
Supplementary material 
 
This is a supplement with the article Projecting COVID-19 intensive care admissions in the 
Netherlands for policy advice: February 2020 to January 2021, by Don Klinkenberg, Jantien Backer, 
Nicolette de Keizer, and Jacco Wallinga. In this supplement we describe the model structure and the 
equations. We present the various steps for inferring model parameters. The order of these steps 
matter. The presentation is organized such that at each step the values of input variables have been 
obtained in earlier steps. We present the model version that was used on 6 January 2021, the last 
day of the study period. 
 
The code used for the analyses and simulations on 6 January 2021 is available at 
http://www.github.com/rivm-syso/COVID-projectionmodel. To be able to use the code for the 
analysis of dataset with personal information, synthetic data have been created from the original 
data and estimation results. These synthetic data have been created from datasets with personal 
information, but with real persons replaced by 'fake persons'. That has been done in such a way that 
the analysis of the synthetic data gives approximately the same results as analysis of the original 
data. If real persons seem to recognise themselves in the synthetic data, then that is pure 
coincidence: we do not publish personal data. Statistical properties of the synthetic data other than 
the results in this repository do not necessarily reflect the statistical properties of the original data. 
These synthetic data may not be used outside this repository. 
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1. The model  
 
1.1. The transmission model 
 
1.1.1. The ODE model 
 
The transmission model simulates the daily number of infections ( )iy t  in each age group i. There are 
nine age groups: 0-9, 10-19, … 70-79, 80+ years old. The number of individuals in each age group i is 
denoted by iN .  
 
Early in the pandemic, the simulations were done with a system of ordinary differential equations: 
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The model was initialized (t = 0 is 12 February 2020) with ( ) ( ) ( ) ( )1 2 1 2

00 0 0 0 4i i i iE E I I y= = = = . Here, 

the infection incidence ( )iy t  in age group i , i.e. the daily rate of new infections, is modelled as 
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This assumes homogeneous mixing within age groups. The time-varying force of infection ( )i tλ  is 
the fundamental descriptor of the transmission model, and combines the underlying components 
infectivity, susceptibility and contact rates between individuals of all age classes, as well as how 
these contact rates changed due to control measures, behaviour or by other means (see next section 
for parameter estimation). The components of ( )i tλ  consist of: 

- the population size N , with proportion of the population ix  in age group i  to determine the 
initial values ( )0i iS x N=  

- the number of infected people in age group j , jI  (sum of compartments 1I  and 2I  in the 
SEEIIR model) 

- the relative susceptibility of age group i , S
iσ , and relative infectivity of age group j , I

jσ   
- the rate by which each individual in age group i  makes contacts with individuals of age 

group j  (if all individuals would be of type j ), ( )ijc t . This rate is an element of the contact 



matrix ( )tC , and is stepwise constant, depending on control measures in periods of the 

epidemic T . Given the contact matrices TC , and the transition times Tu , ( )
1, T TT u t ut

− < ≤=C C .  

- the transmissibility parameter, ( )tβ . This rate is stepwise constant with change points at 
some of the transition times Tu , which reflect changes in transmissibility that are not 
covered by changes in the contact matrices: ( )

1, T TT u t utβ β
− < ≤=  . 

 
 
 
 
 
1.1.2. The next-generation matrix and reproduction ratio 
 
To further analyse this model, e.g. to estimate the change in the reproduction number, the model 
can be described by the time-varying next-generation matrix (1), which is defined as 
 

 ( ) ( ) ( ) ( )T2 t I S
T Tt β

γ=M σ C σ x , (S3) 

 
in which   indicates element-wise multiplication. In this matrix, each element ijm  is the expected 
number of individuals in age group j that is infected by each infective in age group i, if the population 
would be completely susceptible. In this equation we explicitly decouple the contact matrix TC  from 
time t, so that we can evaluate changes due to the estimated contact matrices alone (by using ( )0β  

and any matrix TC ), and changes due to contact matrices and transmissibility (by using ( )tβ  and 

( )T t=C C ). 
 
The basic reproduction number 0R , defined as the mean number of secondary cases per primary 
case in a susceptible population, in the absence of control measures, is equal to the largest 
eigenvalue ρ  of this matrix at the start of the epidemic 
 

 ( ) ( ) ( ) ( )T2 0
1 10 I Sβ

γ=M σ C σ x , (S4) 

 
The relative transmission rate during control measures ( )T tφ  is thus determined as the ratio of the 
eigenvalues of these two matrices: 
 
 ( ) ( )( ) ( )( )1 0T Tt tφ ρ ρ= M M  (S5) 

 
To evaluate the change in reproduction number attributable to the change in estimated contact 
matrix (in Figure 2 in the main text), we calculated ( )0Tφ . 
 
 
1.1.3. The discrete-time model 
 
To decrease simulation time, as of 25 November 2020 the continuous-time version of the model was 
replaced by a discrete-time version with time steps of one day, with ( )jI t  described in terms of  
earlier incidence up to 12 days previously (renewal equation (1)), and generation interval  
distribution ( )g τ  (Figure 1b in the main text): 
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Simulations with this discrete-time model start with the number of susceptible individuals in each 
age group on 1 February 2020 as i iS N= . Simulations are initialized with a constant daily number of 
infections ( ) 0 12iy t y=  for each age group from 1 to 12 February 2020. The transmission model 
runs in discrete time, with day 0t =  corresponding to 12 February 2020. At each time step t, the 
hazard rate of infection ( )i tλ  is calculated for each age group i as: 
 

  ( ) ( ) ( ) ( ) ( )
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1
i i ij j j

j

t t c t y t g N
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λ β σ σ τ τ
=

= −∑ ∑ . (S7) 

 
Here, we assume that the age-specific susceptibilities and the age-specific infectivities are identical, 
so S I

i i iσ σ σ= = . This assumption was made when the model was changed to include these 
heterogeneities, when serological data became available showing heterogeneity in attack rates. 
Several assumptions were considered: (i) age-specific susceptibility only, (ii) age-specific infectivity 
only, and (iii) both. No differences in results were seen between options (i) and (iii). We selected 
option (iii) because we reasoned that age-dependent severity may be associated with infectivity, and 
stayed with that choice, in line with our general workflow regarding model development (Section 2.5 
main text).  
 
