Relationship between fill volume and transport in peritoneal dialysis

Carl M. Öberg, MD, PhD 1*

SUPPLEMENTAL MATERIAL

Supplemental Table 1	page 2
Supplemental Table 2	page 3
Supplemental Table 3	page 6
Supplemental Table 4	page 8
ISTAT-1 Calibration	page 9
Segmented linear regression	page 10
Mathematical theorems	page 12
References	page 14

¹ Department of Clinical Sciences Lund, Skåne University Hospital, Lund, SE-21185, SWEDEN.

Supplemental Table 1 A. Hemodynamic and routine lab parameters before and after dialysis.

Parameter	Before dialysis	After dialysis
Mean arterial pressure, mmHg	119 (110 – 128)	103 (86 – 114) *
Heart rate	387 (360 – 402)	325 (310 – 345) ***
Plasma sodium, mmol/L	135 (135 – 136)	137 (137 – 138) ***
Plasma potassium, mmol/L	4.5 (4.3 – 4.6)	4.3 (3.9 – 4.4) **
Plasma total CO ₂ , mmol/L	26 (25 – 27)	24 (23 – 24) ***
Plasma chloride, mmol/L	99 (98 – 100)	104 (103 – 105) ***
Plasma ionized calcium, mmol/L	1.38 (1.34 – 1.40)	1.40 (1.37 – 1.42) *
Blood hemoglobin, g/L	143 (139 – 146)	136 (133 – 139) ***

Values are median (IQR). * p < 0.05, ** p < 0.01, ** p < 0.01, *** p < 0.01.

Supplemental Table 1 B. Treatment parameters.

Parameter	Value
Dialysis fluid glucose, mmol/L ^a	83.2
Dialysis fluid sodium, mmol/L ^a	134
Dialysis fluid potassium, mmol/L ^a	0
Dialysis fluid chloride, mmol/L ^a	100.5
Dialysis fluid lactate, mmol/L ^a	35
Dialysis fluid calcium, mmol/L ^a	1.25
Dialysis fluid magnesium, mmol/L ^a	0.5
Total fluid filled (group 1), mL	24
Total fluid filled (group 2), mL	36
Total fluid drained (group 1), mL	26.8
Total fluid drained (group 2), mL	39.6

^a Nominal values from the manufacturer (Balance, Fresenius Medical Care, Bad Homburg, Germany).

Supplemental Table 2

Group	Intra-peritoneal	UF rate	Creatinine	Glucose	Potassium	tCO2
	volume (IPV)		MTAC	MTAC	MTAC	MTAC
Cumulative fill volume	mL	μL min ⁻¹				
First dwell phase						
8 mL	9.4 (9.3 – 9.6)	15 (12 – 17)	149 (139 – 174)	108 (98 – 131)	319 (293 – 409)	191 (158 – 217)
12 mL	13.2 (12.6 – 13.3)	19 (18 – 24)	196 (155 – 221)	122 (88 – 135)	347 (333 – 412)	213 (180 – 228)
Second dwell phase						
8+8 mL	17.4 (17.3 – 17.6)	21 (20 – 26)	331 (238 – 476)	146 (125 – 165)	369 (342 – 459)	302 (260 – 335)
12+12 mL	25.2 (24.6 – 25.3)	32 (28 – 38)	570 (320 – 725)	194 (152 – 212)	505 (468 – 595)	375 (335 – 416)
Third dwell phase						
8+8+8 mL	25.4 (25.3 – 25.6)	17 (14 – 21)	609 (503 – 886)	210 (182 – 229)	469 (442 – 523)	336 (301 – 388)
12+12+12 mL	37.2 (36.6 – 37.3)	27 (25 – 29)	482 (436 – 891)	242 (200 – 251)	613 (510 – 702)	512 (463 – 540)

Spearman rank test (IPV *vs* column)

Correlation coefficient, $ ho$	0.45	0.77	0.69	0.69	0.89
Correlation coefficient (regularized), $ ho$	0.53	0.90	0.81	0.91	0.91
P-value	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Group	Urea MTAC	Calcium ion	Sodium MTAC	Chloride MTAC	
Cumulative fill volume	μL min ⁻¹	μL min ⁻¹	μL min ⁻¹	μL min ⁻¹	
First dwell phase					
8 mL	200 (175 – 222)	175 (113 – 233	3) 140 (134 – 15	56) 118 (96 – 13	3)
12 mL	208 (186 – 225)	222 (206 – 248	3) 170 (148 – 18	38) 123 (92 – 16	0)
Second dwell phase					
8+8 mL	331 (318 – 379)	358 (292 – 473	3) 248 (184 – 29	99) 192 (168 – 2	10)
12+12 mL	430 (392 – 467)	423 (355 – 463	3) 297 (263 – 34	48) 233 (202 – 3	09)
Third dwell phase					
8+8+8 mL	405 (375 – 479)	498 (403 – 736	6) 248 (184 – 29	99) 170 (139 – 2	01)

