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Al Clinical transformer training on the Chowell et al. data set for comparison with
Chowell’s model

To evaluate the clinical transformer’ performance in the Chowell et al.! data set, we used the
same training/testing splits provided in their study. We pretrained a model using all the data in
the training split for 20,000 epochs and stored all 20,000 model weights. We fine-tuned a
clinical transformer specialized for predicting patient overall survival using a training split in
which 90% of the training data was used to train the model and 10% was used for validation. To
identify the best pretrained model for this task, we selected several pretrained snapshot
models at 100, 500, 1000, 5000, 15,000, and 20,000 pretraining epochs. For each pretrained
model we then fine-tuned a survival model. We selected the 20,000 pretrained model snapshot
for transfer learning because it provided the best performance in the validation set. The best
epoch was selected based on the average concordance index (C-index) across the 10 runs in the
validation set. Once the best pretrained weights (20,000) and epoch (195) were defined from
the validation split, we trained a new model using 100% of the training split for 195 epochs. We
evaluated this model in the 20% test set and compared it against tumor mutation burden (TMB)
and the random forest model from Chowell et al. study.

A2 Evaluation of clinical transformer trained using the Chowell et al. data set in the
training/testing split framework and in the MYSTIC trial as independent data set

In this experiment, we merged the training and testing data from Chowell et al. into one single
data set and evaluated the performance of the clinical transformer against other survival
techniques with and without pretraining, repeating the process 10 times. First, the data were
divided into 80% for training and 20% for testing samples (10 times). Second, we pretrained the
clinical transformer model using the entire data set during 30,000 epochs. Third, we trained 10
clinical transformer models using the Chowell et al. training splits. Each fold was trained
independently with and without the 30,000-pretraining snapshot. We empirically selected the
best survival model epoch based on the mean C-index across 5% of the testing data, which was
contrasted against the complete test set over the 10 splits (511 and 300 for the without and
with pretraining models, respectively; MSI_SCORE and FCNA were unavailable in the MYSTIC
trial [NCT02453282]). As the clinical transformer can handle missing features at inference,
these two variables were not used in predicting patient survival scores.

The results showed that the model without pretraining achieved a C-index of 0.714, as
compared with the model with pretraining, which had a C-index of 0.720; the random forest
model, with a C-index of 0.714; Cox proportional hazards (PH), with a C-index of 0.709; and
TMB, with a C-index of 0.55 (Table ST2.1).
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We evaluated the performance of the clinical transformer using the Chowell et al. MYSTIC trial
data by matching the features available on the trial. In total we identified a cohort of 150
patients (74 treated with PD-L1 and 76 with PD-L1 + CTLA-4) with a complete feature set (from
325 patients with available tissue TMB, only 150 had germline human leukocyte antigen [HLA]
typing [HLA evolutionary divergence, HED]), except for MSI_SCORE and FCNA, which were
unavailable in the clinical trial data. The 10 clinical transformer models trained on the Chowell
et al. data were evaluated on MYSTIC data. The model with pretraining achieved a C-index of
0.643, whereas the clinical transformer without pretraining obtained a C-index of 0.616 and
TMB on MYSTIC data showed a C-index of 0.608. Random forest and the Cox PH model were
not evaluated on the MYSTIC data, as those models cannot handle missing data. For patient
stratification (Supplementary Fig. SF2.1), we extracted the median cutoffs from the training
splits for the different methods (the direct and gradual learning as well as for the TMB score;
(Supplementary Table ST2.1, Supplementary Fig. SF2.1).

Supplementary Table ST2.1. Performance of the clinical transformer model trained on the
Chowell et al. data set and evaluated on the MYSTIC trial

MYSTIC
Modeling framework Chowell et al. 2021 (validation)
Direct learning 0.714£0.01 0.616 + 0.004
Clinical transformer
Gradual learning 0.720 £ 0.01 0.643 + 0.004
Linear modeling Cox PH regression 0.709£0.01 —
) . . 0.714 +0.01 —
Nonlinear modeling | Random survival forest
Biomarkers TMB 0.550+0.02 0.608 + 0.000
A) ion of median TMB applied to Mystic trial B) Clinical transformer without C) Clinical transformer with
pre-training applied to Mystic data pre-training applied to Mystic data
e C-ndex = 0.61 - C-Index = 0.62 19 C-ndex = 0.64
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Supplementary Fig. SF2.1. Patient stratification using a, TMB; b, direct; and ¢, gradual learning
in the test sets (10 repetitions). Patient population was stratified using the median cutoff from
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the training splits. Solid line indicates the averaged KM curve across the 10 training repetitions
and the areas represent the variability across the 20 testing splits.

