Table S1. Epidemiological and clinical characteristics of ITx patients with B cell chimerism, phenotypic and sequencing data.SBS: Short Bowel Syndrome. NEC: Necrotizing enterocolitis. TCMR: T-cell mediated rejection. DSA: Donor-Specific AntibodyPTLD: Posttransplant lymphoproliferative disease.

Pt (#)	Indication for Transplant	Tx Type	Recipient Age Range at Tx (years)	Recipient Sex	Donor Age Range (years)	Donor Sex	Rejection (intestinal mucosal biopsy)	GVHD	Death Or Graft Removal	<i>De Novo</i> DSA (Serum)
4 reTx	Pseudo- obstruction; Berdon/MMIH syndrome	MVTx	11-15	Female	0-5	Male	No	No	No	No
14	Tufting Enteropathy	iITx	0-5	Male	0-5	Female	Early mixed rejection (mild) Late mixed rejection (Moderate)	No	Graft Removal	Early Class I, MFI >10,000, Class II MFI <6,000 Late Class I, MFI <6,000, Class II MFI >10,000
16 reTx	SBS secondary to NEC	MVTx	0-5	Male	0-5	Male	Early TCMR (mild to moderate) Late TCMR (mild)	No	No	No
17	Tufting Enteropathy	iITx	0-5	Male	0-5	Male	Early mixed rejection (mild) Mid TCMR (mild- moderate)	No	No	Early Class II MFI >6,000
19	SBS secondary to <i>in utero</i> volvulus	MVTx	0-5	Male	0-5	Female	No	No	No	Early Class II MFI <10,000

20	SBS secondary to malrotation/ volvulus	iITx	0-5	Female	0-5	Female	Early mixed Rejection (mild to moderate)	No	No	Early Class I, MFI <10,000, Class II MFI <6,000
21	Microvillus Inclusion	MVTx	0-5	Female	0-5	Male	Late TCMR (Moderate to severe)	No	Graft Removal	No
21 reTx	Microvillus Inclusion	MVTx	0-5	Female	0-5	Female	Early TCMR (mild)	No	No	No
22	Budd Chiari Syndrome	MVTx	41-45	Female	21-25	Male	Early TCMR (mild)	No	Death (Sepsis)	*Preformed Class I, MFI <6,000,
23	SBS, midgut atresia	MVTx	0-5	Male	0-5	Male	Early TCMR (mild to moderate) Late TCMR (moderate to severe)	No	Death (Viral infection)	*Preformed Class I, MFI <6,000, Class II MFI <10,000
24	SBS, cholestasis, SVC thrombosis	iITx	6-10	Male	0-5	Male	Early mixed Rejection (mild to severe)	No	Graft removal	Early Class I, MFI <10,000, Class II MFI >10,000
25	SBS, biliary stricture, portomesenteric thrombosis	MVTx	6-10	Male	0-5	Female	Early mixed Rejection (mild) Mid mixed Rejection (mild- moderate)	No	No	Early Class I, MFI <10,000, Class II MFI >10,000
26	HTN, SBS secondary to midgut volvulus and mesenteric ischemia	iITx	36-40	Female	26-30	Female	Early-Mid TCMR (mild to moderate)	No	No	Early Class II, MFI >2,000
27	SBS secondary to NEC	MVTx	0-5	Female	0-5	Female	Early-Mid TCMR (mild)	No	No	No

Donor (#)	Age Range (years)	Sex	Cause of Death	Tissue Usage		
145	51-55	Male	Cerebrovascular accident	PBMC, ileum; BCR sequencing		
149	51-55	Male	Anoxia	PBMC, ileum; BCR sequencing		
168	56-60	Female	Cerebrovascular accident	PBMC, ileum; BCR sequencing		
181	46-50	Male	Cerebrovascular accident	PBMC, ileum; BCR sequencing		
182	46-50	Male	Cerebrovascular accident	PBMC, ileum; BCR sequencing		
207	21-25	Male	Head Trauma	PBMC, ileum; BCR sequencing		
425	26-30	Female	Anoxia	PBMC, ileum; B cell phenotyping		
430	16-20	Male	Brain Hemorrhage	PBMC, ileum; B cell phenotyping		
442	16-20	Male	Motor Vehicle Accident	PBMC, ileum; B cell phenotyping		
530	26-30	Male	Cerebrovascular/stroke	PBMC, ileum; B cell phenotyping		
531	46-50	Male	Cerebrovascular/stroke	PBMC, ileum; B cell phenotyping		

Table S2. Epidemiological and clinical characteristics of adult healthy control deceased organ donors.

Table S3. HLA class I typing and anti-HLA allele antibodies used to distinguish donor from recipient cells in ITx recipients. HLA-A09 is a broad antigen HLA-A serotype that recognized the HLA-A23 and HLA-A24 serotypes. HLA-A28 is a broad antigen HLA-A serotype that recognized the HLA-A68 and HLA-A69 serotypes. HLA-B12 is a broad antigen HLA-B serotype that recognized the HLA-B44 and HLA-B45 serotypes.

