1 Supplementary Methods & Results

2 IMPACT OF EXTENDED ELEXACAFTOR/TEZACAFTOR/IVACAFTOR THERAPY ON THE GUT

3 MICROBIOME IN CYSTIC FIBROSIS

- 4 Ryan Marsh ^a, Claudio Dos Santos ^b, Alexander Yule ^{c,d}, Neele S Dellschaft ^e, Caroline L Hoad ^e,
- 5 Christabella Ng^{c,d}, Giles Major^{c,f}, Alan R Smyth^{c,d,g}, Damian Rivett^{b*}, Christopher van der Gast^{a,h*}
- 6
- 7 ^a Department of Applied Sciences, Northumbria University, Newcastle, UK
- 8 ^b Department of Natural Sciences, Manchester Metropolitan University, UK
- 9 ^c School of Medicine, University of Nottingham, UK
- 10 ^d NIHR Nottingham Biomedical Research Centre, UK
- ^e Sir Peter Mansfield Imaging Centre, University of Nottingham, UK
- 12 ^f Nestlé Institute of Health Sciences, Société des Produits Nestlé, Lausanne, Switzerland
- 13 ^g School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
- ¹⁴ ^h Department of Respiratory Medicine, Northern Care Alliance NHS Foundation Trust, Salford, UK
- 15
- 16 * Correspondence to: Professor Chris van der Gast, Department of Applied Sciences, Ellison Building,
- 17 Newcastle upon Tyne, NE1 8ST, UK; <u>chris.vandergast@northumbria.ac.uk</u>
- 18 Dr Damian Rivett, Department of Natural Sciences, John Dalton Building, Chester Street, Manchester,
- 19 M1 5GD, UK; D.Rivett@mmu.ac.uk
- 20

22 Supplementary Methods

23 Study participants and design

Twenty-four pwCF, possessing either F508del homozygosity or compound heterozygotes with at least one copy of F508del, were initially recruited from Nottingham University Hospitals NHS Trust. Participants were asked to provide stool samples whilst attending the Sir Peter Mansfield Imaging Centre at the University of Nottingham. Ultimately, 20 pwCF (mean age at baseline, 21.0 ± 8.6 years, median age, 18 years provided samples available for inclusion in our analyses. Participants were asked to fast overnight and prior to the refraining from the use of laxatives and anti-diarrhoeals during their visit. Regular pancreatic enzyme replacement therapy and physiotherapy procedures were admitted.

Clinical assessments and sample collections were performed at baseline, with further samples collected following ETI therapy for 3 and 6 months, with some participants further providing samples over an additional 19.8 ± 2.0 months (mean ± SD) period (minimum 17+ months) to form this observational study. Whilst at clinic, gut physiology assessment utilising magnetic resonance imaging (MRI) was performed. This included measurement of oro-caecal transit time (OCTT) and small bowel water content (SBWC) following the consumption of a standardised meal. During attendance, participants also provided faecal samples, and completed the validated PAC-SYM to assess their gut symptoms [1].

38 From the recruited cohort, sampling faecal sampling was achieved for 19 pwCF 3 months post-ETI, 18 39 pwCF 6 months post-ETI, and finally in 7 pwCF for the extended (17+ months) ETI period. Faecal 40 samples from 10 age-matched healthy controls (mean age, 21.4 ± 7.40 years, median age, 20 years) 41 from our previous study were available for microbiota and metabolomic comparison also [2]. Participant 42 numbers were randomised to maintain anonymity. A data file matching the randomly assigned study 43 number to the participant identifiable information is held securely and password protected on a 44 University of Nottingham cloud-based web server. Further clinical trial details can be found at 45 clinicaltrials.gov, under the trial number NCT04618185 (https://clinicaltrials.gov/ct2/show/NCT04618185). 46

47 PMA treatment prior to DNA extraction

48 1 mg PMA (Biotium, CA, USA) was hydrated in 98 µl 20% dimethyl sulfoxide (DMSO) to give a working stock concentration of 20 mM. 300 mg of thawed stool was homogenised in 1.5 ml PBS, and then 49 50 centrifuged at 3200 x g, for 5 minutes. The pellet was then resuspended in 0.5 ml PBS prior to 51 subsequent PMA treatment. 1.25 µl of PMA (20 mM) was added to give a final concentration of 50 µM. 52 Following the addition of PMA to samples in opaque Eppendorf tubes, PMA was mixed by vortexing for 53 10 seconds, followed by incubation for 15 minutes at room temperature (~20 °C). This step was 54 repeated before the transfer of samples to clear 1.5 ml Eppendorf tubes and placement within a LED lightbox. Treatment occurred for 15 minutes to allow PMA intercalation into DNA from compromised 55 56 bacterial cells. Samples were then centrifuged at 10,000 x g for 5 minutes. The supernatant was 57 discarded, and the cellular pellet was resuspended in 200 µl PBS.

58 Targeted amplicon sequencing – Bacterial 16S rRNA

59 Step 1 amplicon generation with primers based on the universal primer sequences 515F & 926R as 60 described by Walters et al. [3], was performed under the following conditions: Initial denaturation of 180 seconds at 98 °C, followed by: 25 cycles of 30 seconds at 95 °C, 30 seconds at 55 °C and 30 seconds 61 at 72 °C. A final extension of 5 minutes at 72 °C was also included to complete the reaction. Step 2, the 62 63 addition of dual barcodes and Illumina adaptor sequences was performed under the following 64 conditions: Initial denaturation of 30 seconds at 98 °C, followed by: 10 cycles of 10 seconds at 98 °C, 65 20 seconds at 62 °C and 30 seconds at 72 °C. A final extension of 2 minutes at 72 °C was also included to complete this reaction. This resulted in the generation of an ~ 550 bp amplicon spanning the V4-V5 66 hypervariable regions of the 16S rRNA gene. 67

68 Sequencing Controls and Library Pooling

PCR & DNA extraction negative controls were implemented, alongside the use of mock community positive controls, which included a Gut Microbiome Standard (ZYMO RESEARCH[™]). Following Barcode attachment in the second PCR step, clean-up and subsequent amplicon size selection was performed with AMPure XP beads (Beckman Coulter[™]) and quantified using a Qubit[™] dsDNA HS kit. Sample concentrations were then manually normalised, pooled, and diluted to the final library concentrations requited for use on the Illumina MiSeq system.

