
Supplementary Material 
Supplementary Methods 

Image acquisition and data conversion 

All computed tomography (CT) images were acquired using one of the following multi-detector CT scanners: 

SOMATOM Emotion 16 (Siemens), SOMATOM Sensation Cardiac (Siemens), SOMATOM Definition AS 

(Siemens), SOMATOM Emotion 6 (Siemens), Revolution Frontier (GE HealthCare), Aquilion (Canon 

Medical Systems), or Aquilion ONE (Canon Medical Systems). The CT images were extracted as DICOM 

files and converted to the NIfTI format using dcm2niix [1]. The ITK-SNAP software [2] was used for visual 

inspection of the CT images. Radiological parameters were obtained from the dcm2niix output. 

Training of segmentation neural networks 

For automatic identification of the thymic region for quantification (TRQ) in CT images, we trained 

DeepLabV3 neural network (NN) models with the ResNet-50 backbone [3]. The DeepLabV3 NN is known to 

show high performance in semantic segmentation tasks. The NN models were implemented using Python 

(v3.9) and PyTorch (v1.10). 

 Each CT image was processed by the neural network model as follows (see Supplementary Fig. 1). 

Each axial slice image was used as an input to the NN. The original 512×512 slice images were downscaled 

to the size of 256×256 before being inputted. The NN outputted label information in 256×256. The labels 

“1”, “2”, and “0” were assigned to the airways, the TRQ, and none of these, respectively. The output was 

upscaled to 512×512 for the subsequent analyses. 

 The development dataset was split randomly into six subsets, stratified by the age, sex, and slice 

thickness using the iterative-stratification package [4]. One subset was used as the test set, while the 

remaining five subsets (training set) were used for NN training and five-fold cross-validation. During the five-

fold cross-validation process, we optimized the conditions for image augmentation and performed 

hyperparameter tuning. 

 During the training process, the following image augmentation processing was performed: Rotation: 

The slice image was rotated by a random angle from -30° to +30°; Random erasing: Up to three rectangular 

regions of random sizes were erased, and the inner areas were replaced with random values. The parameter 

settings for the NN training were as follows: batch size: 8; number of epochs: 20; learning rate: 0.0001. 

RMSprop was used as the optimization algorithm. The loss function was cross entropy.  
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Measurement of the TRQ HU value 

The TRQ in each CT study was segmented by the five NN models generated in the five-fold cross-validation. 

For robust measurement of the TRQ HU value in the presence of potential mis-segmentation and obstacles, 

the five segmentation results were separately processed as follows: First, the distribution of the HU value in 

the segmented TRQ was obtained. Next, the density function was estimated using kernel density distribution 

estimation (KDE). KDE was estimated by the scipy.stats.gaussian_kde function in the SciPy package [5]. 

Finally, the mode value, where the density function reaches its maximum, was set as the representative HU 

value of the segmented TRQ. The mode value is robust against outliers arising from mis-segmentation and 

obstacles. It is an appropriate central tendency to use when the distribution is unimodal. When the probability 

density function in a segmented TRQ was multimodal, the segmentation result was labeled as invalid and 

discarded; we considered probability distributions as multimodal when the second highest peak of the density 

function exceeded half the height of the highest peak. 

Establishing the quality control criteria 

The segmentation quality was evaluated by three indicators: TRQ volume estimation error (absolute log fold-

difference between the NN-segmented and manually segmented TRQ volume), TRQ HU value estimation 

error (absolute difference between the NN-segmented and manually segmented TRQ HU value), and DSC 

between the NN-segmented and manually segmented TRQ. To predict these indicator values, seven measures 

were calculated from the five automatic segmentation results in each study as follows. 

1. HU value median: Median of the mode HU values calculated for each segmentation result. 

2. Volume median: Median of the TRQ volumes calculated for each segmentation result. 

3. HU value variance: Unbiased variance of the mode HU values calculated for each segmentation result. 

4. Volume CV: Coefficients of variation (CV) of the TRQ volumes calculated for each segmentation result. 

CV is the square root of unbiased variance divided by the mean. 

5. Mean pairwise JS divergence: Jensen-Shannon divergence (JS divergence) evaluates the dissimilarity 

between two probability distributions. JS divergence of the HU value distributions was calculated between 

all possible pairs and averaged. To estimate the probability distribution, the HU values were limited to the 

range falling between -300 HU and 300 HU and smoothed by KDE. 

6. Mean pairwise DSC: DSC was calculated for all possible pairs and averaged. 

7. HU value second peak height: The height of the second highest peak divided by the height of the highest 

peak in HU value distribution was calculated for each segmented TRQ and averaged. The distribution was 

estimated by KDE. When the second highest peak could not be detected, the value was calculated as zero. 