This hazard rate of infection ( )i tλ  determines how the daily number of new infections and number 
of susceptibles in each age group depend on the numbers on the previous day: 
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A comparison in results between the continuous-time and discrete-time models is given in section 
3.1 of this Supplement. 
 
 
 
1.2. The clinical progression model 
 
The daily numbers of infections ( )iy t  are used to calculate the daily numbers of hospital admissions, 
hospital discharges from the general ward (non-ICU patients), ICU admissions, ICU discharges to the 
general ward, and hospital discharges from the general ward (ICU patients). Hospital patients that 
die are included in the daily number of discharges, i.e. the length-of-stay distributions do not differ 
between patients that die and patients that are discharged. The progression from infection to 
hospital admission, and possibly ICU admission, and possibly back to a general ward, is determined 
by time-varying probabilities: 
 

1. ( )PrA
i t : the probability of hospital admission in age group i, at time t at which hospital 

admission would occur (after the incubation period and subsequent delay to hospital 
admission) 

2. ( )PrICU
i t : the probability of transfer to ICU in age group i, given hospital admission at time t 



3. ( )PrH
i t : the probability of transfer back to a hospital ward from ICU, given hospital 

admission at time t 
 
The times at which events, such as symptom onset, hospital admission, happen are determined by 
probability distributions for the time period between these events: 
 

4. ( )~ ,S S Sd W α µ : for the incubation period, the time from infection to symptom onset, which 

follows a (discretised) Weibull distribution with shape Sα  and mean Sµ  

5. ( ) ( )( )~ ,A A A
i id t NB tα µ : the time period from symptom onset to hospital admission follows a 

negative binomial distribution where the mean depends on age and time of symptom onset  
6. ( ) ( )( )~ ,A A AD D Dd t NB tα µ : the time period from hospital admission to either discharge or 

death without being admitted to the ICU follows a negative binomial distribution where the 
mean depends on the time of hospital admission 

7. ( ) ( )( )~ ,ICU ICU ICUd t NB tα µ : the time period from hospital admission to transfer to the ICU 

follows a negative binomial distribution where the mean depends on the time of hospital 
admission 

8. ( ) ( )( )~ ,ICU ICU ICUD D Dd t NB tα µ : the time period from ICU admission to discharge or death 

follows a negative binomial distribution where the mean depends on the time of hospital 
admission 

9. ( ) ( )( )~ ,H H HD D Dd t NB tα µ : the time period from transfer from ICU back to a hospital ward to 

discharge or death from that hospital ward follows a negative binomial distribution where 
the mean depends on the time of hospital admission 

 
We compute the daily number of ICU admissions from the daily number of infections ( )iy t using the 
probabilities and probability distributions that are described above. We denote the resulting daily 
number of simulated ICU admissions as ( )iz t : 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 ' '' '

Pr '' Pr '' ' '' ' ''
t t t

A ICU S A ICU
i i i i iz t y d d d t

τ τ τ τ τ

τ τ τ τ τ τ τ τ
= = =

= − − −∑∑ ∑  (S8) 

  
Here, τ  enumerates infection days, 'τ  enumerates days of symptom onset, and ''τ  enumerates 
days of (potential) hospital admission.  
 
1.3. The observed number of daily ICU admissions 
 
The ICU admissions are reported with a short delay. The probability of an ICU admission on day t 
being reported on the day of the analysis, analysist , is indicated as ( )obs analysisp t t− . The expected 

number of observed ICU admissions on day t is ( ) ( )obs analysis i
i

p t t z t− ∑ . 

The transmission model is fitted such that the actual observed daily number of ICU admissions is 
close this expected daily number of ICU admissions. To obtain this fit we take the initial incidence 0y  
and transmission parameter ( )tβ  (in fact, the piecewise constant values Tβ ) that maximizes the 
Poisson likelihood function for the expected number of observed ICU admissions.  
 
 
 



 
2. Parameter estimation  
 
2.1. Step 1: parameters and distributions (excluding contact rates and transmissibility) 
 
Each weekly model analysis starts with the collection of all parameter values other than the contact 
matrices TC  and transmissibility parameters Tβ . The analyses are adapted when necessary 
throughout the year, when additional data sources become available, or if parameter values appear 
to change over time. Here we describe the analyses as carried out on 6 January 2021, the final 
analyses without variants, seasonality, and vaccination. 
 
2.1.1. Parameter values based on literature 
 
Transmission model: generation interval distribution 
The generation interval distribution ( )g τ  resulting from the SEEIIR model with transition rate 

0.875γ =  is based on early estimates from China (2, 3). The mean generation interval of 4.0 days is 
regularly validated against contact tracing data, and was not adapted during the first year of the 
pandemic. 
 
Clinical progression model, function 4: incubation period distribution 
The incubation period distribution ( ).Sd  (the time infection to symptom onset) is based on 
literature estimates (4, 5): 2.1Sα =  and 5Sµ = . 
 