A3 Samstein et al. data set training/testing framework

We pretrained the clinical transformer using all patient population from GENIE v11 using all
available clinical and molecular data during 20,000 iterations.

We trained a clinical transformer model to predict patient overall survival in the Samstein et al.
data set, using 10 splits of 80% training and 20% testing. The baseline model corresponds to the
model trained to predict survival without GENIE pretraining, and the E20000 model refers to
the clinical transformer model trained on the Samstein et al. data, using the GENIE pretrained
weights at the 20,000 snapshot.

Best epoch was empirically selected by looking at a small 5% proportion of the testing set in
which 20% of the features were randomly shuffled to increase variability. We also evaluated
the model’s performance in the full testing set, using the average performance C-index across
the 10 test sets. We did not find any significant difference in the testing at 5% and 100%
evaluations. Therefore, we selected the models at the 25-training epoch (no difference in
performance between epoch 23 to 30) for the pretrained model and the epoch 85 for the
baseline model. Note that the same best epoch range (<25) was observed in an independent
run using the Memorial Sloan Kettering Multimodal Integration of Data set (80/20% data splits)
with the GENIE pretrained at the 20,000 snapshot. Independently, these two runs confirmed
that the best model using pretraining lay approximately at epoch 25.
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Supplementary Fig. SF3.1. Positive effect of transfer learning from pretrained model using
GENIE to other small data sets. Models pretrained with GENIE data set achieved a peak

performance in a smaller number of epochs compared with baseline clinical transformer trained
models.
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Supplementary Table ST3.1. Impact of GENIE transfer learning

Learning type Samstein et al.? DFCI melanoma MYSTIC trial MSK MIND
Concordance index
Direct learning 0.627 £0.02 0.587 £0.10 0.561 £ 0.05 0.560 £ 0.02
Transfer learning 0.649 +0.02 0.628 £ 0.07 0.602 £ 0.05 0.590 + 0.03
Training epochs

Direct learning 86 85 95 57
Transfer learning 27 38 38 23
Average reduction 39.1130271
(%)

The GENIE pretrained model was used to fine-tune survival time and event across four data sets.
Top: Concordance index on best model (averaged over 10 testing splits) for both direct and
gradual learning. Bottom: Number of epochs (or iterations) the model needs to achieve peak
performance.

A4 Transfer learning: pretraining from the Chowell et al. data set and transfer to MYSTIC

We evaluated the added value of the transfer learning using the Chowell et al. data set over the
MYSTIC data set. First, we pretrained a model using all the data from the Chowell et al. data set
(train + test splits) and used the model snapshot at epoch 30,000. The pretrained model
weights were transferred to a specialized model to predict patient overall survival using the
MYSTIC data. For survival analysis, the MYSTIC data were divided into 10 training and testing
splits, and 10 models were trained with and without pretraining. We selected the best model
based on the averaged C-index of the 10 models in the test set. A random survival forest, a Cox
PH model, and TMB were used for comparison (see Table 2 in the main article).

A5 Transfer learning with GENIE to the Samstein et al. data set using only mutational data

We trained a clinical transformer model using only the mutational data from the Samstein et al.
data set (469 gene mutations) without any other clinical or aggregated feature (e.g., race, age,
TMB). This experiment was conducted to test the ability of the clinical transformer to identify
molecular features associated with patient survival while being unbiased to any aggregated
feature such as TMB. We used the pretrained GENIE data set at 20,000 epochs and trained the
survival model for 10 repetitions, using splits of 80% training and 20% testing. The best model
epoch was defined at 25 and was empirically selected as the average of the 10 model’s
performance in the test set. We evaluated the performance of the model using C-index. Note
that the model trained only with mutational data (20,000 epochs, E020000) underperformed
compared with the model that included clinical data (20,000 epochs, E020000B) but still
outperformed the baseline without pretraining. For model interpretability, we computed all
pairs cosine-similarities over the 10 test sets for consistency and extracted 50 functional groups
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by using a hierarchical clustering algorithm (Fig SF5.1). These functional groups represent the

molecular associations within the data and their impact on survival.
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Supplementary Fig. SF5.1. Forest plot of significant (P < 0.05) functional groups.
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A) Cox PH model using 10 randomly generated funcional groups
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Supplementary Fig. SF5.2. Integration of functional groups to predict patient survival with

immuno-oncology (I0) treatment in the testing splits (discovery data set) as well as on Miao et

al.? pan-cancer 10-treated patients and treatment-naive pan-cancer data sets in The Cancer