75 Sequence processing and analysis

76 Initial sequencing files were processed using cutadapt (Version 3.5.0) to trim and remove upstream 77 adaptor sequences prior to sequence analysis [4]. DADA2 was used to demultiplex and remove primer 78 sequences, validate the quality profiles of forward and reverse reads and subsequently trim, infer 79 sequence variants, merge denoised paired-reads, remove chimeras, and finally assign taxonomy via 80 Naive Bayesian Classifier implementation. This included the use of a dedicated human intestinal 16S 81 rRNA reference database Unidentifiable ASVs were run through BLAST [5]. [6] 82 (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and matched appropriately based on query coverage where possible. Taxa with $2 \ge$ reads for a single sample were removed and excluded from subsequent 83 84 statistical analysis. ASVs from the same bacterial taxon were collapsed to form a single OTU for a given 85 taxon. The R package decontam was used to remove any potential source of contamination across 86 samples [7], utilising the prevalence-based contamination identification approach with a threshold 87 classification of P = 0.1.

88 GC-MS: Sample processing and SCFA preparation

89 Faecal samples stored at -80°C were ground in liquid nitrogen before 50 mg of ground faeces was 90 added to 500 µl MS-grade water. Samples were lysed and homogenised utilising inert ZR BashingBead 91 Lysis Tubes (Cambridge bioscience, UK), using the FastPrep-24 5G instrument (MP Biomedicals, 92 California, USA) with two cycles at a speed of 6.0 m/s for 40 seconds each. Samples were then 93 incubated at 4 °C whilst mixing for 30 minutes using an ELMI Intelli-Mixer™ RM-2L at 80 rpm. Samples 94 were centrifuged at 13,000 x g for 30 mins. The supernatant containing faecal SCFAs was removed. 95 150 µl of supernatant was protonated with 5M HCl before the addition of anhydrous diethyl ether (1:1 v/v), samples were vortexed for 10 seconds, and incubated on ice for 5 mins. Following incubation, 96 97 samples were mixed with the ELMI Intelli-Mixer™ RM-2L as before for 15 minutes, then centrifuged at 98 10,000 x g for 5 mins. The DE layer containing faecal SCFAs was transferred to a new Eppendorf tube 99 pre-loaded with 25 mg Na2SO4. The remaining layer was then re-extracted with another 150 µl DE as 100 before. Samples were equally pooled and then 40 ul was then transferred to a GC-MS vial, with the 101 addition of 2 ul N, O-bis(trimethylsilyl) trifluoroacetamide (BSTFA). Samples were vortexed then 102 incubated for 3 hours at 37 °C before loading onto the GC-MS. MS grade water processed in parallel 103 was used as a blank sample to correct the background.

104 GC-MS Analysis

105 GC-MS analysis was carried out using an Agilent 7890B/5977 Single Quadrupole Mass Selective Detector (MSD) (Agilent Technologies) equipped with a non-polar HP-5ms Ultra Inert capillary column 106 107 (30 m x 0.25 mm x 0.25 µm) (Agilent Technologies). The Agilent 7693 Autosampler was used to inject 108 1.0 µl of the derivatised sample in triplicate at a split ratio of 20:1 at 265 °C, with a solvent delay of 2 109 minutes 30 seconds. The initial oven temperature was held at 40 °C for 2 minutes, followed by a 10 °C/min temperature ramp to 140 °C, then increased to 300 °C at the rate of 40 °C/min and kept at this 110 111 temperature for 6 minutes. Electron impact (EI) mode ionisation was utilised at 70 eV, with the 112 instrumental parameters set at 230, 150 and 300 °C for source, quadrupole and interface temperatures, respectively. Selected ion monitoring (SIM) mode was used for quantification; all confirmation and target 113 ions lists are summarised in Supplementary Table S2. Agilent MassHunter workstation version B.07.00 114 115 programs were used to perform post-run analyses. A ¹³C-short chain fatty acids stool mixture (Merck Life Science, Poole, UK) was used as the internal standard to normalise all spectra obtained prior to 116 117 analyses. A ¹³C-short chain fatty acids stool mixture (Merck Life Science, Poole, UK) was used as the internal standard to normalise all spectra obtained prior to analyses. A volatile fatty acid mixture (Merck 118

Life Science, UK) was used to construct calibration curves for the quantification of target metabolites.

- 120 References
- I. Frank, L. Kleinman, C. Farup, L. Taylor, P.J. Miner, Psychometric Validation of a
 Constipation Symptom Assessment Questionnaire., Scand. J. Gastroenterol. 34 (1999) 870–
 877. https://doi.org/10.1080/003655299750025327.
- R. Marsh, H. Gavillet, L. Hanson, C. Ng, M. Mitchell-Whyte, G. Major, A.R. Smyth, D. Rivett, C.
 van der Gast, Intestinal Function and Transit Associate with Gut Microbiota Dysbiosis in Cystic
 Fibrosis., J. Cyst. Fibros. 21 (2022) 506–513.
 https://doi.org/https://doi.org/10.1016/j.jcf.2021.11.014.
- W. Walters, E.R. Hyde, D. Berg-lyons, G. Ackermann, Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial
 Community Surveys, MSystems. 1 (2016) e00009-15.
 https://doi.org/10.1128/mSystems.00009-15.Editor.
- I32 [4] M. Martin, Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads,
 I33 EMBnet. J. 17 (2011) 10–12.
- J. Ritari, J. Salojärvi, L. Lahti, W.M. de Vos, Improved Taxonomic Assignment of Human Intestinal 16S rRNA Sequences by a Dedicated Reference Database, BMC Genomics. 16 (2015) 1056. https://doi.org/10.1186/s12864-015-2265-y.
- [6] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped
 BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs., Nucleic
 Acids Res. 25 (1997) 3389–3402. https://doi.org/10.1093/nar/25.17.3389.
- 140 [7] N.M. Davis, D.M. Proctor, S.P. Holmes, D.A. Relman, B.J. Callahan, Simple Statistical

- Identification and Removal of Contaminant Sequences in Marker-Gene and Metagenomics Data, Microbiome. 6 (2018) 226. https://doi.org/10.1186/s40168-018-0605-2.