 
2.1.2. Parameter values based on demographic data from Statistics Netherlands (CBS) 
 
Transmission model, population size and age distribution 
From CBS (Statistics Netherlands), we obtain the population parameters: 

( )T

17282160

0.103 0.116 0.127 0.122 0.131 0.145 0.121 0.088 0.046

N =

=x
 

 
 
2.1.3. Parameter values based on hospitalization data (NICE) 
 
The NICE hospital data consist of records per patient, with their current status (at the time of 
analysis), and all dates of reporting, admission, transfer, or discharge/death. These are used to 
estimate the time-varying probabilities and probability distributions for time-to-events in the clinical 
progression model (functions 1 (partly), 2, 3, 6, 7, 8, and 9 listed in section 1.2), and the reporting 
probability distribution obsp  for ICU admissions. 
 
Clinical progression model: the probability of hospital admission (function 1) 
At the end of March 2020 there was a sharp decline in probability of death after being hospitalised, 
which might have been caused by a change in hospital admission policy. We account for this by 
assuming that the probability of hospital admission decreased for those who would die, modelled by 
a logistic curve. In each age group we assume a fixed probability of hospital admission followed by 
discharge (cure) A C

ip + , and a time-varying probability of hospital admission followed by death 

( )A D
ip t+ , so that the total probability of hospital admission was 
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From the NICE hospital data, we estimate the probability of death given admission ( )D A

ip t , whereas 

the parameter A C
ip +  is estimated using the PiCo data (see below). 

 
The probability of death is low in young patients (1.3% among all patients under 40 years of age, in 
2020). Because there is very little information about young patients early in the pandemic, we 
assume a parametric form for the age-dependence of the probability of dying among those that are 
admitted early in the pandemic (the left end of the logistic curve, at t = −∞ ): 
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1
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ep
e

+
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 (S10) 

 
and we assume that the probability of hospital admission did not change for patients younger than 
40 years of age: 
 
 ( ) ( ) ,for 4D A D A

i ip p i∞ = −∞ ≤  (S11) 
 
The relative probability of hospital admission followed by death ( ) ( ) ( )A D A D

i i it p t pρ + += −∞ , is 

modelled with a logistic curve, with ( )iρ ∞  being the ultimate reduction, mt  the inflexion point of 
the logistic curve, and r the slope of the curve at the inflexion point: 
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Note that ( ) 1iρ ∞ =  for age groups 4i ≤  because of the assumption in Equation (S11). Now, the 

probability of dying in the hospital in age group i ( )D A
ip t  can be written in terms of Equations (S10) 

and (S12) : 
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Fitting is done by maximizing the log-likelihood function: 
 
 ( )( ) ( )( ) ( ) ( )( ), , , , , , log 1 log 1

k k

D A D AD D D
m k i k k i k

k

a b r t p t p tι ι∞ = + − −∑ρ ι t i  (S14) 

 
in which 1D

kι =  indicates that individual k  died, 0D
kι =  indicates recovery, kt  is the time of hospital 

admission, and ki  is the age group of individual k. The resulting fit is shown in Figure S1. 



 

 
Figure S1. Estimated age-specific and time-varying probability of dying among patients hospitalised 
for COVID-19. The grey curves are the model fits. The points and vertical lines are weekly means and 
95% confidence intervals. 
 
Combining this result with the estimated parameters A C

ip +  from the PiCo data (see below) gives the 
probability of hospital admission (Figure S10) 
 
Clinical progression model: the probability of transfer to the ICU (function 2) 
The probability of transfer to the ICU is modelled as a logistic curve  
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The parameters are estimated by maximizing the likelihood function given the observed outcomes 
for all patients admitted to the hospital 
 
 ( ) ( )( ) ( )( ) ( ) ( )( ), , , , , log Pr 1 log 1 Pr

k k

UCI ICU ICU ICU ICU ICU ICU
m k i k k i k

k

r t t tι ι−∞ ∞ = + − −∑Pr Pr ι t i  (S16) 

 
in which 1ICU

kι =  indicates if individual k  was admitted at the ICU, kt  is the time of hospital 
admission, and ki  is the age group of individual k. The parameters r  and mt are not estimated, but 
fixed at the estimates obtained after maximizing Equation (S14). Patients not transferred to the ICU (

0ICU
kι = ) but still in the hospital are censored observations, as they can be transferred later, but this 

is ignored as the time interval from hospital admission to IC transfer was very short for most cases. 
The resulting fit is shown in Figure S2 
 



 
Figure S2. Estimated age-specific and time-varying probability of transfer to the ICU among patients 
hospitalised for COVID-19. The grey curves are the model fits. The points and vertical lines are 
weekly means and 95% confidence intervals. 
 
 
 
Clinical progression model: the probability of transfer back to a hospital ward (from ICU) (function 3) 
The probability of transfer back to a hospital ward is modelled as a logistic curve  
 

 ( ) ( ) ( ) ( )( )
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The parameters are estimated by maximizing the likelihood function given the observed outcomes 
for all patients admitted to the ICU 
 
 ( ) ( )( ) ( )( ) ( ) ( )( ), , , , , log Pr 1 log 1 Pr

k k

H H H H H H H
m k i k k i k

k

r t t tι ι−∞ ∞ = + − −∑Pr Pr ι t i  (S18) 

 
in which 1H

kι =  indicates if individual k  has left the ICU by transfer to a hospital ward, and 0H
kι =  if 

individual k  has left the ICU by direct discharge/death. Age groups under 40 years of age are 
combined because these contain only few individuals. The parameters r  and mt are not estimated, 
but fixed at the estimates obtained after maximizing Equation (S14). Because durations of stay are 
distributed equally for those that are transferred or are discharged/died, patients still on the ICU can 
be ignored. The resulting fit is shown in Figure S3. 
 



 
Figure S3. Estimated age-specific and time-varying probability of transfer back to the general 
hospital ward among patients on the ICU for COVID-19. The grey curves are the model fits. The 
points and vertical lines are weekly means and 95% confidence intervals. 
 