Genome Atlas (TCGA). a, Evaluation of randomly generated functional groups of the same size

and number of genes as the top 10 groups. b, Evaluation of 10 randomly selected hallmark gene

sets from the complete 50 hallmark sets and subsetting it to the MSK panel genes.
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Figure ST6.1: Pairwise cosine similarity between all feature embeddings across 10 test splits.

source target cosine cluster Paper Cluster name
HED Platelets 0.24585439
NLR Platelets 0.35590437
Age Platelets 0.36766882
Age NLR 0.38048447
Albumin HED 0.38677867
HED NLR 0.41395453
BMI HED 0.42820412
Age HED 0.44881286
HGB Platelets 0.44995748
BMI NLR 0.45971574
Age Albumin 0.46831537
HGB NLR 0.4693503
Albumin BMI 0.47173626
Albumin NLR 0.49050834
HED HGB 0.49444037
Chemo_before_IO (1:Yes; 0:No) FCNA 0.53687534
Age HGB 0.53949961
Albumin Platelets 0.55654177
BMI HGB 0.55801385
Age BMI 0.59264339
MSI_SCORE TMB 0.59387972
BMI Platelets 0.60135009
Albumin HGB 0.60693464
Chemo_before_IO (1:Yes; 0:No) Sex (1:Male; 0:Female) 0.62280129
FCNA Sex (1:Male; 0:Female) 0.66104961
HLA_LOH MS|_SCORE 0.67535925
HLA_LOH TMB 0.69603414
Cancer_Type Drug_class 0.97210378
Cancer_Type Stage at |0 start 0.9750603
Drug_class Stage at |0 start 0.98040073
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A7 Variant/invariant populations in the Chowell et al. data set

Probabilistic impact on patient survival is measured by the standard deviation of the
distribution of all survival scores when one or two variables are perturbed. If a patient has a
high standard deviation, it reflects changes in survival scores, whereas patients with standard
deviation close to 0 indicate that the patient is not sensitive to perturbations in the given
variable(s).

A8 Perturbation of a T-cell gene expression signature identifies potential drivers of
survival and resistance to Immune checkpoint inhibitor treatment

Patients from TCGA cutaneous melanomas (TCGA-SKCM)
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Supplementary Fig. SF8.1. Distribution of gene expression signatures across the four survival
groups. Groups Q3 and Q4, with prolonged survival, demonstrated an increase in expression of
signatures associated with productive antitumor immunity, such as major histocompatibility
complex, T-cells, and T helper type 1 cell signaling. In contrast, groups Q1 and Q2, with reduced
survival, demonstrate reduced expression of these signatures commensurate with an increase in
signatures of neutrophils, protumor inflammatory signals, cancer-associated fibroblasts, and
matrix remodeling.
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Melanoma immuno treated patients from Van Allen et., al
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Supplementary Fig. SF8.2. Heat map of the tumor microenvironment signatures in the Van Allen

et al. data set.*
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Supplementary Fig. SF8.3. Heat map of tumor microenvironment enrichment for the variant
and invariant populations.
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Supplementary Table ST8.1

feature pval Mean variant Mean invariant delta

Endothelium 1.52062303234922E-15 -0.313412674 0.112600806 -0.426013479
Cancer-associated fibroblasts 4.06913332351783E-20 0.128167853 0.498169156 -0.370001303
Angiogenesis 2.23255689268839E-15 -0.200509689 0.120291558 -0.320801246
Matrix remodeling 1.42213268012074E-10 -0.014565958 0.28148602 -0.296051978
Matrix 1.5429817283069E-14 0.057901648 0.331919433 -0.274017785
Protumor cytokines 8.99938237234562E-11 -0.000761741 0.269065383 -0.269827124
Tumor-associated Macrophages 2.99159370163368E-06 -0.015938159 0.221935134 -0.237873292
Macrophage and DC traffic 5.58335783258359E-06 -0.189935965 0.02157267 -0.211508635
Myeloid cells traffic 2.53655426154648E-07 -0.164258572 0.025172696 -0.189431268
Th2 signature 0.005889151 -0.160534751 -0.010702139 -0.149832612
Immune Suppression by Myeloid Cells 0.009670292 -0.176916701 -0.060527783 -0.116388918
Co-stimulatory ligands 0.041212995 0.013129773 0.093677403 -0.08054763
Antitumor cytokines 0.034964099 -0.486369988 -0.567646764 0.081276776
Treg and Th2 traffic 0.024231009 0.137531893 0.032257012 0.105274881