144		
145		
146		
147		
148		
149		
150		
151		
152		
153		
154		
155		
156	Supplementary Results	
157		

				Genotype					-	-				Ant	tibiotic	S		
ID	Group	Treatment length (Months)	1	2	Sex	Age (Years)	BMI	ΡI	CFRD	FCP	FEV1%	Ami	Ant	Мас	Mon	Pol	Sul	Tet
		В	-		Μ	12-17	17.5	-	-	-	94	-	-	-	-	-	-	-
000	DWCE	3	EE09dol	1154insTC,	М	12-17	18.0	V	N	-	89	-	-	-	-	-	-	-
023	рисг	6	FSUGUEI	p.Phe342HishX28	Μ	12-17	18.4	T	IN	-	94	-	-	-	-	-	-	-
		20			Μ	12-17	19.0			-	89	-	-	-	-	-	-	-
		В			F	18-23	21.9			14.1	57	-	-	+	-	-	-	-
046	pwCF	3*	F508del	F508del	F	18-23	21.2	Y	Ν	7.0	71.4	-	-	+	-	-	-	-
		6			F	18-23	21.4			7.0	73.5	-	-	+	-	-	-	-
		В			М	18-23	22.8			<5	91	-	-	-	-	-	-	-
194	pwCF	3	F508del	F508del	Μ	18-23	23.3	Y	Y	<5	98.9	-	-	-	-	-	-	-
		6				18-23	24.3			<5	93.1	-	-	-	-	-	-	-
0.47		В			М	12-17	20.8	V	NI	27.6	101	-	-	-	-	-	-	-
247	pwCF	3	F208061	FSU8del	Μ	18-23	21.7	Ŷ	IN	-	-	-	-	-	-	-	-	-
		В			М	12-17	21.8			9.8	81	-	-	+	-	-	-	-
253	pwCF	3	F508del	F508del	Μ	12-17	27.0	Y	Ν	-	101.5	-	-	+	-	-	-	-
		6			Μ	12-17	28.0			-	98.2	-	-	+	-	-	-	-
		В			М	12-17	17.7			0.3	-	-	+	-	-	-	+	-
057		3	FEOD		М	12-17	19.1	V	NI	-	95.9	-	+	-	-	-	+	-
257	pwCF	6	F508del	FSU8del	М	12-17	19.5	Ŷ	N	-	85.7	-	+	-	-	-	+	-
		20			М	12-17	19.6			-	98	-	+	-	-	-	+	+
		В			М	31-50	28.2			-	55	-	-	+	-	-	-	-
336	pwCF	3	F508del	1138INSG	М	31-50	29.3	Y	Y	-	63.9	-	-	+	-	-	-	-
		$6^{\text{¥}}$			М	31-50	29.0			-	64	-	-	+	-	-	-	-
398	pwCF	В	F508del	1507del	F	12-17	17.8	Y	Ν	-	101	-	-	+	-	-	-	-

 Table 1. Clinical metadata for pwCF and healthy control participants.

		3			F	12-17	18.6			-	115	-	-	+	-	-	-	-
		6			F	12-17	18.4			-	100	-	-	+	-	-	-	-
		19			F	12-17	20.6			-	102	-	-	+	-	-	-	-
		B*			Μ	12-17	20.5			-	-	-	-	+	-	-	-	-
407	DWCE	3	EE09dal	EE09dol	Μ	12-17	21.3	V	NI	-	98	-	-	+	-	-	-	-
437	рисг	6	FSUGUEI	FSUGUEI	Μ	12-17	21.2	T	IN	-	99.4	-	-	+	-	-	-	-
		19			Μ	18-23	21.3			-	104	-	-	+	-	-	-	-
		В			F	24-30	21.7			32.0	57	-	-	-	-	-	-	-
503	pwCF	3	F508del	F508del	F	24-30	23.1	Y	Ν	-	83.3	-	-	-	-	-	-	-
		6*			F	24-30	23.6			-	84.3	-	-	-	-	-	-	-
550	DWOF	В	FEORdal	FEO9dal	Μ	12-17	20.4	V	N	-	-	-	-	+	-	+	-	-
559	pwcr	6	FSUGUEI	F3000ei	Μ	18-23	21.4	T	IN	<5	106	-	-	+	-	-	-	-
		В			Μ	12-17	16.9			-	95	-	-	+	-	-	-	-
696	pwCF	3	F508del	711+1G->T, c579+1G>T	Μ	12-17	18.1	Y	Ν	-	93	-	-	+	-	-	-	-
		6			Μ	12-17	17.7			-	93.3	-	-	+	-	-	-	-
		В			Μ	12-17	14.7			<5	58.3	+	-	+	-	-	-	-
741	pwCF	3	F508del	1507del	Μ	12-17	15.7	Y	Ν	<5	77.9	+	-	+	-	-	-	-
		6			Μ	12-17	15.5			<5	72	+	-	+	-	-	-	-
		В			Μ	18-23	20.8			-	116	-	-	-	-	-	-	-
750	DWCE	3	EE09dal	EE09dol	Μ	18-23	21.1	V	N	-	-	-	-	-	-	-	-	-
752	pwcr	6	FSUGUEI	F3000ei	Μ	18-23	21.0	T	IN	-	115.5	-	-	-	-	-	-	-
		23			М	18-23	22.9			-	118	-	-	-	-	-	-	-
		3	_	1154insTC	F	12-17	22.6			-	66	-	-	+	-	-	-	-
756	pwCF	0	F508del	p.Phe342HisfsX28	F	12-17	22.2	Y	Ν	-	80.4	-	-	+	-	-	-	-
		<u> </u>			М	18-23	20.6			74	99		-			+		
802	pwCF	В	F508del	F508del	M	18-23	25.3	v	N	8.0	-	_	-	_	_		_	_
002	P100	3	1 000001	1 0000001	M	18-23	26.2	•	I N	8.0	111 7	_	_	_	_	_	_	_
820	DW/CE	<u> </u>	F508del	F508del	M	31-50	20.2	V	V		60							
020	PWOI	в	1 300061	1 300061	111	01-00	20.2			-	00	т	-	-	-	-	-	-