 
Clinical progression model: all delays and lengths of stay within the hospital (functions 6-9) 
The four delay and length-of-stay distributions in the hospital, from hospital admission to discharge 
or death (without transfer to the ICU), ( )ADd t , from hospital admission to transfer to the ICU, 

( )ICUd t , from transfer to the ICU to discharge or death, ( )ICUDd t , and from re-transfer to a hospital 

ward to discharge or death, ( )HDd t , are all modelled as negative binomial distributions, with time-

varying means, the same for all age groups. The means ( )X tµ  are modelled as sums of three logistic 
curves: 
 

 ( ) ( )
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( )1 1
1,2,3 1

X X
l l

X X
l l

r t t
X X X X

l l r t t
l

et
e

µ µ µ µ
−

+ −
=

= + −
+

∑  (S19) 

 
with time t being the time of admission to the hospital, for all distributions. 
 
The parameters of these curves are estimated by maximizing the log-likelihood function given the 
observed delays and lengths-of-stay 
 

 ( ) ( )( ) ( ) ( ) ( )( ) ( )
, ,

, , , , , log 1 log 1X X X X
k k

X X X X X X X
k k k kNB t NB t

k

p X P X
α µ α µ

α ι ι   = + − −   
   ∑μ t r X ι t  (S20) 

 
in which kX  is the observed length-of-stay of patient k, 1X

kι =  indicates if this observation is 
uncensored, and 0X

kι =  if it is censored. The functions ( ) ( )NBp  and ( ) ( )NBP  are the negative 

binomial probability and cumulative probability, respectively. The censored observations of patients 
in the hospital ward that have not (yet) been transferred to the ICU are all used in the likelihood for 

AX D=  and not for X ICU= . The resulting fits are shown in Figures S4, S5, S6, and S7. 



 

 
Figure S4. Time-varying distribution of the length of stay in hospital of patients not going to the ICU. 
The transparent lines and grey ribbon show the model fit, i.e. the negative binomial distribution 
used in the simulations. The points and cross-bars show the data per week, including patients still in 
the hospital (censored data). 
 

 
Figure S5. Time-varying distribution of the delay between hospital admission and transfer to the UCI. 
The transparent lines and grey ribbon show the model fit, i.e. the negative binomial distribution 
used in the simulations. The points and cross-bars show the data per week. 
 



 
Figure S6. Time-varying distribution of the length of stay on the ICU of COVID-19 patients. The 
transparent lines and grey ribbon show the model fit, i.e. the negative binomial distribution used in 
the simulations. The points and cross-bars show the data per week, including patients still on the 
ICU (censored data). 
 

 
Figure S7. Time-varying distribution of the length of stay on the hospital of COVID-19 patients, after 
transfer from the ICU. The transparent lines and grey ribbon show the model fit, i.e. the negative 
binomial distribution used in the simulations. The points and cross-bars show the data per week, 
including patients still in the hospital (censored data). 
 
 
 
 



Observation of ICU admissions: reporting delay 
A reporting delay distribution specific for the day of the week is estimated, ( )obsp τ , defined as the 
probability that a case is reported within τ  days after admission to the ICU. 
The data consist of admitted cases k, with their weekday of admission [ ]0,6kw ∈  and reporting 
delay kδ . For each weekday of admission, the empirical distribution of reporting delay ∆  can 
directly be calculated from the data as 
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1
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k

k

k w w

k w w
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δ δ

δ
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=

=

∆ ≤ = =
∑
∑

 (S21) 

 
These seven distributions, one for each weekday, are used to construct ( )obsp τ  for weekday obsw , 
the day of analysis: 
 
 ( ) ( )( )Pr %7obs obsp W wτ τ τ= ∆ ≤ = −  (S22) 

 
Because the reporting delay distribution may change over time, it is estimated only with data from 
recent months. The distribution of 6 January 2021 is shown in Figure S8, and was estimated with 
data of patients admitted since 1 September 2020. 
 

 
Figure S8. Reporting delay distribution used in the analysis of 6 January 2021 
 
 
2.1.4. Parameter values based on notification data (OSIRIS) 
 
The OSIRIS notification data consist of records per patient, with their age and dates of symptom 
onset and hospital admission. These are used to estimate the time-varying delay distribution from 
symptom onset to hospital admission (function 5 of the clinical progression model). 
 
Clinical progression model: the delay from symptom onset to hospital admission (function 5) 



The delay from symptom onset to hospital admission is modelled as a negative binomial distribution, 
with time-varying means specific for each age group. The means ( )A

i tµ  are modelled as a logistic 
curve: 
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The parameters of these curves are estimated by maximizing the log-likelihood 
 

 ( ) ( )( ) ( ).,1 .,2 ,
, , , , , log A A

i kk

A A A A A
kNB t

k

r t p A
α µ

α  =  
 ∑μ μ t A  (S24) 

 
in which patient k  with age ki  had a delay of kA  days after symptom onset at day kt  before 
admission to the hospital. Censored data are not available, so censoring has to be ignored. The 
resulting fits are shown in Figure S9. 
 
 

 
Figure S9. Time-varying and age-specific distribution of the delay between symptom onset and 
hospital admission of COVID-19 patients, after transfer from the ICU. The transparent lines and grey 
ribbon show the model fit, i.e. the negative binomial distribution used in the simulations. The points 
and cross-bars show the data per week. Means are shown in red, medians and 90% ranges in black 
and grey. For recent weeks, longer delays have not yet been observed (censored data). 
 