 

The correlations between the three quality indicators and seven measures were evaluated by pairwise 

Spearman rank correlation in the test set. The p values were FDR-adjusted by the Benjamini-Hochberg 

method. Multivariable analyses were not performed due to the limited sample size. 



Derivation of the estimator of thymic volume (ETV) 

When the TRQ is considered as a homogenous mixture of thymic and adipose tissue, and it is assumed that 

the volumes of the thymic and adipose tissue are 𝑣𝑡ℎ𝑦𝑚𝑖𝑐 and 𝑣𝑎𝑑𝑖𝑝𝑜𝑠𝑒 with constant HU values of 𝐴𝑡ℎ𝑦𝑚𝑖𝑐 

and 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 (𝐴𝑡ℎ𝑦𝑚𝑖𝑐 > 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒), respectively, TRQ volume 𝑣𝑇𝑅𝑄 and HU value 𝐴𝑇𝑅𝑄 would have the 

following relationships: 

𝑣𝑇𝑅𝑄 = 𝑣𝑡ℎ𝑦𝑚𝑖𝑐 + 𝑣𝑎𝑑𝑖𝑝𝑜𝑠𝑒 

and 

𝐴𝑇𝑅𝑄 =
𝑣𝑡ℎ𝑦𝑚𝑖𝑐𝐴𝑡ℎ𝑦𝑚𝑖𝑐 + 𝑣𝑎𝑑𝑖𝑝𝑜𝑠𝑒𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒

𝑣𝑡ℎ𝑦𝑚𝑖𝑐 + 𝑣𝑎𝑑𝑖𝑝𝑜𝑠𝑒
 . 

From these equations, we obtain 

(𝐴𝑇𝑅𝑄 − 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒)𝑣𝑇𝑅𝑄 = (𝐴𝑡ℎ𝑦𝑚𝑖𝑐 − 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒)𝑣𝑡ℎ𝑦𝑚𝑖𝑐 (1) 

and 

log10(𝐴𝑇𝑅𝑄 − 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒) = − log10 𝑣𝑇𝑅𝑄 + log10 𝑣𝑡ℎ𝑦𝑚𝑖𝑐 − log10(𝐴𝑡ℎ𝑦𝑚𝑖𝑐 − 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒) . (2) 

In the actual data analysis, 𝐴𝑇𝑅𝑄 and 𝑣𝑇𝑅𝑄 were estimated from the segmentation results. We denote these 

as 𝐴𝑇𝑅�̂�𝑖
 and 𝑣𝑇𝑅�̂�𝑖

 for the CT study 𝑖, respectively. 

 When the values of the constants 𝐴𝑡ℎ𝑦𝑚𝑖𝑐 and 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 are correctly assumed and thymic tissue 

volume 𝑣𝑡ℎ𝑦𝑚𝑖𝑐𝑖
 is also considered as a constant, 𝐴𝑇𝑅�̂�𝑖

and 𝑣𝑇𝑅�̂�𝑖
 should satisfy the equations 

(𝐴𝑇𝑅�̂�𝑖
− 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒) 𝑣𝑇𝑅�̂�𝑖

= 𝐶 (1)′ 

and 

log10 (𝐴𝑇𝑅�̂�𝑖
− 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒) = − log10 𝑣𝑇𝑅�̂�𝑖

+ 𝐶′ (2)′ 

where 𝐶 and 𝐶′ are constant. It can be inferred from formula (1)′, that when 𝑣𝑇𝑅�̂�𝑖
 approaches infinity, 

𝐴𝑇𝑅�̂�𝑖
 converges to 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒. Also, regarding formula (2)′, the regression model 

log10 (𝐴𝑇𝑅�̂�𝑖
− 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒) = 𝛽1 log10 𝑣𝑇𝑅�̂�𝑖

+ 𝛽0 + 𝜀𝑖 , (2)′′ 

where 𝛽1 and 𝛽0 are regression coefficients, is expected to bear a result equivalent to 𝛽1 = −1. 𝜀𝑖 is the 

error term. 