		3			М	31-50	27.3			6.0	76.8	+	-	+	-	+	-	-
		6			М	31-50	28.1			6.0	73.6	+	-	+	-	+	-	-
_		17			М	31-50	28.2			-	79.3	+	-	+	-	+	-	-
		В			М	24-30	18.5			33.2	-	+	-	-	+	-	-	-
868	pwCF	3	F508del	F508del	М	24-30	20.6	Y	Ν	-	-	+	-	-	+	-	-	-
_		6			М	24-30	19.6			-	67.3	+	-	-	+	-	-	-
071	DWCE	В	E508dol	al p1201bic	F	31-50	25.9	v	N	29.0	75	-	-	-	-	-	-	-
0/1	pwcr	3	FSUGGEI	gL11291115	F	31-50	27.2	I	IN	-	-	-	-	-	-	-	-	-
		В			М	31-50	26.3			-	58.7	-	-	+	+	-	-	-
001	DWCE	3	EE09dol	EE08dal	М	31-50	27.4	v	V	3.4	67.4	-	-	+	+	-	-	-
004	рмсг	6 F308081	FSUGUEI	М	31-50	28.2	T	T	3.4	71.4	-	-	+	+	-	-	-	
_		19			М	31-50	27.8			-	68	-	-	+	+	-	-	-
152	HC	-	Unknown	Unknown	F	18-23	21.3	Ν	-	4.2	-	-	-	-	-	-	-	-
159	HC	-	Unknown	Unknown	М	12-17	23.5	Ν	-	2.7	-	-	-	-	-	-	-	-
205	HC	-	Unknown	Unknown	F	18-23	31.9	Ν	-	3.8	-	-	-	-	-	-	-	-
431	HC	-	Unknown	Unknown	М	12-17	18.0	Ν	-	2.4	-	-	-	-	-	-	-	-
501	HC	-	Unknown	Unknown	F	24-30	28.7	Ν	-	7.2	-	-	-	-	-	-	-	-
548	HC	-	Unknown	Unknown	М	24-30	24.5	Ν	-	3.6	-	-	-	-	-	-	-	-
673	HC	-	Unknown	Unknown	М	18-23	20.3	Ν	-	0.9	-	-	-	-	-	-	-	-
749	HC	-	Unknown	Unknown	F	31-50	19.6	Ν	-	3.0	-	-	-	-	-	-	-	-
964	HC	-	Unknown	Unknown	F	12-17	19.2	Ν	-	12.7	-	-	-	-	-	-	-	-
986	HC	-	Unknown	Unknown	М	24-30	22.6	Ν	-	5.0	-	-	-	-	-	-	-	-

Treatment length points marked indicate samples for which no *metagenomic or *metabolomic analysis was available, due incomplete stool sampling or following removal of reads/data from downstream processing. CF participants were either F508del homozygous, or F508del heterozygous. All patients were pancreatic insufficient but contained no CF-related diabetes. For antibiotic usage, '+' indicates routine use of antibiotic class during the period for which the respective sample was obtained. Abbreviations: pwCF - People with CF, HC - Healthy controls, B - Baseline, FEV1 – Percent predicted forced expiratory volume in 1 second, BMI – Body mass index, PI – Pancreatic insufficiency, CFRD – Cystic fibrosis-related diabetes, FCP - Faecal calprotectin, Antibiotics; Ami – Aminoglycosides, Ant – Antimycobacterials, Mac – Macrolides, Mon – Monobactams, Pol – Polymixins, Sul – Sulfonamides, Tet – Tetracyclines.

Participant ID	Group	Treatment length (months)	OCTT (mins)	SBWC (mL/m ²)
		В	>360	54.10
023	pwCF	3	>360	71.45
020	pwor	6	>360	83.34
		20	240	43.08
		В	120	83.35
046	pwCF	3*	>360	49.31
		6	>360	56.03
		В	>360	79.48
194	pwCF	3	>360	119.20
		6	>360	72.16
247	DWCE	В	180	273.09
271	pwor	3	300	62.29
		В	>360	82.92
253	pwCF	3	>360	74.79
		6	>360	82.09
		В	240	40.56
257	pwCF	3	>360	53.51
201	pwor	6	120	20.44
		20	120	58.45
		В	>360	45.65
336	pwCF	3	>360	51.95
		6	>360	57.06
		В	>360	136.36
308	pwCF	3	240	180.52
550	pwor	6	240	102.51
		19	360	169.15
		B*	>360	99.35
437	pwC.F	3	>360	93.81
407	pwor	6	360	83.35
		19	180	86.85
		В	>360	31.25
503	pwCF	3	>360	49.21
		6*	240	59.00
559	nwCF	В	>360	74.30
000	PmOI	6	>360	95.80
		В	360	43.59
696	pwCF	3	360	54.28
		6	300	37.07
741	pwCF	В	>360	38.34

Table S2. Magnetic resonance imaging (MRI) data between pwCF and healthy control participants.