 
2.1.5. Parameter values based serological survey PiCo 



 
The PiCo data consist of seroprevalence estimates sero

ip +  for each age group i, measured at mean 
survey date 15 June 2020. Assuming a mean delay from infection to seroconversion of 19 days, these 
seroprevalences reflect the cumulative incidence up to 27 May 2020. Incidence was very low in this 
period, so calculations are insensitive to this specific delay. 
 
The PiCo data are used to estimate the age-specific susceptibility and infectivity, and to complete 
the estimation of the probability of hospital admission. 
 
Transmission model: age-specific infectivity and susceptibility 
The age-specific infectivity and susceptibility parameters Iσ  and Sσ  are effectively assumed to be 
equal: = =I Sσ σ σ . In the age-structured transmission model with next-generation matrix 
 
 ( ) ( ) ( )2 Tt

T Tt β
γ=M σ C σ x  (S3) 

 
the right eigenvector ( )T tξ  corresponding to the largest eigenvalue is equal to the age distribution 
of incidence of infections. For this property we can ignore all parameters that are not age-specific, so 
we only need the eigenvector Tξ  of 
 
 ( )T

T T=M σ C σ x  (S25) 
 
The PiCo data reflect incidence up to 27 May 2020. Of all cases infected up to that day, about half 
were infected before lockdown and about half during lockdown (a rough approximation based on 
the symmetry of the epidemic incidence curve). That means that, in the model, we assume that 50% 
of cases were infected when contact matrix 1C  was in place (unrestricted contacts as measured in 
Pienter), and 50% when contact matrix 2C  was in place (adjusted matrix for the first phase of 
lockdown). Thus, we solve σ  from 
 
 ( ) ( )1 2

sero++ =ξ σ ξ σ p  (S26) 
 
under the condition that 
 
 1, 2,i i

i i

=∑ ∑ξ ξ  (S27) 

 
to make both matrices contribute equally. The resulting vector, normalised with the lowest age 
group as reference group, is 
 

( )T 1 3.05 5.75 3.54 3.71 4.36 5.69 5.32 7.21=σ  
 
This is well in line with published estimates of heterogeneity in susceptibility, e.g. Zhang et al (6) who 
reported that adults aged 15-64 are about three times more susceptible than children aged 0-14, 
and elderly aged over 65 are about 50% more susceptible than adults.  
 
 
Clinical progression model: the probability of hospital admission (function 1) 
The PICO data are used to estimate A C

ip +  of Equation (S9). Assuming on average 12 days between 
infection and hospital admission and 19 days between infection and seroconversion, the 



seroprevalence on 15 June 2020 (the mean survey date) reflects the cumulative incidence of 
infections of 27 May 2020, and the cumulative number of hospital admissions of 8 June 2020.  
 
From the PiCo data with seroprevalence sero

ip +  in age group i, the cumulative number of infections 
PiCo

iY  in age group i on 27 May 2020 is estimated as 
 
 PiCo sero

i i iY Nx p +=  (S28) 
 
Using Equation (S9), from the NICE data with daily hospitalisations ( )iA t  in age group i, the 

cumulative number of infections NICE
iY  on 27 May 2020 is estimated as 

 

 ( ) ( ) ( ) ( )( )
8 2020 8 2020

1Pr 1 D ANICE A
i i i i iA C

t June t Junei

Y A t t A t p t
p +

≤ ≤

= = −∑ ∑  (S29) 

 
These two estimators are used to estimate A C

ip +  by solving PiCo NICE
i iY Y= ,  with ( )D A

ip t  as estimated 
from the NICE data (Equation (S14)). With this result, the probability of admission (Equation (S9)) can 
be calculated (Figure S10). 
 

 
Figure S10. Estimated age-specific and time-varying probability of hospital admission 
 
 
2.2. Step 2: parameter estimation for age-specific contact patterns 
 



In the model, contact matrices TC  describe how different age groups interact with each other in 
consecutive periods T  of the pandemic during which different sets of control measures were in 
place. Each matrix is used up to transition time Tu , the time of policy change. An exception is made 
for the rapid sequential deployment of control measures mid-March 2020, with associated 
adaptations in contact behaviour. For this period we assume the existence of two transition times, 
with the same contact matrix after the first and second transition. The dates of these transitions, 1u  
and 2u , are estimated in step 3 (below); note that these dates do not necessarily correspond to the 
actual days when major policy changes were implemented. 
 
The matrices are based on contact data collected for the Pienter study in 2017, before COVID-19 (7). 
In this contact survey, participants recorded their contacts over the course of a day in different 
settings: home, school, work, leisure, transport, and rest. COVID-19 measures can affect these 
contacts; how much, in which setting and in which age group will depend on the specific measure. 
Estimating the reduction in contacts, something that cannot be measured, is done by treating it as a 
Fermi problem, i.e. by breaking it down into many smaller estimation problems which reduces the 
expected error of the problem as a whole (8, 9). For each set of COVID-19 measures, two 
researchers independently predict how the measures will affect the contacts of each age group in 
each setting, while ensuring consistency with previous sets of measures. This yields the Fermi 
estimates, i.e. consensus estimates for the relative contact rates with an uncertainty range. 
 
In the simulations of 6 January 2021, twelve different matrices are used for in fourteen periods T 
(the same matrices were used in periods 1 and 2, and in periods 10 and 12). These twelve matrices 
describe different sets of control measures in place during different periods of the first year of the 
epidemic. Table S3 at the bottom of the Supplement gives an overview of the estimated relative 
contact rates in each of the six contact settings (home, work, school, transport, leisure, other), 
during each of those periods. The keywords refer to the control measures that were in place.  
 