Tumor proliferation rate

1.81979544193861E-06

0.632009267

0.458450045

0.173559222

B cells 0.000349707 0.054694791 -0.132986461 0.187681252
Th1 signature 5.72138985843501E-07 0.18682555 -0.001916572 0.188742123
T cells 1.12293993693699E-07 -0.081965987 -0.280401733 0.198435746
Effector cell traffic 2.82314638046175E-06 -0.044440517 -0.247127222 0.202686705
NK cells 3.48706604111788E-12 0.150490246 -0.115612173 0.266102419
Checkpoint molecules 3.97645311556161E-10 0.053729001 -0.233654563 0.287383564
MHCI 7.6346147569635E-06 0.213198128 -0.091958146 0.305156274
Effector cells 2.99686757789225E-16 0.130232828 -0.271111321 0.401344149
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Supplementary Table ST8.2

Population  hr hr_lo hr_hi pval N_High N_Low cohort var

10 0.53141082  0.40298061 0.70077183 7.50E-06 227 227  tcga Effector cells

10 0.53032084  0.24673068 1.13986711  0.10423856 22 18 allen Effector cells

10 0.53338112 0.25117768 1.13264609  0.10188323 24 18 liu Effector cells

10 0.35451605 0.12128437 1.03625577  0.05810732 12 14 riaz Effector cells

10 0.85388965 0.64953366  1.12254003  0.25774627 227 227  tcga MHCI

10 0.76860871 0.3553994  1.66224068  0.50367427 17 23 allen MHCI

10 0.65615835 0.31400182  1.37115058 0.26248648 24 18 liu MHCI

10 0.49896671  0.18038488  1.38020314  0.18049481 12 14 riaz MHCI

10 0.47893362  0.36333878  0.63130453 1.75€-07 227 227  tcga Checkpoint molecules

10 0.53047203 0.2466364  1.14095314  0.10469667 20 20 allen Checkpoint molecules

10 0.59325921  0.28020074 1.25608698 0.1724949 27 15  liu Checkpoint molecules

10 0.95437163  0.35416572  2.57174863  0.92642876 11 15 riaz Checkpoint molecules

10 0.42085914  0.31750045 0.55786507 1.76E-09 227 227  tcga NK cells

10 0.43066657  0.19920376  0.93107526  0.03223313 22 18 allen NK cells

10 0.65372763  0.31520277  1.35582506  0.25342494 25 17 liu NK cells

10 0.51602203  0.17717994 1.5028718  0.22511322 11 15  riaz NK cells

10 1.75409344  1.33328858 2.30771031 5.94E-05 227 227  tcga Matrix remodeling

10 3.65286883  1.63044957  8.18390885 0.0016453 20 20 allen Matrix remodeling

10 1.46327324 0.66782985 3.20615884  0.34150812 15 27 liu Matrix remodeling

10 1.8890186 0.68270093 5.22687326  0.22061269 14 12 riaz Matrix remodeling

10 1.94989612 1.4747894  2.57805954 2.78E-06 227 227  tcga Angiogenesis

10 1.93459675 0.90157541 4.15124961  0.09026745 19 21 allen Angiogenesis

10 1.86582008 0.892888 3.89890401 0.09718239 19 23 liu Angiogenesis

10 1.80465743  0.62593523  5.20307577 0.27449724 15 11 riaz Angiogenesis

10 1.97472489 1.49685053 2.60516219 1.48E-06 227 227  tcga Cancer-associated fibroblasts

10 1.98349616  0.91511362  4.29920057 0.08270364 21 19 allen Cancer-associated fibroblasts

10 1.38564747 0.64212881  2.99008377  0.40588084 14 28 liu Cancer-associated fibroblasts

10 1.07221958 0.37089955  3.09963929  0.89755933 18 8 riaz Cancer-associated fibroblasts

10 1.87863847 1.4187695 2.48756582 1.07E-05 227 227  tcga Endothelium

10 1.01576509  0.46353656  2.22588421 0.96882738 16 24 allen Endothelium

10 0.87092976  0.41079463 1.84646682  0.71852204 18 24 liu Endothelium

10 1.9547557 0.70692985 5.40516122 0.19648771 14 12 riaz Endothelium
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