12+12+12 mL	543 (515 – 591)	657 (532 – 716)	297 (263 – 348)	266 (222 – 294)
Spearman rank test (IPV vs column)				
Correlation coefficient (raw), ρ	0.90	0.87	0.66	0.69
Correlation coefficient (regularized), $ ho$	0.91	0.91	0.86	0.88
P-value	< 0.001	< 0.001	< 0.001	< 0.001

Supplemental Table 3. Monte Carlo cross-validation results

	Small solut	Small solute diffusion capacity (MTAC) †		Osmotic conductance to glucose (OCG)		se (OCG)
Experimental data	RMSE	Break-point, mL	MTAC ‡	RMSE	Break-point, mL	OCG ‡
			μL/min			nL/min/mmHg
Square-Cube law	52.1 (42.0 – 57.5)	-	120 (116 – 124)	9.1 (7.8 – 11.1)	-	48 (47 – 48)
Break-point model	50.8 (41.8 – 56.6)	25.8 (25.2 – 26.4)	149 (143 – 156)	9.0 (7.8 – 11.0)	27.8 (25.7 – 30.7)	61 (59 – 65)
T-test, <i>p</i> -value	< 0.001			< 0.001		
Clinical data	RMSE	Break-point, mL	MTAC ‡	RMSE	Break-point, mL	OCG ‡
			mL/min			μL/min/mmHg
Square-Cube law	0.22 (0.20 – 0.25)	-	9.1 (8.9 – 9.3)	1.007 (0.84 – 1.17)	-	2.8 (2.5 – 3.2)
Break-point model	0.21 (0.19 – 0.24)	2,286	9.5 (9.2 – 9.8)	1.005 (0.82 – 1.19)	2,286	3.3 (2.9 – 3.7)
T- test, <i>p</i> -value	< 0.001			< 0.001		

RMSE, Root-mean-square error between model predictions and the validation datasets

- † ⁵¹Cr-EDTA diffusion capacity (for experimental data), or creatinine diffusion capacity (clinical data)
- ‡ Value at the break-point or at 20/2000 mL (experimental data/clinical data).

Supplemental Table 4. Clinical scenarios simulated using the three-pore model

Regimen	Dwell time	Initial intra- peritoneal volume	D/P creatinine	Trans-peritoneal UF volume †	Net UF ‡
Conventional PET using 2.3% glucose	240	2,300 mL	0.73	296 mL	224 mL
Shorter PET using 2.3% glucose	190	1,150 mL	0.74	146 mL	89 mL
Shorter PET using 2.3% glucose	151	575 mL	0.74	73 mL	27 mL

Dwell time for the shorter treatments were calculated by multiplying 240 min by (1,150/2,300)^{1/3} and (575/2,300)^{1/3}, respectively.

[†] Net water transport across the peritoneal membrane (does not include reabsorption rate/lymphatic flow)

[‡] Net water transport including a fixed reabsorption rate/lymphatic flow of 0.3 mL/min

Calibration of analytical methods using the iSTAT-1

Sodium and chloride

Na⁺ and Cl⁻ were measured with the CHEM8 cassette (Abbott, Abbott Park, IL) utilizing ion-selective electrode potentiometry as described the manufacturer. Bland-Altman analysis was performed using twenty-seven reference solutions, showing a variation coefficient (VC) of 0.8% for sodium and a VC 1.7% for chloride. There were small matrix effects for sodium when spiking with glucose as well as bicarbonate (both increased apparent sodium concentration). Correction was performed using:

$$f^{-1} = a + b \cdot glu + c \cdot bic$$

where **actual Na** = $f \times measured Na$ [a = 0.9815, $b = 7.7 \cdot 10^{-5}$, $c = 9.2 \cdot 10^{-4}$]. One can see that f equals ~1 for a glucose concentration (normal) of 5 mmol/L and a bicarbonate concentration (normal) of 25 mmol/L, illustrating that the iSTAT-1 device is calibrated for blood plasma measurements. There were matrix effects for chloride, also for glucose and bicarbonate (both led to the apparent chloride concentration being lower than actual, again **actual CI** = $f \times apparent CI$:

$$f^{-1} = a + b \cdot glu + c \cdot bic$$

Here,
$$a = 0.93$$
, $b = -1.1 \cdot 10^{-4}$, $c = -1.5 \cdot 10^{-3}$.