To make 200 matrices for each set of control measures, relative contact rates were uniformly 
sampled from intervals with indicated values as midpoint, and widths of 0.2. With these sampled 
reductions, the contact frequencies in the original Pienter contact data are changed (using the age of 
the participant), and contact matrices are estimated as described in Van de Kassteele (10), which 
ensures reciprocity of contact rates. Thus, 200 contact matrices are obtained to describe the effect 
of a given set of COVID-19 control measures. On 28 May 2020, new estimates were made for all sets 
of control measures,  to match the observations of the first CoMix contact study (11, 12). 
 
 
 
2.3. Step 3: estimation of the transmissibility parameter 
 
The transmissibility parameters Tβ  and matrix transition times Tu  are required for the rate of 
transmission ( )tβ . Together with the initial number of infected persons 0y  on 12 February 2020, all 

Tβ , 1u , and 2u  are estimated by fitting the model to the ICU admission data, conditional on all 
parameter values as inferred in steps 1 and 2, and all transition time Tu  for 2T > . We use the optim 
function in R version 3.6.0 (13) to maximize the log-likelihood, with maxT  stepwise constant 
transmissibilities in ( )tβ : 
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 (S30) 

 
Here, ( )Z  are the daily Poisson-distributed observed ICU admissions, θ  all parameters estimated 

in step 1, TC  the means of all sets of 200 sampled contact matrices, ( )obs analysisp t t−  the probability 

of reporting at the day of analysis, and ( )iz  the simulated number of admissions. 
 
At each later transition time Tu , the change in contact matrices from TC  to 1TC +  should reflect the 
anticipated changes in contact behaviour caused by the policy change at that moment. If this is 
indeed the case, it can be assumed that 1T Tβ β+ = , thus reducing the number of model parameters. 
As a consequence, the stepwise constant transmissibility parameter ( )tβ  will have fewer 
changepoints (where 1T Tβ β+ ≠ ) than there are transition times. To select changepoints, We fitted 
models with changepoints at different subsets of transition times Tu , and compared these fits with 
Akaike's Information Criterion (AIC, (14)). Each week, we selected the set of changepoints with the 
lowest value of the AIC. From the final selected model, point estimates are obtained with a 
covariance matrix for all stepwise constant transmissibilities and the initial number of infected 
persons, calculated from the Hessian matrix obtained with the optim function in R. The resulting 
estimates and confidence intervals are given in section 3.1 of this Supplement, with a correlation 
matrix calculated from the covariance matrix.  
  
In practice, the changepoint selection did not mean that we tried every combination of changepoints 
every week; that would have taken too much time. Instead, we started with the changepoints from 
the week before, and tried other sets by removing changepoints, moving changepoints forwards and 
backwards in time (to other transition times), and adding changepoints. In most weeks, this was 
done by starting with the most recent transition times, and when there was evidence that 
changepoints should be changed, earlier transition times were included in that process. Sometimes, 
when we made changes to the model or data analysis, we did a more extensive search along the 
whole time series, which sometimes also led to new estimates for the transition times u1 and u2. The 
evolution of all selected changepoints and estimates for u1 and u2 is shown in section 3.2 below. 
 
 
3. Supplemental analyses and results 
 
3.1. Complete results of analysis step 3, and comparison of the ODE and discrete-time models 
 
Tables S1 and S2 give the results of estimation step 3 for the data of 6 January 2021, i.e. the 
estimated initial state y0 and transmissibility parameters βT with 95% confidence intervals in Table 
S1, and the correlation matrix of these estimates in Table S2. It turns out that most confidence 
intervals are narrow, and that the uncertainty is highly correlated between initial state and 
transmissibility at the start of the pandemic, and between each subsequent pair of transmissibility 
parameters. It should be noted that β5 (15 Oct – 25 Oct) was assumed to be equal to β3 (29 Mar – 29 
Sep). That is because, at the time, we thought that the two weeks between these periods (30 Sep – 
14 Oct) could have been a short interruption of the already six-months continuous β3. In line with 
the our general workflow as explained in the main text (section 2.5), we stayed with this decision 
because new changepoint analyses never rejected it.  
 



As of 25 November 2020 we replaced the continuous-time model by the discrete-time model. In the 
transition phase, we carefully checked that both models gave similar results. To show their similarity, 
we fitted the data of 6 January 2021 to the continuous-time model and to the discrete-time model. 
On 6 January 2021, there were seven parameters to be estimated in Step 3: initial incidence 0y  and 
six transmissibility parameters Tβ  for the periods as shown in Figure 2a (main text). Table S1 below 
shows the parameter estimates for the two models, Table S2 the correlation matrices of the 
estimates, and Figure S11 shows the fitted ICU admission curves, and their difference.  
 
It turns out that the estimated transmissibilities are almost identical, as are the correlation matrices. 
The initial state values y0 are different, because the initial state is parameterized differently. In the 
discrete-time model, y0/12 is equal to a constant incidence from 1 February 2020 – 12 February 2020 
(equal in each age class). In the continuous-time model, y0/4 is the initial value for all states E1, E2, I1, 
and I2 (equal in each age class).  
 
 
 
 
Table S1. Parameter estimates on the log-scale (95% CI) of Step 3 (6 January 2021), with the discrete-
time and continuous-time models. 