		3	360	45.91
		6	>360	51.92
		В	>360	42.38
752	DWCE	3	300	105.59
102	pwor	6	>360	96.71
		23	180	138.62
756	DWCE	3	>360	105.59
	piloi	6	>360	96.71
		В	>360	133.05
802	pwCF	3	>360	38.02
		6	>360	25.13
		В	300	41.53
820	DWCE	3	300	59.30
020	pwor	6	300	49.08
		17	300	54.55
		В	>360	82.84
868	pwCF	3	300	118.88
		6	240	113.28
871	DWCE	В	-	-
	pwor	3	-	-
		В	300	97.00
884	DWCE	3	300	47.33
004	pwer	6	>360	58.21
		19	240	59.05
152	HC	-	180	61.51
159	HC	-	150	18.40
205	HC	-	360	40.35
431	HC	-	150	72.69
501	HC	-	360	47.56
548	HC	-	300	57.04
673	HC	-	360	24.16
749	HC	-	240	10.79
964	HC	-	180	26.19
986	HC	-	180	89.90

B; Baseline, 3; 3 Months ETI therapy, 6; 6 Months ETI therapy, 17+; Extended (17+ months) ETI therapy, OCTT; Oro-caecal transit time, SBWC; Small bowel water content (corrected for body surface area).

164	
104	Table S3. Analytical parameters for SCFA analysis with GC-MS

SCFA	<i>t</i> _R (min)	Target ion (m/z)	Confirmation ion (m/z)
Acetic acid	2.52	117	75
Propionic acid	3.81	131	75
Iso-butyric acid	4.39	145	117
Butyric acid	5.22	145	117
Iso-valeric acid	6.07	159	117
Valeric acid	6.85	159	117
4-methylvaleric acid	7.86	173	117
Hexanoic acid	8.41	173	117
Heptanoic acid	9.9	187	117
¹³ C-acetic acid	2.52	119	77
¹³ C-propionic acid	3.81	134	77
¹³ C-butyric acid	5.22	149	119

 t_R - Retention time

Distribution (% number of patients)

Figure S1. Distribution and abundance of bacterial taxa across lengthening ETI treatment (0, 3, 6, 17+ months) stages (A, B, C, D respectively) and healthy control participants (E). Given is the percentage number of patients harbouring each bacterial taxon, plotted against the mean relative abundance across those samples. Core taxa are depicted by the orange circles and fall in the upper quartile of distribution, separated by the red vertical line at 75% distribution. Satellite taxa (grey) are all samples below this distribution. Distribution-abundance relationship regression statistics: (a) $r^2 = 0.45$, $F_{1,320} = 249.4$, P < 0.0001. (b) $r^2 = 0.63$, $F_{1,253} = 434.1$, P < 0.0001. (c) $r^2 = 0.65$, $F_{1,196} = 358.5$, P < 0.0001. (d) $r^2 = 0.53$, $F_{1,146} = 167.2$, P < 0.0001. (e) $r^2 = 0.40$, $F_{1,482} = 321.4$, P < 0.0001.

	Mean relative abundance (%)								
		ETI duration	(months)						
Genus	0	3	6	17+	HC				
Blautia 1	17.69	9.54	11.45	11.66	4.91				
Blautia luti	4.49	6.79	5.83	5.55	3.01				
Fusicatenibacter saccharivorans	7.61	4.24	2.96	5.73	3.69				
Dorea longicatena	3.61	4.61	5.05	4.39	1.79				
Eubacterium hallii	3.79	3.56	3.73	4.81	2.39				
Bacteroides dorei	2.67	2.56	4.05	3.79	3.35				
Anaerostipes hadrus	2.73	4.06	2.83	4.35	1.99				
Eubacterium rectale	1.39	2.55	3.43	3.68	4.78				
Collinsella aerofaciens	3.37	4.85	3.52	3.33	0.19				
Gemmiger formicilis	1.05	4.40	4.51	4.24	1.05				
Clostridium disporicum	2.92	4.97	3.90	1.60	0.70				
Bifidobacterium adolescentis	0.82	2.29	4.88	4.90	0.81				
Streptococcus 6	3.32	3.87	3.40	1.43	0.19				
Blautia faecis	2.53	1.98	1.94	2.12	2.30				
Bacteroides vulgatus	1.57	0.52	2.23	1.66	3.32				
Escherichia coli	2.05	0.70	1.66	2.27	1.99				
Romboutsia timonensis	1.16	1.96	2.75	0.76	1.32				
Ruminococcus faecis	1.20	0.96	1.64	2.27	1.61				
Blautia obeum	1.75	1.07	0.73	0.98	2.51				
Faecalibacterium duncaniae	0.49	0.86	0.52	2.09	2.15				
Intestinibacter bartlettii	0.34	1.07	1.01	1.22	0.63				
Bacteroides uniformis	0.66	0.49	0.41	0.14	2.55				
Eubacterium desmolans	0.76	1.01	0.68	0.69	0.67				
Faecalibacillus 70	0.18	0.78	0.70	0.54	1.45				
Dorea phocaeensis	0.27	0.68	0.86	1.31	0.31				
Coprococcus comes	0.52	0.52	0.44	0.92	0.57				
Faecalibacterium longum	0.03	0.14	0.15	0.42	2.19				
Parabacteroides distasonis	1.04	0.21	0.15	0.11	0.90				
Faecalibacterium prausnitzii	0.14	0.00	0.03	0.00	2.04				
Roseburia hominis	0.60	0.24	0.22	0.00	1.00				
Blautia intestinalis	0.29	0.27	0.58	0.00	0.50				
Gemmiger 86	0.03	0.17	0.21	0.47	0.75				
Barnesiella intestinihominis	0.01	0.03	0.01	0.00	1.58				
Hominisplanchenecus faecis	0.49	0.31	0.03	0.14	0.50				
Alistipes putredinis	0.00	0.00	0.00	0.00	1.35				
Eubacterium coprostanoligenes	0.04	0.39	0.04	0.27	0.43				
Blautia torques	0.21	0.04	0.07	0.30	0.39				
Clostridium 146	0.00	0.27	0.03	0.18	0.43				
Eubacterium ramulus	0.14	0.17	0.07	0.32	0.21				
Ruminococcus champanellensis	0.00	0.02	0.00	0.21	0.65				

 Table S4. Core taxa throughout ETI therapy and control participants.