Bicarbonate

Bicarbonate was estimated on the basis of the Henderson-Hasselbach equation from pH, pCO_2 , and ionic strength (Na⁺) measurements (according to the manufacturer, CHEM8 cassette), and calibrated to the International Federation of Clinical Chemistry (IFCC) TCO_2 reference method ¹. Bland-Altman analysis performed on the basis of twenty samples of standard fluids (reference) with known amounts of bicarbonate, lactate, and glucose concentrations revealed an imprecision (VC) of 7.5%. No matrix effects were detected for the included spike agents.

Calcium ion

Calcium ion was measured using the CHEM8 cassette. Twenty-seven samples of standard fluids having a known calcium ion concentration of 1.25 mmol/L with known amounts of bicarbonate, lactate and glucose concentrations were analyzed. Bland-Altman analysis showed an imprecision (VC) of 4.1%. A significant matrix effect was identified only for glucose, **actual Ca** = $f \times apparent Ca$:

$$f^{-1} = a + b \cdot glu$$

Here, a = 0.74 and $b = 2.3 \cdot 10^{-4}$.

Segmented linear regression

The square-cube model and break-point models may be linearized:

$$\log y = \log \left(p_0 \left(\frac{v}{v_t} \right)^a \right) = a \log \frac{v}{v_t} + \log p_0$$

Here, y are the data points (i.e., OCG or MTAC values), v is the intra-peritoneal volume, and p_0 is the value of the variable at the intra-peritoneal volume v_t set to 2,286 mL for the square cube model. For the square-cube model, a=2/3, and for the break-point model, a=2/3 for the first segment (up to the break-point) and then a=1/3. The calculation of p_0 for the square-cube model is straightforward

$$p_0 = e^{\frac{1}{N}\sum_{i=1}^{N} \log y_i - \frac{2}{3} \log \frac{v_i}{v_t}}$$

The root-mean-square error for the square-cube model is then calculated as

$$RMSE_0 = \frac{1}{N} \sum_{i=1}^{N} \left(\log y_i - \frac{2}{3} \log \frac{v_i}{v_t} - \log p_0 \right)^2$$

Since the data points are distributed over 6 different intra-peritoneal volumes (688 mL, 1200 mL, 1694 mL, 2286 mL, 2817 mL and 3329 mL), there are four possible break-point models (one for each interior volume). The calculations of the 4 parameters p_0 is similar, but performed only over the segments A={688 mL, 1200 mL}, B={688 mL, 1200 mL, 1694 mL}, C={688 mL, 1200 mL, 1694 mL}, 2286 mL}, D={688 mL, 1200 mL, 1694 mL, 2286 mL}, as follows

$$\begin{aligned} \mathbf{p}_{0,\mathbf{A}} &= e^{\frac{1}{2}\sum_{i \in A}\log y_i - a\log \frac{v_i}{v_t}} \\ \mathbf{p}_{0,\mathbf{B}} &= e^{\frac{1}{3}\sum_{i \in B}\log y_i - a\log \frac{v_i}{v_t}} \\ \mathbf{p}_{0,\mathbf{C}} &= e^{\frac{1}{4}\sum_{i \in C}\log y_i - a\log \frac{v_i}{v_t}} \\ \mathbf{p}_{0,\mathbf{D}} &= e^{\frac{1}{5}\sum_{i \in D}\log y_i - a\log \frac{v_i}{v_t}} \end{aligned}$$

The root-mean-square errors are then calculated as follows

$$RMSE_{A} = \frac{1}{N} \left(\sum_{i \in A} \left(\log y_{i} - \frac{2}{3} \log \frac{v_{i}}{v_{t}} - \log p_{0} \right)^{2} + \sum_{i \notin A} \left(\log y_{i} - \frac{1}{3} \log \frac{v_{i}}{v_{t}} - \log p_{0} \right)^{2} \right)$$

$$RMSE_{B} = \frac{1}{N} \left(\sum_{i \in B} \left(\log y_{i} - \frac{2}{3} \log \frac{v_{i}}{v_{t}} - \log p_{0} \right)^{2} + \sum_{i \notin B} \left(\log y_{i} - \frac{1}{3} \log \frac{v_{i}}{v_{t}} - \log p_{0} \right)^{2} \right)$$

$$RMSE_C = \frac{1}{N} \Biggl(\sum_{i \in C} \left(\log y_i - \frac{2}{3} \log \frac{v_i}{v_t} - \log p_0 \right)^2 + \sum_{i \notin C} \left(\log y_i - \frac{1}{3} \log \frac{v_i}{v_t} - \log p_0 \right)^2 \Biggr)$$

$$RMSE_D = \frac{1}{N} \Biggl(\sum_{i \in D} \left(\log y_i - \frac{2}{3} \log \frac{v_i}{v_t} - \log p_0 \right)^2 + \sum_{i \notin D} \left(\log y_i - \frac{1}{3} \log \frac{v_i}{v_t} - \log p_0 \right)^2 \Biggr)$$

Lastly, root-mean-squared errors had an apparent right-tailed distribution much like the log-normal distribution of which the first moment is the geometric mean. T-tests were therefore carried out on log-transformed RMSE.

