModel Manual (4), Maddock et al. (2), and Reid et al. (3); **Figure 3 B, C, and D**) showed the best results with spearman correlation coefficients between 0.93-1 for Osprey+LCM and 0.88-0.94 for spant+ABfit (**Figure S3**). Correlation strength was classified according to Akoglu (11).

4.3 Association between the concentrations and traits

Finally, we also analyzed Spearman's rank correlations for clinical scores with the extracted concentration scores for the two basis sets with added PCr. Overall, the results in Osprey+LCM and ant+ABfit displayed now a more homogenous pattern regarding their correlations. Using the Rowland (9)and Kozhuharova(5) basis set with PCr instead of the ones without this metabolite, the maximum difference between the correlation coefficients of Glx and disorganized traits in Osprey+LCM decreased from 0.18 to 0.04. The same can be seen in spant+ABfit where the maximal difference was changing from 0.42 to 0.16 for this correlation. However, the difference between the toolboxes was still smaller than the difference across the different basis sets and reached a maximum of 0.11, again for the correlation of Glx and disorganized traits. The correlations are shown in **Figure S2**.

Figure S2: Basisets + PCr: Group comparisons for Glx in the ACC and Correlations between the metabolite concentrations and clinical scores

Note: A) Group comparisons between the basis sets (Rowland (12), Rowland + PCr, LCModel (4), Kozhuharova +PCr, Kozhuharova (5) for absolute Glx values; Spearman correlations between Glu/tCr (Glu/Cr for Rowland and Kozhuharova), absolute Glu, Glx, and the subclinical traits for the basis sets B)

Rowland + PCr and C) (5); the left side always shows the results for spant+ABfit and the right side for Osprey+LCM. The psychotic-like traits are separated into the subscores: positive-like symptoms, negative-like symptoms, and disorganized traits.

Figure S3: Basis sets + PCr and tool box intercorrelations

Note: Intercorrelations between the basis sets (Rowland (12), Rowland+PCr, LCModel (4), Maddock (2), Reid (3), Kozhuharova (5) and Kozhuharova+PCr) and toolboxes (spant+ABfit; Osprey) for A) Glu/tCr (Glu/Cr for Rowland and Kozhuharova), B) Glu, C) Glx

References:

- 1. Cheng H, Wang A, Newman S, Dydak U. An investigation of glutamate quantification with PRESS and MEGA-PRESS. NMR in Biomedicine. 2021;34(2):e4453.
- 2. Maddock RJ, Caton MD, Ragland JD. Estimating Glutamate and Glx from GABA-Optimized MEGA-PRESS: Off-Resonance but not Difference Spectra Values Correspond to PRESS Values. Psychiatry Res Neuroimaging. 2018 Sep 30;279:22–30.
- 3. Reid MA, Salibi N, White DM, Gawne TJ, Denney TS, Lahti AC. 7T Proton Magnetic Resonance Spectroscopy of the Anterior Cingulate Cortex in First-Episode Schizophrenia. Schizophr Bull. 2019 Jan 1;45(1):180–9.
- 4. Provencher S. LCModel1 & LCMgui User's Manual. 2021 Feb 4; Available from: http://lcmodel.ca/pub/LCModel/manual/manual.pdf
- 5. Kozhuharova P, Diaconescu AO, Allen P. Reduced cortical GABA and glutamate in high schizotypy. Psychopharmacology. 2021 Sep;238(9):2459–70.
- 6. Leptourgos P, Bansal S, Dutterer J, Culbreth A, Powers A III, Suthaharan P, et al. Relating Glutamate, Conditioned, and Clinical Hallucinations via 1H-MR Spectroscopy. Schizophrenia Bulletin. 2022 Jul 1;48(4):912–20.
- 7. Ford TC, Nibbs R, Crewther DP. Glutamate/GABA+ ratio is associated with the psychosocial domain of autistic and schizotypal traits. PLOS ONE. 2017 Jul 31;12(7):e0181961.
- 8. Shukla DK, Wijtenburg SA, Chen H, Chiappelli JJ, Kochunov P, Hong LE, et al. Anterior Cingulate Glutamate and GABA Associations on Functional Connectivity in Schizophrenia. Schizophrenia Bulletin. 2019 Apr 25;45(3):647–58.
- 9. Rowland LM, Kontson K, West J, Edden RA, Zhu H, Wijtenburg SA, et al. In Vivo Measurements of Glutamate, GABA, and NAAG in Schizophrenia. Schizophrenia Bulletin. 2013 Sep 1;39(5):1096–104.
- Demler VF, Sterner EF, Wilson M, Zimmer C, Knolle F. Association between increased anterior cingulate glutamate and psychotic-like symptoms, but not autistic traits [Internet]. medRxiv; 2023 [cited 2023 Mar 6]. p. 2023.02.01.23285183. Available from: https://www.medrxiv.org/content/10.1101/2023.02.01.23285183v1
- 11. Akoglu H. User's guide to correlation coefficients. Turkish Journal of Emergency Medicine. 2018 Sep;18(3):91–3.
- 12. Rowland LM, Kontson K, West J, Edden RA, Zhu H, Wijtenburg SA, et al. In Vivo Measurements of Glutamate, GABA, and NAAG in Schizophrenia. Schizophrenia Bulletin. 2013 Sep 1;39(5):1096–104.