Lachnoclostridium edouardi	0.09	0.15	0.04	0.00	0.53
Alistipes onderdonkii	0.04	0.00	0.01	0.00	0.64
Eubacterium ventriosum	0.03	0.05	0.04	0.26	0.29
Bacteroides caccae	0.03	0.03	0.15	0.06	0.36
Odoribacter splanchnicus	0.01	0.00	0.00	0.00	0.60
Coprococcus catus	0.08	0.07	0.02	0.14	0.22
Waltera intestinalis	0.02	0.00	0.00	0.00	0.49
Oscillibacter 413	0.00	0.00	0.00	0.00	0.48
Evtepia gabavorous	0.00	0.00	0.00	0.00	0.47
Vescimonas fastidiosa	0.00	0.03	0.00	0.00	0.41
Lentihominibacter faecis	0.06	0.08	0.07	0.08	0.11
Roseburia inulinivorans	0.05	0.00	0.00	0.00	0.34
Marseillibacter massiliensis	0.00	0.03	0.00	0.00	0.34
Alistipes obesi	0.00	0.00	0.00	0.00	0.36
Alistipes marseilloanorexicus	0.02	0.00	0.00	0.00	0.32
Eubacterium eligens	0.00	0.05	0.00	0.00	0.29
Alistipes shahii	0.00	0.00	0.00	0.00	0.24
Vescimonas 720	0.00	0.00	0.00	0.00	0.23
Oscillibacter massiliensis	0.00	0.01	0.01	0.00	0.20
Pseudomonas 1352	0.01	0.00	0.00	0.00	0.03

	Microbiota		Core		Satellite	
	K (Observed value)	1.851	K (Observed value)	0.169	K (Observed value)	1.894
0-3	K (Critical value)	3.841	K (Critical value)	3.841	K (Critical value)	3.841
00	DF p-value (one- tailed)	1 0.174	DF p-value (one- tailed)	1 0.681	DF p-value (one- tailed)	1 0.169
	K (Observed value)	12.240	K (Observed value)	9.021	K (Observed value)	11.333
0-6	K (Critical value)	3.841	K (Critical value)	3.841	K (Critical value)	3.841
00	DF	1	DF	1	DF	1
	p-value (one- tailed)	0.0005	p-value (one- tailed)	0.003	p-value (one- tailed)	0.001
	K (Observed value)	0.938	K (Observed value)	14.538	K (Observed value)	1.059
0-17+	K (Critical value)	3.841	K (Critical value)	3.841	K (Critical value)	3.841
	DF	1	DF	1	DF	1
	p-value (one- tailed)	0.333	p-value (one- tailed)	0.00014	p-value (one- tailed)	0.304
	K (Observed value)	4.462	K (Observed value)	9.938	K (Observed value)	2.946
3-6	K (Critical value)	3.841	K (Critical value)	3.841	K (Critical value)	3.841
	DF	1	DF	1	DF	1
	p-value (one- tailed)	0.035	p-value (one- tailed)	0.002	p-value (one- tailed)	0.086
	K (Observed value)	2.623	K (Observed value)	14.280	K (Observed value)	1.614
6-17+	K (Critical value)	3.841	K (Critical value)	3.841	K (Critical value)	3.841
U 17 1	DF	1	DF	1	DF	1
	p-value (one- tailed)	0.105	p-value (one- tailed)	0.00016	p-value (one- tailed)	0.204

Table S5. Kruskal-Wallis tests of bacterial alpha diversity across treatment time-points (months) utilising Fisher's alpha index.

	Microbiota		Core		Satellite	
	K (Observed value)	18.621	K (Observed value)	18.621	K (Observed value)	18.626
0-HC	K (Critical value)	3.841	K (Critical value)	3.841	K (Critical value)	3.841
0110	DF p-value (one- tailed)	1 <0.000 1	DF p-value (one- tailed)	1 <0.000 1	DF p-value (one- tailed)	1 <0.000 1
	K (Observed value)	18.621	K (Observed value)	18.626	K (Observed value)	18.626
3-HC	K (Critical value)	3.841	K (Critical value)	3.841	K (Critical value)	3.841
0110	DF p-value (one- tailed)	1 <0.000 1	DF p-value (one- tailed)	1 <0.000 1	DF p-value (one- tailed)	1 <0.000 1
	K (Observed value)	18.214	K (Observed value)	18.214	K (Observed value)	18.220
6-HC	K (Critical value)	3.841	K (Critical value)	3.841	K (Critical value)	3.841
0110	DF p-value (one- tailed)	1 <0.000 1	DF p-value (one- tailed)	1 <0.000 1	DF p-value (one- tailed)	1 <0.000 1
	K (Observed value)	11.667	K (Observed value)	11.667	K (Observed value)	11.681
17+-	K (Critical value)	3.841	K (Critical value)	3.841	K (Critical value)	3.841
HC	DF p-value (one- tailed)	1 0.001	DF p-value (one- tailed)	1 0.001	DF p-value (one- tailed)	1 0.001

Table S6. Kruskal-Wallis tests of bacterial alpha diversity between treatment time-points (months) and healthy controls utilising Fisher's alpha index.

	Microbiota		Core		Satellite	
	R	-0.02372	R	0.02923	R	0.0382
0-3	p (same) Bonferroni-corrected p	0.7567	p (same)	0.1471	p (same)	0.1355
	value	0.7598	Bonferroni-corrected p value	0.1481	Bonferroni-corrected p value	0.1421
	Permutations	9999	Permutations	9999	Permutations	9999
	R	-0.03417	R	0.1835	R	0.03914
0-6	p (same) Bonferroni-corrected p	0.8365	p (same)	0.0001	p (same)	0.1395
	value	0.8495	Bonferroni-corrected p value	0.0002	Bonferroni-corrected p value	0.1477
	Permutations	9999	Permutations	9999	Permutations	9999
	R	-0.1927	R	0.1942	R	0.09095
0-17+	p (same) Bonferroni-corrected p	0.9837	p (same)	0.0547	p (same)	0.1684
	value	0.985	Bonferroni-corrected p value	0.0614	Bonferroni-corrected p value	0.1763
	Permutations	9999	Permutations	9999	Permutations	9999
	R	-0.0664	R	0.2078	R	0.07737
3-6	p (same) Bonferroni-corrected p	0.9938	p (same)	0.0001	p (same)	0.034
	value	0.9947	Bonferroni-corrected p value	0.0001	Bonferroni-corrected p value	0.0347
	Permutations	9999	Permutations	9999	Permutations	9999
	R	-0.1876	R	0.1817	R	0.04437
6-17+	p (same) Bonferroni-corrected p	0.9798	p (same)	0.0591	p (same)	0.288
	value	0.9806	Bonferroni-corrected p value	0.0639	Bonferroni-corrected p value	0.2944
	Permutations	9999	Permutations	9999	Permutations	9999

 Table S7. Bacterial ANOSIM summary statistics across ETI treatment lengths, utilising the Bray-Curtis index.

