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Supplemental Table 1 - Calculations applied for peak instantaneous pressure gradient 

estimation by Doppler indices. 

Doppler Estimates of CoA Gradient Equation       
            

 Systolic CoA Gradient         

  SBE    4vpeak
2   

            
  MBE    4vpeak

2 − 4vprox
2   

            
  SBE-RP    8vpeak

2 × A(1 − A),  
                 A =   ACoA/Aprox  
 Diastolic CoA Gradient         

  CFPG    4B × (1 − exp (−
1

B
)) (1 − DVI)2Vd

2,  
                B =   dPHT/(ln(2) × DP) 

          DVI =   Vprox/Vpeak 
 

        

CFPG: continuous flow pressure gradient, DP*: diastolic period, dPHT†: diastolic pressure half-time, DVI: Doppler velocity index, MBE: modified Bernoulli equation, RP: recovered pressure, SBE: simplifies Bernoulli 
equation, vpeak : peak jet velocity at the CoA region obtained from spectral Doppler image, vprox: peak velocity obtained proximal to the CoA from spectral Doppler image, ACoA: CoA cross-section area obtained 

from Doppler b-mode image, Aprox: aorta cross-section area proximal to the CoA obtained from Doppler b-mode image, 𝑉𝑑 : early diastolic velocity‡ 
*End T-Q interval on the EKG signal 

†Time to 50% early diastolic pressure; on the spectral Doppler image, time from 𝑣𝑑 to √2

2
𝑣𝑑 

‡Velocity at the end of T-wave obtained from cardiac-gated spectral Doppler image  

 

 

Boundary conditions. After Institutional Care and Use Committee approval, CoA was 

surgically induced in New Zealand white rabbits to replicate clinical peak-to-peak blood pressure 

gradients1 and empirically assess its effect on thickness and stiffness via remolding of the wall. 

Approximately 22 weeks later and prior to terminal tissue harvest, time-resolved 2D through-plane 

PC-MRI was performed orthogonal to the head and neck arteries and ascending aorta just distal to 

the aortic valve to calculate total aortic flow and distribution to major branches2 for discrete CoA 

rabbits of varying severities (n = 55). Image-based eddy current compensation was then performed 

in Segment (Medviso AB, version 2.0 R5152) to account for magnetic field inhomogeneity and 

associated uncertainty in flow quantification3–5. The aorta was then harvested after humane 

euthanasia. Material properties and wall thickness were quantified at the proximal ascending, 

proximal descending, and distal descending thoracic aorta at the diaphragm level. Material 

characterization was performed using uniaxial extension testing (MTS Criterion Load Frame, 



MTS, Minneapolis, U.S.A.) to obtain stress-strain curves used to identify vessel stiffness6 while 

wall thickness was quantified through sample preparation process and optically under the 

dissection scope. Regression analysis identified the thickness and stiffness values used for each 

computational model at 40, 60, 70, 80, and 90% CoA area obstructions Supplemental Figure 1; 

Supplemental Table 2). An in-house python script was developed to spatially distribute the wall 

characteristics obtained at location 1-3 of Supplemental Figure 1 as a linear function of aortic 

centerline.  

 

Supplemental Figure 1- Longitudinal areas for 3D CAD models of discrete and complex CoA in rabbit 

aorta. Generalized models of CoA were created by smoothly scaling local cross-sectional area according 

to a sigmoid function of centerline length. Discrete (black) and complex CoA, i.e., long segment (pink), 

hypoplastic isthmus (green), and hypoplastic arch (purple), morphologies were created for the severities 

seen clinically. Locations 1, 2, and 3 correspond to the ascending, descending and distal thoracic aorta, 

respectively. 

  



Morphological properties for computational simulations replicated Z-scores observed at 

the equivalent locations for each of the pediatric CoA patients. A total of 68 computational aortas 

(25 with discrete CoA and 43 with complex CoA) were created. The aorta models were then 

integrated with arch branches (Supplemental Figure 2) for hemodynamic simulations with one 

inlet at the Sino-tubular junction and outlets at each of the head and neck arteries. 

 

Supplemental Figure 2- Three-dimensional CAD models for discrete and complex CoA morphologies 

generated from a rabbit aorta based on a clinical cohort of Z-scores in the arch and isthmus regions. 

Corresponding CoA models were created by smoothly scaling local cross-sectional area according to a 

sigmoid function of centerline length and corresponding aortic volume loss and CoA area reduction were 

normalized to that of control model for x and y axis visualization, respectively. 

 

  



High-fidelity blood pressure (BP) measurements were quantified from rabbit datasets with 

discrete CoA. BP waveforms were simultaneously measured proximal and distal to the CoA with 

the same model transducer (Harvard Apparatus, Holliston, MA) at 360 Hz using a computer 

interfaced with an analog-to-digital converter. Resulting waveforms were used to quantify mean 

arterial BP and associated time-constants7,8.  

Three-element Windkessel models were used to replicate the impact of vessels downstream 

of aortic outlets using three parameters with physiologic meaning: characteristic resistance (Rc), 

capacitance (C), and distal resistance (Rd). The total systemic capacitance (Ctotal) was determined 

from the range of measured time constants8,9 assuming a characteristic to total resistance ratio 

(Rc/Rtotal) of ≤11%9. Total systemic resistance (Rtotal = Rc + Rd) was identified from mean aortic 

flow and mean arterial pressure, i.e., Rtotal =MAP/Qmean (Supplemental Table 2). Linear regression 

characterized the correlation of total systemic resistance and capacitance with CoA severity. The 

physiological range of Windkessel parameters was then identified at each severity level (i.e., 40, 

60, 70, 80, and 90%) from the 95% confidence interval of linear regression fits. Total systemic 

capacitance and resistance were then distributed to each outlet based on a generalization of 

Murray’s law with ratios proportionate to the outlet cross-section areas10. 