Dt (#)	Recipient	Donor	HLA I allele-specific mABs			
Pt (#)	HLA I type	HLA type	Used to discriminate recipient from donor cells			
4 reTx	<u>A02</u> / A30	A68 / A74	Anti-HLA A02 (BB7.2) FITC			
	B42 / B53	B72 / B42	Anti-HLA A03 APC (First donor)			
14	<u>A23</u> / A-	A03 / A68	Anti-HLA A09 Biotin			
	B50 / B-	B35 / B58	Anti-HLA A03 APC			
16 reTx	A02 / A34	<u>A24</u> / 29	Anti-HLA B12 FITC (First donor B12 ⁻ A9 ⁻)			
	B15 / <u>B44</u>	B35 / <u>B44</u>	Anti-HLA A09 Biotin			
17	A30 / A31	A24 / A32	Anti-HLA B27 FITC			
	B40 / B53	B27 / B35				
19	A02 / A68	A02 / <u>A03</u>	Anti-HLA A03 APC			
	B39 / B48	B53 / B72				
20	A02 / <u>A03</u>	A02 / A68	Anti-HLA A03 APC			
	B50 / B52	<u>B44</u> / B53	Anti-HLA B12 FITC			
21	A01 / A11	<u>A03</u> / <u>A03</u>	Anti-HLA A03 APC			
	B39 / B58	B65 / B35				
21 reTx	A01 / A11	<u>A02</u> / A31	Anti-HLA A02/A28 FITC			
	B39 / B58	B18 / B60	Anti-HLA A03 APC (First donor)			
22	A01 / A30	A29 / A34	Anti-HLA B12 FITC			
	B15 / B53	B27 / <u>B45</u>				
23	<u>A02</u> / A30	<u>A03</u> / A24	Anti-HLA A03 APC			
	B15 / B57	B35 / B44	Anti-HLA A02/28 Biotin			
24	A01 / A11	<u>A68</u> / A74	Anti-HLA B08 FITC			

	<u>B08</u> / B41	B07 /B57	Anti-HLA A02/28 Biotin
25	<u>A02</u> / A03	A01 / A24	Anti-HLA A02/28 Biotin
	B71 / B49	B08 / <u>B44</u>	Anti-HLA B12 FITC
26	A01 / A33	A25 / A26	Anti-HLA B08 FITC
	B65 / B38	<u>B08</u> / B38	
27	A32 / A68	<u>A02</u> / <u>A03</u>	Anti-HLA A02 (BB7.2) FITC
	B35 / B57	B07 / B51	Anti-HLA A03 APC

Supplemental Figure 1 Gating strategy for phenotyping B cell subsets in Pt20 POD73 PBMC (A) and POD74 ileal allograft biopsy (B) samples. HLA-specific markers distinguishing transplant donor (blue) and recipient (red) are used to identify transplantoriginating donor cells in PBMC and allograft mucosa. Gates and % shown are only for recipient cells (red). Memory B cells: CD27⁺IgD^{+/-}. Naïve B cells: CD27⁻IgD⁺. Transitional B cells: CD24⁺CD38⁺ among naïve B cell gating. Mature Naïve B cells: CD24⁻ /dimCD38^{-/dim} among naïve B cell gating. ASC (antibody secreting cells): CD24⁻CD38⁺ among memory B cell gating. CD24⁺ Memory: CD24⁺CD38^{-/dim} among memory B cell gating. BRM: CD69⁺CD45RB⁺ B cells.

Supplemental Figure 2 Normalized area under the curve (AUC) values of recipient B cell chimerism in allograft in patients (A) with or without acute cellular rejection (ACR) and (B) with or without *de novo* Class I/II DSA in serum during early post-Tx period (up to POD90). No significant difference was detected by Mann-Whitney U test (p>0.05).

Supplemental Figure 3 (A) *De novo* development of Class I (upper panel) and Class II (lower panel) DSA detected in post-Tx serum correlates with higher rates of moderate or severe ACR. (B) Local production of DSA by mucosal recipient B cells matched the DSA specificity detected in the serum on the same day in a patient during graft explant (Pt14 POD1764) due to chronic rejection with previously persistent ACR.

Supplemental Figure 4. The fraction of clones per sample with an average v gene mutation frequency >2% by POD is shown in peripheral blood and ileum allograft. The median fraction of mutated clones among adult deceased donors is shown by the dashed lines. Individuals are marked as in Figure 4. Green markers indicate pre-Tx samples (samples taken at POD0).

Supplemental Figure 5. Pediatric transplant patients exhibit increased trafficking between the blood and ileum allograft among mutated (A) and trunk (B) clones compared to adult deceased donor controls. The median clumpiness per individual for a given pair of tissues is shown. In panel (A), clones were filtered for having 3 or more sequence nodes in their lineages, being mutated (average gene mutation frequency >2%), and being sampled in both tissues that were compared. In panel (B), clones were filtered for having 3 or more unique sequences, having a trunk, and being sampled in both tissues that were compared. Only medians with greater than 5 clones were included. The Mann-Whitney U test was performed to determine statistical significance (*p<0.05). Individuals are marked as in Figure 4.

Supplemental Figure 6. Median clumpiness between the blood and ileum allograft (or pre-Tx ileum for POD0) per individual by POD was shown. Clones were filtered for having 3 or more unique sequences, and being sampled in both tissues that were compared. Only data points with greater than 5 clones were included. Median clumpiness between the blood and ileum tissues in adult deceased donors is shown by the dotted dashed line. Individuals are marked as in Figure 4.