 We sought to test whether these theories would hold true for actual data. Using the healthy dataset, 

the relationship between 𝐴𝑇𝑅�̂�𝑖
 and 𝑣𝑇𝑅�̂�𝑖

 was assessed using a scatterplot and approximation curves to see if 

equations (1)′ and (2)′ hold true. The curves were drawn using the geom_smooth function in the ggplot 

package with default options. Since 𝑣𝑡ℎ𝑦𝑚𝑖𝑐𝑖
 was assumed to be constant when deriving equations (1)′ and 

(2)′, data were grouped based on the age when drawing the curves, expecting 𝑣𝑡ℎ𝑦𝑚𝑖𝑐𝑖
 to be roughly constant 

within each age group. Furthermore, regression model (2)′′ was applied to the healthy dataset as a 



generalized linear mixed model. Since the regression model also assumes that 𝑣𝑡ℎ𝑦𝑚𝑖𝑐𝑖
 is constant across 

images, 𝛽0 was set as a random effect dependent on the age group. Fixed effect 𝛽1 was estimated assuming 

different values of 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒. 𝐴𝑇𝑅�̂�𝑖
 values smaller than 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 were removed, or adjusted as 

𝐴′
𝑇𝑅�̂�𝑖

=
⎩{
⎨
{⎧ 𝐴𝑇𝑅�̂�𝑖

, if 𝐴𝑇𝑅�̂�𝑖
≥ 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 + 𝛿𝐴

𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 + 𝛿𝐴, if 𝐴𝑇𝑅�̂�𝑖
< 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 + 𝛿𝐴 

(3)

where 𝛿𝐴 is the constant of margin. 𝛿𝐴 = 1 HU was used for all the analyses. The lme4 package [6], 

lmertest package [7] and performance package [8] were used for the generalized linear mixed model analyses. 

 Finally, given that the assumptions made above are true, 𝑣𝑡ℎ𝑦𝑚𝑖𝑐𝑖
 for each CT image can be 

estimated from 𝐴𝑇𝑅�̂�𝑖
 and 𝑣𝑇𝑅�̂�𝑖

 by an estimator derived from equation (1), defined as 

ETV (𝐴′
𝑇𝑅�̂�𝑖

 , 𝑣𝑇𝑅�̂�𝑖
) ≝

𝐴′
𝑇𝑅�̂�𝑖

− 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒

𝐴𝑡ℎ𝑦𝑚𝑖𝑐 − 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒
𝑣𝑇𝑅�̂�𝑖

.  

This is the estimator of thymic volume (ETV), a statistical estimator of the thymic tissue volume. 𝐴𝑇𝑅�̂�𝑖
 

was adjusted as in formula (3). As we assumed arbitrary constant values for 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 and 𝐴𝑡ℎ𝑦𝑚𝑖𝑐, ETV is a 

relative (not absolute) measure of the actual thymic tissue volume. 

Measuring age-related changes of the thymic region 

Due to the nonlinear and highly variable nature of the aging process of the thymus, our data were expected to 

show nonlinearity and heteroskedasticity. Hence, we utilized quantile additive regression models to analyze 

the data. To reveal age-related changes in the median and the interquartile range of the TRQ HU value, 

volume, and ETV, we applied the following quantile additive regression model to the healthy dataset, 

separately for males and females: 

𝑦 = 𝑓𝑎𝑔𝑒(age𝑖) + 𝜀𝑖 . 

𝑦 denotes the TRQ HU value, volume, or ETV. 𝑓(⋅) and 𝜀𝑖 indicate smooth terms and error terms, 

respectively. 𝑓𝑎𝑔𝑒(age𝑖) represents the effect of age. Alternatively, to test for the effect of sex, the following 

model was applied: 

𝑦 = 𝑓𝑎𝑔𝑒(age𝑖) + sex𝑖𝑓𝑠𝑒𝑥(age𝑖) + 𝜀𝑖 , 

where the term sex𝑖𝑓𝑠𝑒𝑥(age𝑖) represents the age-dependent and age-independent effects of sex. p values for 

𝑓𝑎𝑔𝑒(age𝑖) and sex𝑖𝑓𝑠𝑒𝑥(age𝑖) are reported as 𝑝𝑎𝑔𝑒 and 𝑝𝑠𝑒𝑥 , respectively, for median values. The qgam 

package [9] was used for all of these quantile additive regression analyses. Options k=10 and bs="ad" were 

used in the s function. 