  



 

Supplemental Table 2- Physiological range of boundary condition and vessel characteristics quantified in 

rabbits with CoA. 

% Area Obstruction  40  60  70  80  90 
            
Rtotal [103xcgs]  [12.3,13.7]  [13.0,13.9]  [13.3,15.6]  [13.7,15.9]  [13.9,16.1] 
            
Normalized time constant  [1.55,2.24]  [1.29,1.83]  [1.20,1.69]  [1.03,1.52]  [0.82,1.40] 
            
Ctotal [10-5xcgs] Discrete  [3.79,5.43]  [3.25,4.34]  [2.82,3.96]  [2.33,3.57]  [1.82,3.11] 

 Complex  [3.79,4.14]  [3.25,3.69]  [2.82,3.37]  [2.33,2.91]  [1.82,2.45] 
            
Wall Thickness Location 1  0.48 ±0.05  0.52 ±0.03  0.54 ±0.02  0.56 ±0.03  0.59 ±0.02 
[mm] Location 2  0.30 ±0.03  0.30 ±0.03  0.31 ±0.03  0.34 ±0.02  0.35 ±0.02 

 Location 3  0.31 ±0.01  0.31 ±0.01  0.26 ±0.01  0.32 ±0.01  0.30 ±0.03 
            
Wall Stiffness Location 1  3.51 ±0.23  7.03 ±0.32  17.1 ±0.21  21.5 ±0.77  20.1 ±0.25 
[106xcgs] Location 2  7.53 ±0.28  8.20 ±0.32  16.9 ±0.39  19.8 ±0.81  18.6 ±0.44 
  Location 3   12.1 ±0.37   15.2 ±0.44   20.0 ±0.72   22.2 ±0.56   11.0 ±0.33 
cgs: centimeter, gram, second. Locations 1, 2, and 3 indicate proximal ascending, proximal descending, and distal descending thoracis aorta, respectively. Data 
represent 95% confidence interval for total systemic resistance (Rtotal) and capacitance (Ctotal). Spatial distribution of wall thickness and stiffness are represented 
as mean ± S.D. 

 

Traditionally, tuning of computational arterial simulations is an iterative process starting from 

an initial guess for boundary conditions and with tweaking of parameters as needed, often 

manually, until resulting BP and flow distributions are within an acceptable range of 

target/measured values11–13. However, in the current study the physiological range of boundary 

conditions were known (Supplemental Table 2) from a group of rabbits with varying discrete CoA 

severity14–16. Therefore, a python script was developed to systematically evaluate possible 

combinations of boundary condition parameters by discretizing the solution space for total 

systemic resistance and capacitance as mentioned above. At each outlet the range of boundary 

condition parameters was discretized into five values, i.e., 5, 25, 50, 75, and 95th percentile. 

Similarly, the physiological range of Rc/Rtotal was discretized to 0.1, 3, 6, 9, and 11%. Finally, to 

account for local coarctation-induced perturbation in the distribution of resistances and 

capacitances, -50, -25, 0, 25, and 50% of the total resistance and capacitances were redistributed 

to achieve values inferred from literature17–22 as a result of the local constriction. This method 



created 55 possible choices for boundary condition parameters in the physiological range identified 

from all rabbit data referenced for the current study. One-dimensional ROM of blood flow were 

created for physiological boundary conditions and each complex CoA geometry. Results within 

10% of the aimed pressure and flows for all outlets were used for post-processing and identification 

of Doppler-derived indices. Simulations were performed in SimVascular (simvascular.github.io/) 

using a discontinuous Galerkin space-time finite element method with piecewise linear shape 

functions23. Convergence criteria included residuals <1E-4. Each simulation was run for 6 cardiac 

cycles until results were periodic24. A total of 48 simulations met convergence criteria for discrete 

CoA morphology. For complex CoA, 28 simulations met the convergence criteria for long-

segment and isthmus hypoplasia, and 27 for arch hypoplasia models. 

For complex CoA cases, literature was used to identify a sub-range of parameter values from 

those identified for discrete CoA rabbits. More specifically, the extent of arterial stiffening, 

impaired distensibility, and changes in pulse pressure are expected to be more prominent for 

complex CoA cases17–22. This results in higher slopes for the pressure drop over the diastolic phase, 

increases the time-constant, and decreases the capacitance of the system7,8,25. Hence, a left-sided 

subregion of the 95% confidence intervals identified for discrete CoA was assumed to be 

representative of parameters for use with complex CoA simulations (see Complex in Supplemental 

Table 2). 

Differences in performance for Doppler indices made clear by computational simulations are 

rooted in the fact that the CFPG includes several additional sub-indices described in Supplemental 

Table 1, namely the DVI and dPHT, which consider the hemodynamic changes resulting in 

complex CoA cases. Consequently, although a mixed behavior is possible due to the DVI and 

dPHT having opposite effects on the CFPG as indicated in Supplemental Figure 3, the CFPG is 



still relatively insensitive to proximal acceleration in the clinical ranges of complex CoA studied. 

Specifically, CFPG increases with dPHT making it more sensitive to additional proximal 

narrowing while, on the other hand, it decreases with DVI as is also seen in MBE and SBE-RP. 

Collectively, the CFPG performance tends to be less affected by the proximal acceleration. 

  



 

Supplemental Figure 3- CFPG behavior vs. DVI and dPHT for a representative simulation case 

of 1 m/s early diastolic velocity. CFPG increases with dPHT making it more sensitive to 

additional proximal narrowing while it decreases with DVI as is also seen in MBE and SBE-RP. 

Therefore, collectively the performance of the CFPG tends to be less affected by the proximal 

acceleration seen in the forms of complex CoA studied. 
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