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A1 Clinical transformer training on the Chowell et al. data set for comparison with 

Chowell’s model 

To evaluate the clinical transformer’ performance in the Chowell et al.1 data set, we used the 

same training/testing splits provided in their study. We pretrained a model using all the data in 

the training split for 20,000 epochs and stored all 20,000 model weights. We fine-tuned a 

clinical transformer specialized for predicting patient overall survival using a training split in 

which 90% of the training data was used to train the model and 10% was used for validation. To 

identify the best pretrained model for this task, we selected several pretrained snapshot 

models at 100, 500, 1000, 5000, 15,000, and 20,000 pretraining epochs. For each pretrained 

model we then fine-tuned a survival model. We selected the 20,000 pretrained model snapshot 

for transfer learning because it provided the best performance in the validation set. The best 

epoch was selected based on the average concordance index (C-index) across the 10 runs in the 

validation set. Once the best pretrained weights (20,000) and epoch (195) were defined from 

the validation split, we trained a new model using 100% of the training split for 195 epochs. We 

evaluated this model in the 20% test set and compared it against tumor mutation burden (TMB) 

and the random forest model from Chowell et al. study.  

A2 Evaluation of clinical transformer trained using the Chowell et al. data set in the 

training/testing split framework and in the MYSTIC trial as independent data set 

In this experiment, we merged the training and testing data from Chowell et al. into one single 

data set and evaluated the performance of the clinical transformer against other survival 

techniques with and without pretraining, repeating the process 10 times. First, the data were 

divided into 80% for training and 20% for testing samples (10 times). Second, we pretrained the 

clinical transformer model using the entire data set during 30,000 epochs. Third, we trained 10 

clinical transformer models using the Chowell et al. training splits. Each fold was trained 

independently with and without the 30,000-pretraining snapshot. We empirically selected the 

best survival model epoch based on the mean C-index across 5% of the testing data, which was 

contrasted against the complete test set over the 10 splits (511 and 300 for the without and 

with pretraining models, respectively; MSI_SCORE and FCNA were unavailable in the MYSTIC 

trial [NCT02453282]). As the clinical transformer can handle missing features at inference, 

these two variables were not used in predicting patient survival scores.  

The results showed that the model without pretraining achieved a C-index of 0.714, as 

compared with the model with pretraining, which had a C-index of 0.720; the random forest 

model, with a C-index of 0.714; Cox proportional hazards (PH), with a C-index of 0.709; and 

TMB, with a C-index of 0.55 (Table ST2.1).  
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We evaluated the performance of the clinical transformer using the Chowell et al. MYSTIC trial 

data by matching the features available on the trial. In total we identified a cohort of 150 

patients (74 treated with PD-L1 and 76 with PD-L1 + CTLA-4) with a complete feature set (from 

325 patients with available tissue TMB, only 150 had germline human leukocyte antigen [HLA] 

typing [HLA evolutionary divergence, HED]), except for MSI_SCORE and FCNA, which were 

unavailable in the clinical trial data. The 10 clinical transformer models trained on the Chowell 

et al. data were evaluated on MYSTIC data. The model with pretraining achieved a C-index of 

0.643, whereas the clinical transformer without pretraining obtained a C-index of 0.616 and 

TMB on MYSTIC data showed a C-index of 0.608. Random forest and the Cox PH model were 

not evaluated on the MYSTIC data, as those models cannot handle missing data. For patient 

stratification (Supplementary Fig. SF2.1), we extracted the median cutoffs from the training 

splits for the different methods (the direct and gradual learning as well as for the TMB score; 

(Supplementary Table ST2.1, Supplementary Fig. SF2.1).  

Supplementary Table ST2.1. Performance of the clinical transformer model trained on the 

Chowell et al. data set and evaluated on the MYSTIC trial 

Modeling framework Chowell et al. 2021 

MYSTIC 

(validation) 

Clinical transformer 
Direct learning 0.714 ± 0.01 0.616 ± 0.004 

Gradual learning 0.720 ± 0.01 0.643 ± 0.004 

Linear modeling Cox PH regression 0.709 ± 0.01 — 

Nonlinear modeling Random survival forest 
0.714 ± 0.01 — 

Biomarkers TMB 0.550 ± 0.02 0.608 ± 0.000 

 

 

 

Supplementary Fig. SF2.1. Patient stratification using a, TMB; b, direct; and c, gradual learning 

in the test sets (10 repetitions). Patient population was stratified using the median cutoff from 
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the training splits. Solid line indicates the averaged KM curve across the 10 training repetitions 

and the areas represent the variability across the 20 testing splits.  