	Microbiota		Core		Satellite	
	R	0.2775	R	0.7931	R	0.8795
0-HC	p (same)	0.0018	p (same)	0.0001	p (same)	0.0001
0110	Bonferroni-corrected p value	0.0023	Bonferroni-corrected p value	0.0001	Bonferroni-corrected p value	0.0001
	Permutations	9999	Permutations	9999	Permutations	9999
	R	0.3104	R	0.7432	R	0.8999
3-HC	p (same)	0.0015	p (same)	0.0001	p (same)	0.0001
5-110	Bonferroni-corrected p value	0.0021	Bonferroni-corrected p value	0.0001	Bonferroni-corrected p value	0.0001
	Permutations	9999	Permutations	9999	Permutations	9999
	R	0.3751	R	0.9177	R	0.9299
6-HC	p (same)	0.0002	p (same)	0.0001	p (same)	0.0001
0110	Bonferroni-corrected p value	0.0002	Bonferroni-corrected p value	0.0001	Bonferroni-corrected p value	0.0001
	Permutations	9999	Permutations	9999	Permutations	9999
	R	0.6697	R	0.9957	R	0.8723
17±-HC	p (same)	0.0002	p (same)	0.0001	p (same)	0.0001
17+-110	Bonferroni-corrected p value	0.0002	Bonferroni-corrected p value	0.0002	Bonferroni-corrected p value	0.0002
	Permutations	9999	Permutations	9999	Permutations	9999

 Table S8.
 Bacterial ANOSIM summary statistics between ETI treatment lengths and healthy control participants, utilising the Bray-Curtis index.

	% Re	elative dance			
Таха	Baseline	17+ ETI	Av. Dissimilarity	% Contribution	Cumulative (%)
Blautia 1	17.70	11.70	5.59	7.62	7.621
Fusicatenibacter saccharivorans	7.61	5.73	3.56	4.85	12.47
Blautia luti	4.49	5.55	2.48	3.38	15.85
Bifidobacterium adolescentis	0.82	4.90	2.31	3.14	18.99
Collinsella aerofaciens	3.37	3.33	2.27	3.10	22.09
Anaerostipes hadrus	2.73	4.35	2.24	3.05	25.14
Bacteroides dorei	2.67	3.79	2.21	3.01	28.15
Dorea longicatena	3.61	4.39	2.01	2.74	30.89
Gemmiger formicilis	1.05	4.24	1.82	2.48	33.36
Bifidobacterium 21	3.50	0.22	1.67	2.27	35.64
Enterococcus 26	2.55	2.07	1.54	2.10	37.74
Eubacterium rectale	1.39	3.68	1.53	2.09	39.82
Ruminococcus bromii	0.16	3.34	1.48	2.02	41.84
Streptococcus 6	3.32	1.43	1.43	1.95	43.79
Eubacterium hallii	3.79	4.81	1.37	1.87	45.66
Clostridium disporicum	2.92	1.60	1.37	1.87	47.53
Ruminococcus gnavus	1.26	2.48	1.33	1.81	49.34
Escherichia coli	2.05	2.27	1.29	1.75	51.09

Table S9. Similarity of percentage (SIMPER) analysis of microbiota dissimilarity (Bray-Curtis) between baseline and 17+ months (extended) ETI treatment in samples obtained from pwCF.

Taxa identified as core are highlighted in orange, with satellite taxa highlighted in grey. The mean relative abundance (%) across both groups is given, alongside the percentage contribution which is the mean dissimilarity 180

181 182

of taxa divided by the mean dissimilarity (73.40%) across samples. Cumulative percent does not equal 100% as 183 the list is not exhaustive, rather the taxa that make up 50% of dissimilarity between groups. Given the length of the 184 16S gene regions sequenced, taxon identification should be considered putative.

	Microbiota			_	Core taxa		S	Satellite taxa	a
	Var. Exp (%)	pseudo- <i>F</i>	P (adj)	Var. Exp (%)	pseudo- <i>F</i>	P (adj)	Var. Exp (%)	pseudo- <i>F</i>	P (adj)
Age							6.5	3.4	0.002
Antibiotics	4.9	2.8	0.010	5.6	3.3	0.050	5.4	2.9	0.002
BMI	5.2	2.9	0.016						
Disease sev.	7.4	3.9	0.002	9.6	5.2	0.006	3.4	1.9	0.012
SBWC	3.4	2.0	0.046	4.9	3.0	0.038			
Sex Treatment	3.7	2.2	0.038	5.5	3.1	0.082	2.6	1.5	0.050
length							2.9	1.7	0.048
Total	24.6			25.6			20.8		

Table S10. Redundancy analysis to explain percent variation across whole microbiota, core, and satellite taxa of the significant clinical variables across pwCF receiving ETI therapy.

185 Var. Exp (%) represents the percentage of the microbiota for which can be explained by a given clinical variable

186 187

from the redundancy analysis model. P (adj) is following false discovery rate correction of significance values. Antibiotics refers to if a given participant was receiving any class of routine antibiotic during the sampling period. Disease sev – Disease severity utilising FEV1% as a proxy, SBWC – Small bowel water content corrected for body 188 189 surface area.