Model parameter Discrete-time model Continuous-time model 
Initial state log(y0 )a 1.71 (1.29 ; 2.12) 3.48 (3.08 ; 3.88) 
log(β1) (until 18 Mar 2020) 5.23 (5.19 ; 5.27) 5.22 (5.18 ; 5.26) 
log(β2) (from 19 Mar to 28 Mar 2020) 4.71 (4.64 ; 4.79) 4.72 (4.65 ; 4.79) 
log(β3) (from 29 Mar to 28 Sep 2020) b 5.20 (5.19 ; 5.20) 5.20 (5.19 ; 5.20)  
log(β4) (from 29 Sep to 14 Oct 2020) 5.37 (5.34 ; 5.40) 5.37 (5.34 ; 5.39) 
log(β5) (from 15 Oct to 25 Oct 2020) b 5.20 (5.19 ; 5.20) 5.20 (5.19 ; 5.20) 
log(β6) (from 26 Oct to 18 Nov 2020) 5.27 (5.25 ; 5.30) 5.27 (5.25 ; 5.30) 
log(β7) (from 19 Nov onwards) 5.51 (5.49 ; 5.53) 5.51 (5.50 ; 5.53) 

a the initial state has a different parameterisation in the two models, and can therefore not be 
compared 
b a single transmissibility parameter was estimated for periods 3 and 5 
 
Table S2. Correlation matrix of estimates of initial state and transmissibility parameters, with the 
discrete-time and continuous-time modelsa 

Discrete-time model       
 log(y0) log(β1) log(β2) log(β3) log(β4) log(β6) log(β7) 
log(y0) 1 -0.991 0.484 -0.150 0.038 -0.001 -0.001 
log(β1) -0.991 1 -0.567 0.246 -0.039 0.010 0.014 
log(β2) 0.484 -0.567 1 -0.583 0.174 0.003 0.010 
log(β3) -0.150 0.246 -0.583 1 -0.554 0.212 0.098 
log(β4) 0.038 -0.039 0.174 -0.554 1 -0.494 0.187 
log(β6) -0.001 0.010 0.003 0.212 -0.494 1 -0.756 
log(β7) -0.001 0.014 0.010 0.098 0.187 -0.756 1 
        
Continuous-time model      
 log(y0) log(β1) log(β2) log(β3) log(β4) log(β6) log(β7) 
log(y0) 1 -0.990 0.478 -0.142 0.039 0.000 -0.001 
log(β1) -0.990 1 -0.564 0.242 -0.040 0.010 0.014 
log(β2) 0.478 -0.564 1 -0.577 0.173 0.004 0.010 
log(β3) -0.142 0.242 -0.577 1 -0.554 0.213 0.099 



log(β4) 0.039 -0.040 0.173 -0.554 1 -0.494 0.187 
log(β6) 0.000 0.010 0.004 0.213 -0.494 1 -0.756 
log(β7) -0.001 0.014 0.010 0.099 0.187 -0.756 1 

a log(β5) is missing, because a single transmissibility parameter was estimated for periods 3 and 5 
 

 
Figure S11. Model projections with a projection window of 4 months to illustrate that the 
continuous-time and discrete-time models produce almost identical results, also beyond the data 
to which the models were fitted, and also when incidence increases in the future. 

 



 
3.2. Weekly evolution of transmissiblity parameter estimates 
 
Each week the model was fitted to the most recent ICU admission data in Step 3 of the parameter 
estimation. This resulted in new estimates of transmissibility parameters Tβ  and a selection of 
changepoints. To illustrate the evolution of the parameter estimates and selected changepoints, we 
fitted the model of 6 January 2021 to reconstructed datasets for the days analysist  of the original 40 
model fits, with transition days 1u  and 2u  as selected in those analyses. Datasets were 
reconstructed by taking the dataset of observed daily ICU admissions on 6 January 2021 ( )Z t  up to 

analysist , multiplying the observations by ( )obs analysisp t t−  and rounding to the nearest integer, to 

simulate the reporting delay. The reason for not showing the original analyses is that the model itself 
has also gradually changed, as well as the data for Step 1. Now all that is different between the 40 
fits is analysist , and the transition days 1u  and 2u .  
 
Figure S12 shows the estimated values for ( )log Tβ  and the identified changepoints, when the 
colours change from left to right. It is clearly visible how incoming data adjust identification of 
changepoints and estimates of transmissibility, so that periods in which model projections were 
incorrect (March, July, November) were corrected in the weeks thereafter. Also, the transition days 

1u  and 2u  are sometimes adjusted, also long after they occurred; all these changes had to do with 
changes in the clinical progression model, which had consequences for simulation of the entire ICU 
admission time series, or with changes in interpreting the NICE hospital data (re-admissions 
occurring towards the end of 2020 made it necessary to redefine admission and duration of stay). 
 



 
Figure S12. Evolution of the transmission parameter estimation (Step 3 of the estimation 
procedure). Top panel: all 40 projections of ICU admissions, with colours indicating whether the 
realized admissions were within the 95% interval. Bottom panel: transmission parameters 
log(beta) for all 40 model fits. Each row is one model fit, carried out at the day at which the 
orange-red bar ends. Each bar is followed by a projection line, matching the projections in the top 
panel. Changes in log(beta) in a row indicate identified changepoints. 

 
  



Table S3: Control periods T with transition times uT, and Fermi estimates of relative contact rates, 
per set of control measures, contact setting, and age group. The estimates were used as midpoints 
of intervals of width 0.2, from which 200 uniform samples were taken to obtain 200 contact matrices 
per set of control measures. 
 

Keyword description of 
(changes in) control 
measures, and time 
period in place 

Contact setting Age group Fermi estimate of relative 
contact rate (relative to 
Pienter contact survey of 
2017) 

Pienter 2017 (from start 
to u1 = 18 Mar 2020) 

All 0-100 1.00 

Calibrated on CoMix 
(from 19 Mar to u2 = 28 
Mar, and from 29 Mar to 
u3 = 10 May 2020) 
Lockdown: schools closed, 
work from home, keeping 
distance outside, leisure 
closed. Shops were allowed to 
open, but most shops closed 

Name: Contactmatrices_intelligentlockdown_march 
Home 0-100  1.00 
Work 0-100 0.483 
School 0-100 0.214 
Transport 0-100 0.344 
Leisure 0-100 0.102 
Other 0-100 0.889 