A3 Samstein et al. data set training/testing framework 

We pretrained the clinical transformer using all patient population from GENIE v11 using all 

available clinical and molecular data during 20,000 iterations. 

We trained a clinical transformer model to predict patient overall survival in the Samstein et al. 

data set, using 10 splits of 80% training and 20% testing. The baseline model corresponds to the 

model trained to predict survival without GENIE pretraining, and the E20000 model refers to 

the clinical transformer model trained on the Samstein et al. data, using the GENIE pretrained 

weights at the 20,000 snapshot.  

Best epoch was empirically selected by looking at a small 5% proportion of the testing set in 

which 20% of the features were randomly shuffled to increase variability. We also evaluated 

the model’s performance in the full testing set, using the average performance C-index across 

the 10 test sets. We did not find any significant difference in the testing at 5% and 100% 

evaluations. Therefore, we selected the models at the 25-training epoch (no difference in 

performance between epoch 23 to 30) for the pretrained model and the epoch 85 for the 

baseline model. Note that the same best epoch range (<25) was observed in an independent 

run using the Memorial Sloan Kettering Multimodal Integration of Data set (80/20% data splits) 

with the GENIE pretrained at the 20,000 snapshot. Independently, these two runs confirmed 

that the best model using pretraining lay approximately at epoch 25.  

 
Supplementary Fig. SF3.1. Positive effect of transfer learning from pretrained model using 

GENIE to other small data sets. Models pretrained with GENIE data set achieved a peak 

performance in a smaller number of epochs compared with baseline clinical transformer trained 

models. 
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Supplementary Table ST3.1. Impact of GENIE transfer learning 

Learning type Samstein et al.2 DFCI melanoma MYSTIC trial MSK MIND 

Concordance index 

Direct learning 0.627 ± 0.02 0.587 ± 0.10 0.561 ± 0.05 0.560 ± 0.02 

Transfer learning 0.649 ± 0.02 0.628 ± 0.07 0.602 ± 0.05 0.590 ± 0.03 

Training epochs 

Direct learning 86 85 95 57 

Transfer learning 27 38 38 23 

Average reduction 

(%) 

   39.1130271 

 

The GENIE pretrained model was used to fine-tune survival time and event across four data sets. 

Top: Concordance index on best model (averaged over 10 testing splits) for both direct and 

gradual learning. Bottom: Number of epochs (or iterations) the model needs to achieve peak 

performance. 

A4 Transfer learning: pretraining from the Chowell et al. data set and transfer to MYSTIC 

We evaluated the added value of the transfer learning using the Chowell et al. data set over the 

MYSTIC data set. First, we pretrained a model using all the data from the Chowell et al. data set 

(train + test splits) and used the model snapshot at epoch 30,000. The pretrained model 

weights were transferred to a specialized model to predict patient overall survival using the 

MYSTIC data. For survival analysis, the MYSTIC data were divided into 10 training and testing 

splits, and 10 models were trained with and without pretraining. We selected the best model 

based on the averaged C-index of the 10 models in the test set. A random survival forest, a Cox 

PH model, and TMB were used for comparison (see Table 2 in the main article).  

A5 Transfer learning with GENIE to the Samstein et al. data set using only mutational data 

We trained a clinical transformer model using only the mutational data from the Samstein et al. 

data set (469 gene mutations) without any other clinical or aggregated feature (e.g., race, age, 

TMB). This experiment was conducted to test the ability of the clinical transformer to identify 

molecular features associated with patient survival while being unbiased to any aggregated 

feature such as TMB. We used the pretrained GENIE data set at 20,000 epochs and trained the 

survival model for 10 repetitions, using splits of 80% training and 20% testing. The best model 

epoch was defined at 25 and was empirically selected as the average of the 10 model’s 

performance in the test set. We evaluated the performance of the model using C-index. Note 

that the model trained only with mutational data (20,000 epochs, E020000) underperformed 

compared with the model that included clinical data (20,000 epochs, E020000B) but still 

outperformed the baseline without pretraining. For model interpretability, we computed all 

pairs cosine-similarities over the 10 test sets for consistency and extracted 50 functional groups 
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by using a hierarchical clustering algorithm (Fig SF5.1). These functional groups represent the 

molecular associations within the data and their impact on survival. 

 

Supplementary Fig. SF5.1. Forest plot of significant (P < 0.05) functional groups. 
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Supplementary Fig. SF5.2. Integration of functional groups to predict patient survival  with 

immuno-oncology (IO) treatment in the testing splits (discovery data set) as well as on Miao et 

al.3 pan-cancer IO-treated patients and treatment-naive pan-cancer data sets in The Cancer 

Genome Atlas (TCGA). a, Evaluation of randomly generated functional groups of the same size 

and number of genes as the top 10 groups. b, Evaluation of 10 randomly selected hallmark gene 

sets from the complete 50 hallmark sets and subsetting it to the MSK panel genes.  