Mathematical derivation of dwell-time and UF factor

Theorem 1: Assume that the intra-peritoneal volume is changed from V to V_{new} , and that the dialysate concentration D of a solute species follows an exponential model $D(t)=D_0exp(Vt/MTAC)$. Then, the time it takes to reach a dialysate concentration ratio (D/D_0) using the new fill volume V_{new} is reduced/increased by the factor $(V_{new}/V)^{1/3}$.

Proof: The time T it takes to reach a dialysate concentration D_0 is

$$T = \frac{V}{MTAC} \log \frac{D}{D_0}$$

Changing the volume from V to V_{new}, we get

$$T_{new} = \frac{V\left(\frac{V_{new}}{V}\right)}{MTAC\left(\frac{V_{new}}{V}\right)^{2/3}}\log\frac{D}{D_0} = \left(\frac{V_{new}}{V}\right)^{1/3}\frac{V}{MTAC}\log\frac{D}{D_0}$$

Thus, the time to reach D/D_0 is reduced/increased by the factor $(V_{new}/V)^{1/3}$, meaning that when the fill volume is decreased the patient will appear "faster" and *vice versa*.

Theorem 2: In addition to the assumptions in Theorem 1, assume that the osmotic gradient is maintained by adjusting the dwell time by the factor $(V_{new}/V)^{1/3}$. Then, the UF-rate is reduced/increased by the factor (V_{new}/V) .

Using Ohm's law 2, the UF rate is given by

$$UFR = OCG \cdot 19.3T(D_0 - D)/\log(D_0/D)$$

Again, changing the volume from V to V_{new} and also changing the time to achieve the same osmotic gradient (D/D₀), we get

$$UFR = OCG \left(\frac{V_{new}}{V}\right)^{2/3} \cdot 19.3T \left(\frac{V_{new}}{V}\right)^{1/3} (D_0 - D) / \log(D_0/D) \leftrightarrow$$

$$UFR = \left(\frac{V_{new}}{V}\right) OCG \cdot 19.3T (D_0 - D) / \log(D_0/D)$$

Thus, changing the volume from V to V_{new} , the UF-rate is decreased by the factor (V_{new}/V) if the dwell time is also adjusted by the factor $(V_{\text{new}}/V)^{1/3}$ to achieve a similar osmotic gradient.

REFERENCES

- 1. Inc. APoC. *i-STAT 1 System Manual* Emergo Europe: The Hague, Netherlands, 2015.
- 2. Martus G, Bergling K, Simonsen O, *et al.* Novel Method for Osmotic Conductance to Glucose in Peritoneal Dialysis. *Kidney Int Rep* 2020; **5:** 1974-1981.
- 1. Inc. APoC. *i-STAT 1 System Manual* Emergo Europe: The Hague, Netherlands, 2015.
- 1. Hamer WJ, Wu YC. Osmotic coefficients and mean activity coefficients of uniunivalent electrolytes in water at 25° C. *Journal of Physical and Chemical Reference Data* 1972; **1:** 1047-1100.
- 2. Sarbar M, Covington A, Nuttall R, *et al.* The activity and osmotic coefficients of aqueous sodium bicarbonate solutions. *The Journal of Chemical Thermodynamics* 1982; **14:** 967-976.
- 3. Staples BR, Nuttall RL. The activity and osmotic coefficients of aqueous calcium chloride at 298.15 K. *Journal of Physical and Chemical Reference Data* 1977; **6:** 385-408.
- 4. Rard JA, Miller DG. Isopiestic determination of the osmotic and activity coefficients of aqueous magnesium chloride solutions at 25. degree. C. *Journal of Chemical and Engineering Data* 1981; **26:** 38-43.
- 5. Robinson RA, Stokes RH. Tables of osmotic and activity coefficients of electrolytes in aqueous solution at 25 C. *T Faraday Soc* 1949; **45**: 612-624.
- 6. Inc. APoC. *i-STAT 1 System Manual* Emergo Europe: The Hague, Netherlands, 2015.