Calculation of the ETV z-score 

To make the ETV value understandable in comparison with the healthy group, the ETV z-score was defined 

as a robust z-score [10] calculated from the common logarithm of the ETV value, as 

ETV z-score𝑖 ≝
log10 ETV𝑖 − 𝑄log10 ETV(0.5; age𝑖, sex𝑖)

0.74 × (𝑄log10 ETV(0.75; age𝑖, sex𝑖) − 𝑄log10 ETV(0.25; age𝑖, sex𝑖))
 

= log10 ETV𝑖 − log10 𝑄ETV(0.5; age𝑖, sex𝑖)
0.74 × (log10 𝑄ETV(0.75; age𝑖, sex𝑖) − log10 𝑄ETV(0.25; age𝑖, sex𝑖))

 , 

where 𝑄log10 ETV(𝑝;  age𝑖, sex𝑖) and 𝑄ETV(𝑝; age𝑖, sex𝑖) represent the quantile functions of log10 ETV𝑖 

and ETV𝑖 respectively. 𝑝 = 0.25, 0.5, 0.75 correspond to the quartile points. Values of 

𝑄ETV(𝑝; age𝑖, sex𝑖) were calculated from the quantile regression models applied to the healthy dataset. Log 

transformation was performed because the ETV had right-skewed distribution. 

 

Fig. S2 Diagram depicting the theory and the calculation process of the estimator of thymic volume 
(ETV). The statistical estimator ETV estimates the thymic tissue volume based on the volume and HU 
value of the segmented TRQ, in a way similar to solving mixture problems in elementary school math. 



Supplementary Results 

Validation of the ETV theory 

The TRQ HU value showed a negative correlation with the TRQ volume (Fig. S4a and S4b). The graphs 

showed hyperbola-like shapes across age groups, as predicted by equation (1)′. The HU value converged to 

around -110 HU when the TRQ volume was large, which suggests the true value of 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒. On the log-log 

plot, the relationship was roughly linear with slope -1 across age groups (Fig. S4c), in agreement with formula 

(2)′. Curves from older groups appeared in the lower positions, reflecting thymic involution with age (Fig. 4b 

and 4c). 

 In the regression analyses, 𝛽1 mostly matched the predicted value -1 when 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 was assumed 

to be −110 HU. Effect of the TRQ volume on the TRQ HU value was strong and statistically significant in 

the model assuming 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 = −110 HU (p < 0.001, marginal 𝑅2 = 0.30). 

  

Fig. S3 Results of the correlation analyses to determine the quality control criteria. Correlations 
between seven measures and the segmentation quality indicators were calculated. The quality 
indicators were the TRQ volume estimation error (a), HU value estimation error (b), and DSC 
(NN-based vs. manual) (c). *p < 0.05, **p < 0.01, ***p < 0.001. 



 

 

 

 

 

  

Fig. S4 Relationship between the TRQ HU value and TRQ volume. a and b, The relationship is shown on 
a linear scale, on a scatterplot (a) and spline curves (b). The data points were grouped based on age when 
drawing the curves. c, The relationship is shown on a log-log scale. 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 was assumed to be -110 HU. 
The dotted line shows slope -1 for reference.  

Fig. S5 Results of the regression analyses using model (2)′′. 𝛽1 estimated for different values of 
𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 are shown as blue and orange points. Studies with TRQ HU value smaller than 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 were 
either adjusted (orange) or removed (blue) from the analyses. The error bars depict the confidence intervals. 
The red ribbon graph at the bottom shows the percentage of studies with TRQ HU values smaller than the 
assumed 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒.  



References 
1.  Li X, Morgan PS, Ashburner J, et al (2016) The first step for neuroimaging data analysis: DICOM to 

NIfTI conversion. J Neurosci Methods 264:47–56 

2.  Yushkevich PA, Piven J, Hazlett HC, et al (2006) User-guided 3D active contour segmentation of 
anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128 

3.  Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking Atrous Convolution for Semantic 
Image Segmentation. arXiv e-prints arXiv:1706.05587 

4.  Sechidis K, Tsoumakas G, Vlahavas I (2011) On the Stratification of Multi-label Data. In: Machine 
Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, pp 145–158 

5.  Virtanen P, Gommers R, Oliphant TE, et al (2020) SciPy 1.0: fundamental algorithms for scientific 
computing in Python. Nat Methods 17:261–272 

6.  Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models Usinglme4. J Stat 
Softw 67:. https://doi.org/10.18637/jss.v067.i01 

7.  Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: Tests in Linear Mixed Effects 
Models. J Stat Softw 82:1–26 

8.  Nakagawa S, Schielzeth H (2013) A general and simple method for obtainingR2from generalized linear 
mixed-effects models. Methods Ecol Evol 4:133–142 

9.  Fasiolo M, Wood SN, Zaffran M, et al (2020) qgam: Bayesian non-parametric quantile regression 
modelling in R. arXiv [stat.ME] 

10.  Huynh H, Meyer P (2010) Use of robust z in detecting unstable items in item response theory models. 
Practical Assessment, Research, and Evaluation 15:2 