A6 Identification of key functional groups associated with survival outcomes 

 

 

 

 

 

 

 

Fig. SF6.1. Albumin, TMB cosine similarity score across the test populations. Cosine similarity 

distribution.  
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Figure ST6.1: Pairwise cosine similarity between all feature embeddings across 10 test splits.  

source target cosine cluster Paper Cluster name 

HED Platelets 0.24585439 0 2 

NLR Platelets 0.35590437 0 2 

Age Platelets 0.36766882 0 2 

Age NLR 0.38048447 0 2 

Albumin HED 0.38677867 0 2 

HED NLR 0.41395453 0 2 

BMI HED 0.42820412 0 2 

Age HED 0.44881286 0 2 

HGB Platelets 0.44995748 0 2 

BMI NLR 0.45971574 0 2 

Age Albumin 0.46831537 0 2 

HGB NLR 0.4693503 0 2 

Albumin BMI 0.47173626 0 2 

Albumin NLR 0.49050834 0 2 

HED HGB 0.49444037 0 2 

Chemo_before_IO (1:Yes; 0:No) FCNA 0.53687534 3 3 

Age HGB 0.53949961 0 2 

Albumin Platelets 0.55654177 0 2 

BMI HGB 0.55801385 0 2 

Age BMI 0.59264339 0 2 

MSI_SCORE TMB 0.59387972 2 1 

BMI Platelets 0.60135009 0 2 

Albumin HGB 0.60693464 0 2 

Chemo_before_IO (1:Yes; 0:No) Sex (1:Male; 0:Female) 0.62280129 3 3 

FCNA Sex (1:Male; 0:Female) 0.66104961 3 3 

HLA_LOH MSI_SCORE 0.67535925 2 1 

HLA_LOH TMB 0.69603414 2 1 

Cancer_Type Drug_class 0.97210378 1 4 

Cancer_Type Stage at IO start 0.9750603 1 4 

Drug_class Stage at IO start 0.98040073 1 4 
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A7 Variant/invariant populations in the Chowell et al. data set 

Probabilistic impact on patient survival is measured by the standard deviation of the 

distribution of all survival scores when one or two variables are perturbed. If a patient has a 

high standard deviation, it reflects changes in survival scores, whereas patients with standard 

deviation close to 0 indicate that the patient is not sensitive to perturbations in the given 

variable(s).  

A8 Perturbation of a T-cell gene expression signature identifies potential drivers of 

survival and resistance to Immune checkpoint inhibitor treatment 

 

 

 

 

 

 

 

 

Supplementary Fig. SF8.1. Distribution of gene expression signatures across the four survival 

groups. Groups Q3 and Q4, with prolonged survival, demonstrated an increase in expression of 

signatures associated with productive antitumor immunity, such as major histocompatibility 

complex, T-cells, and T helper type 1 cell signaling. In contrast, groups Q1 and Q2, with reduced 

survival, demonstrate reduced expression of these signatures commensurate with an increase in 

signatures of neutrophils, protumor inflammatory signals, cancer-associated fibroblasts, and 

matrix remodeling. 
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Supplementary Fig. SF8.2. Heat map of the tumor microenvironment signatures in the Van Allen 

et al. data set.4 
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Supplementary Fig. SF8.3. Heat map of tumor microenvironment enrichment for the variant 

and invariant populations.  
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Supplementary Table ST8.1 

feature pval Mean variant Mean invariant delta 

Endothelium 1.52062303234922E-15 -0.313412674 0.112600806 -0.426013479 

Cancer-associated fibroblasts 4.06913332351783E-20 0.128167853 0.498169156 -0.370001303 

Angiogenesis 2.23255689268839E-15 -0.200509689 0.120291558 -0.320801246 

Matrix remodeling 1.42213268012074E-10 -0.014565958 0.28148602 -0.296051978 

Matrix 1.5429817283069E-14 0.057901648 0.331919433 -0.274017785 

Protumor cytokines 8.99938237234562E-11 -0.000761741 0.269065383 -0.269827124 

Tumor-associated Macrophages 2.99159370163368E-06 -0.015938159 0.221935134 -0.237873292 

Macrophage and DC traffic 5.58335783258359E-06 -0.189935965 0.02157267 -0.211508635 

Myeloid cells traffic 2.53655426154648E-07 -0.164258572 0.025172696 -0.189431268 

Th2 signature 0.005889151 -0.160534751 -0.010702139 -0.149832612 

Immune Suppression by Myeloid Cells 0.009670292 -0.176916701 -0.060527783 -0.116388918 