Batch 1 (from 11 May  to 
u4 = 1 June 2020) 
Primary schools and day care 
open at 50% 
Sports for under 12s 
Contact professions 
Leisure allowed outside 
Shops, markets, libraries 

Name: Contactmatrices_batch1_11may 
Home 0-100  1.00 
Work 0-100 0.53 
School 0-10 

10-20 
20-100 

0.61 
0.32 
0.214 

Transport 0-100 0.39 
Leisure 0-10 

10-20 
20-100 

0.30 
0.16 
0.102 

Other 0-100 0.90 
Batch 2 (from 2 June to 
u5 = 5 July 2020) 
Primary schools and day care 
full open 
Secondary schools 
Terraces 
Leisure inside < 30p 
Museums 
Facemask in public transport 

Name: Contactmatrices_batch2_1june 
Home 0-100  1.00 
Work 0-100 0.63 
School 0-10 

10-20 
20-100 

1.00 
0.64 
0.214 

Transport 0-100 0.53 
Leisure 0-10 

10-20 
20-100 

0.45 
0.42 
0.30 

Other 0-100 0.95 
Batch 3 (from 6 July to u6 
= 30 Aug 2020) 
Leisure inside < 100p or no 
max 
Events < 100p 
Campings 
Sports inside 
 

Name: Contactmatrices_batch3_summerholiday 
Home 0-100  1.00 
Work 0-100 0.63 
School 0-100 0 
Transport 0-100 0.64 
Leisure 0-20 

20-100 
0.80 
0.60 

Other 0-100 1.00 
Start school year (from 
31 Aug to u7 = 28 Sep 
2020) 
Schools fully open; universities 
not 
More work contacts 

Name: Contactmatrices_start-schoolyear-september 
Home 0-100  1.00 
Work 0-100 0.77 
School 0-10 

10-20 
20-100 

1.00 
0.84 
0.214 



 Transport 0-100 0.74 
Leisure 0-40 

40-100 
0.80 
0.60 

Other 0-100 1.00 
Autumn restrictions 
(from 29 Sep to u8 = 14 
Oct 2020) 
Schools fully open; universities 
not 
Working from home advised; 
bars close at 22:00, max group 
sizes inside and outside; max 3 
people at home 
 
 

Name: Contactmatrices_restrictions28sep 
Home 0-100  0.90 
Work 0-100 0.69 
School 0-10 

10-20 
20-100 

1.00 
0.84 
0.214 

Transport 0-100 0.58 
Leisure 0-20 

20-100 
0.60 
0.30 

Other 0-100 0.95 
Extreme autumn 
restrictions (from 15 Oct 
to u9 = 25 Oct 2020) with 
holiday 
Schools half open; universities 
not 
Working from home required; 
bars closed, max group sizes 
inside and outside further 
reduced; max 3 people at 
home 
 
 

Name: Contactmatrices_partiallockdown-october-holiday 
Home 0-100  0.90 
Work 0-100 0.57 
School 0-10 

10-20 
20-100 

0.61 
0.53 
0.214 

Transport 0-100 0.46 
Leisure 0-10 

10-20 
20-100 

0.60 
0.40 
0.20 

Other 0-100 0.95 
Extreme autumn 
restrictions (from 26 Oct 
to u10 = 4 Nov 2020 & 
from 19 Nov to u12 = 14 
Dec 2020) 
Schools fully open; universities 
not 
Working from home required; 
bars closed, max group sizes 
inside and outside further 
reduced; max 3 people at 
home 
 
 

Name: Contactmatrices_partiallockdown-october 
Home 0-100  0.90 
Work 0-100 0.60 
School 0-10 

10-20 
20-100 

1.00 
0.84 
0.214 

Transport 0-100 0.48 
Leisure 0-10 

10-20 
20-100 

0.60 
0.40 
0.20 

Other 0-100 0.95 

2 weeks november extra 
restrictions (from 5 Nov 
to u11 = 18 nov 2020) 
Schools fully open; universities 
not 
Working from home required; 
bars closed, all leisure closed; 
sport clubs open but no 
groups;  max 2 people outside; 
max 2 people invited at home 
 
 

Name: Contactmatrices_2week-lockdown-november 
Home 0-100  0.85 
Work 0-100 0.58 
School 0-10 

10-20 
20-100 

1.00 
0.84 
0.214 

Transport 0-100 0.48 
Leisure 0-10 

10-20 
20-100 

0.40 
0.25 
0.15 

Other 0-100 0.95 
Winter lockdown (from 
15 Dec to u13 = 20 Dec 
2020 & from 4 Jan to 22 
Jan 2021) 
Schools, universities closed; 
working from home required; 
non-essential shops closed, 
bars closed, all leisure closed; 

Name: Contactmatrices_winter-lockdown 
Home 0-100  0.85 
Work 0-100 0.483 
School 0-100 0.214 
Transport 0-100 0.36 
Leisure 0-10 

10-20 
0.30 
0.20 



sport clubs only open outside 
for under 18’s; max 2 people 
outside; max 2 people invited 
at home 
 
 
 

20-100 0.102 
Other 0-100 0.889 

Christmas holiday  with 
winter lockdown (from 
21 Dec 2020 to u14 = 3 
Jan 2021) 
Schools, universities closed; 
working from home required; 
non-essential shops closed, 
bars closed, all leisure closed; 
sport clubs only open outside 
for under 18’s; max 2 people 
outside; max 2 people invited 
at home (3 during christmas 
days) 
 
 

Name: Contactmatrices_winter-lockdown-christmas 
Home 0-100  1.00 
Work 0-100 0.43 
School 0-100 0.214 
Transport 0-100 0.33 
Leisure 0-10 

10-20 
20-100 

0.30 
0.20 
0.102 

Other 0-100 0.95 
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