Co-stimulatory ligands 0.041212995 0.013129773 0.093677403 -0.08054763 

Antitumor cytokines 0.034964099 -0.486369988 -0.567646764 0.081276776 

Treg and Th2 traffic 0.024231009 0.137531893 0.032257012 0.105274881 

Tumor proliferation rate 1.81979544193861E-06 0.632009267 0.458450045 0.173559222 

B cells 0.000349707 0.054694791 -0.132986461 0.187681252 

Th1 signature 5.72138985843501E-07 0.18682555 -0.001916572 0.188742123 

T cells 1.12293993693699E-07 -0.081965987 -0.280401733 0.198435746 

Effector cell traffic 2.82314638046175E-06 -0.044440517 -0.247127222 0.202686705 

NK cells 3.48706604111788E-12 0.150490246 -0.115612173 0.266102419 

Checkpoint molecules 3.97645311556161E-10 0.053729001 -0.233654563 0.287383564 

MHCI 7.6346147569635E-06 0.213198128 -0.091958146 0.305156274 

Effector cells 2.99686757789225E-16 0.130232828 -0.271111321 0.401344149 
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Supplementary Table ST8.2 

Population hr hr_lo hr_hi pval N_High N_Low cohort var 

IO 0.53141082 0.40298061 0.70077183 7.50E-06 227 227 tcga Effector cells 

IO 0.53032084 0.24673068 1.13986711 0.10423856 22 18 allen Effector cells 

IO 0.53338112 0.25117768 1.13264609 0.10188323 24 18 liu Effector cells 

IO 0.35451605 0.12128437 1.03625577 0.05810732 12 14 riaz Effector cells 

IO 0.85388965 0.64953366 1.12254003 0.25774627 227 227 tcga MHCI 

IO 0.76860871 0.3553994 1.66224068 0.50367427 17 23 allen MHCI 

IO 0.65615835 0.31400182 1.37115058 0.26248648 24 18 liu MHCI 

IO 0.49896671 0.18038488 1.38020314 0.18049481 12 14 riaz MHCI 

IO 0.47893362 0.36333878 0.63130453 1.75E-07 227 227 tcga Checkpoint molecules 

IO 0.53047203 0.2466364 1.14095314 0.10469667 20 20 allen Checkpoint molecules 

IO 0.59325921 0.28020074 1.25608698 0.1724949 27 15 liu Checkpoint molecules 

IO 0.95437163 0.35416572 2.57174863 0.92642876 11 15 riaz Checkpoint molecules 

IO 0.42085914 0.31750045 0.55786507 1.76E-09 227 227 tcga NK cells 

IO 0.43066657 0.19920376 0.93107526 0.03223313 22 18 allen NK cells 

IO 0.65372763 0.31520277 1.35582506 0.25342494 25 17 liu NK cells 

IO 0.51602203 0.17717994 1.5028718 0.22511322 11 15 riaz NK cells 

IO 1.75409344 1.33328858 2.30771031 5.94E-05 227 227 tcga Matrix remodeling 

IO 3.65286883 1.63044957 8.18390885 0.0016453 20 20 allen Matrix remodeling 

IO 1.46327324 0.66782985 3.20615884 0.34150812 15 27 liu Matrix remodeling 

IO 1.8890186 0.68270093 5.22687326 0.22061269 14 12 riaz Matrix remodeling 

IO 1.94989612 1.4747894 2.57805954 2.78E-06 227 227 tcga Angiogenesis 

IO 1.93459675 0.90157541 4.15124961 0.09026745 19 21 allen Angiogenesis 

IO 1.86582008 0.892888 3.89890401 0.09718239 19 23 liu Angiogenesis 

IO 1.80465743 0.62593523 5.20307577 0.27449724 15 11 riaz Angiogenesis 

IO 1.97472489 1.49685053 2.60516219 1.48E-06 227 227 tcga Cancer-associated fibroblasts 

IO 1.98349616 0.91511362 4.29920057 0.08270364 21 19 allen Cancer-associated fibroblasts 

IO 1.38564747 0.64212881 2.99008377 0.40588084 14 28 liu Cancer-associated fibroblasts 

IO 1.07221958 0.37089955 3.09963929 0.89755933 18 8 riaz Cancer-associated fibroblasts 

IO 1.87863847 1.4187695 2.48756582 1.07E-05 227 227 tcga Endothelium 

IO 1.01576509 0.46353656 2.22588421 0.96882738 16 24 allen Endothelium 

IO 0.87092976 0.41079463 1.84646682 0.71852204 18 24 liu Endothelium 

IO 1.9547557 0.70692985 5.40516122 0.19648771 14 12 riaz Endothelium 
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