'SBWC' - Small bowel water content corrected for body surface area. The percentage of microbiota

190 191 Figure S2. Redundancy analysis species biplots for the whole microbiota within pwCF. The 24 taxa 192 contributing most to the dissimilarity (cumulatively > 50%) within pwCF samples at baseline, and 193 following 17+ months (extended) ETI therapy from the SIMPER analysis (Table S9) are shown independently of the total number of ASVs identified (353). Orange points represent taxa that were 194 195 identified as core for the pwCF group following 17+ (extended) ETI therapy, grey points are satellite, 196 and the white (black stroke) points represent taxa that were absent. Biplot lines depict clinical variables that significantly account for total variation in taxa relative abundance within whole microbiota analysis 197 198 at the $p \le 0.05$ level (Table S10). Species plots depict the strength of explanation provided by the given 199 clinical variables, with taxa shown in the same direction of a particular clinical variable considered to have a higher value than those that are not. 'Abx' - Antibiotics during sampling period, 'BMI' - Body 200 mass index, 'Disease Mildness' - Disease mildness based on increased FEV1% across patients, 201

variation explained by each axis is given in parentheses.

204

Fatty acids

Figure S3. Changes in faecal fatty acid concentration (A-B) and relative abundance (C-D) across ETI treatment periods (months) and healthy control samples. Error bars denote standard error of the mean (SEM). Asterisks between bars denote significance differences in absolute quantification (A-B) or relative abundance (C-D) of faecal fatty acids between groups following Kruskal-Wallis testing. ***; P < 0.0001, **; P < 0.001, *; P < 0.05. Summary statistics are found in Tables S11-14.

			Fatty acid							
		Acetic	Propionie	c Isobutyrie	Butyric	c Isovalerio	c Valerio	c 4-methy	d Hexanoid	c Heptanoic
	K (Observed value)	0.189	0.179	0.511	1.765	0.003	0.214	0.025	1.470	2.016
0-3	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
	DF	1	1	1	1	1	1	1	1	1
	p-value (one- tailed)	0.663	5 <u>0.6721</u>	0.4749	0.1841	0.9534	0.6440	0.8755	0.2254	0.1556
	K (Observed value)	0.107	0.236	0.810	2.793	0.351	0.086	0.095	1.872	0.137
3-6	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
	DF	1	1	1	1	1	1	1	1	1
	p-value (one- tailed)	0.7442	20.6268	0.3682	0.0947	0.5535	0.7697	<u>0.7579</u>	0.1712	0.7116
	K (Observed value)	0.044	1.059	0.000	2.289	0.366	2.476	0.007	0.004	0.040
6-17+	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
	DF	1	1	1	1	1	1	1	1	1
	p-value (one- tailed)	0.8330	0.3035	1.0000	0.1303	80.5450	0.1156	60.9354	0.9517	0.8416
	K (Observed value)	0.653	0.000	0.029	0.267	0.316	0.651	0.061	0.059	1.428
0-6	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
	DF	1	1	1	1	1	1	1	1	1
	p-value (one- tailed)	0.4189	91.0000	0.8651	0.6055	50.5740	0.4198	<u>8</u> 0.8054	0.8078	0.2321
	K (Observed value)	0.011	1.271	0.007	0.188	0.021	1.322	0.013	0.442	0.268
0-17+	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
	DF	1	1	1	1	1	1	1	1	1
	p-value (one- tailed)	0.916	0.2596	0.9343	0.6646	0.8851	0.2502	20.9076	0.5061	0.6049

 Table S11. Kruskal-Wallis tests of faecal fatty acid quantification between across ETI treatment time-points.

						Fatty ac	id			
		Acetic	Propionic	Isobutyric	Butyric	Isovaleric	Valeric	4-methyl	Hexanoic	Heptanoic
	K (Observed value)	0.240	0.240	0.296	0.500	0.214	0.145	0.279	0.359	0.465
0-3	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
0-0	DF	1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.6245	0.6245	0.5865	0.4795	0.6438	0.7034	0.5976	0.5489	0.4951
	K (Observed value)	0.068	0.303	0.706	1.854	0.568	0.806	0.277	0.190	0.061
3-6	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
	DF	1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.7943	0.5820	0.4009	0.1734	0.4512	0.3692	0.5987	0.6632	0.8044
	K (Observed value)	0.722	0.722	0.029	0.260	0.029	3.494	0.097	0.080	0.787
6-17+	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
• • • •	DF	1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.3955	0.3955	0.8651	0.6102	0.8651	0.0616	0.7550	0.7768	0.3751
	K (Observed value)	0 196	0.034	0.046	0 196	0.046	0 601	0.005	0.015	0.000
	K (Observed value)	2 9/1	2 0 1 1	2 0/1	2 0 4 4	2 0 1 1	2 0 4 1	2 9 4 4	2 0 1 1	2 944
0-6		3.041	3.041 1	3.041 4	3.041	3.041	3.041	3.04 I	3.041	3.041
		1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.6666	0.8535	0.8294	0.6666	0.8294	0.4059	0.9458	0.9018	1.0000
	K (Observed value)	0.178	0.711	0.100	0.011	0.011	0.178	0.003	0.100	0.290
0 17	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
0-1/+	DF	1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.6733	0.3991	0.7518	0.9161	0.9161	0.6733	0.9529	0.7517	0.5901

 Table S12.
 Kruskal-Wallis tests of fatty acid relative abundance between across ETI treatment time-points.

		Fatty ac	id							
		Acetic	Propionic	Isobutyric	Butyric	Isovaleric	Valeric	4-methyl	Hexanoic	Heptanoic
	K (Observed value)	0.017	0.034	0.771	0.760	0.076	14.713	1.448	5.477	12.746
0-HC	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
0-110	DF	1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.8951	0.8544	0.3798	0.3833	0.7831	0.0001	0.2289	0.0193	0.0004
	K (Observed value)	1.388	0.002	0.003	0.928	0.034	13.805	2.177	9.453	17.631
3-HC	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
0110	DF	1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.2387	0.9634	0.9600	0.3353	0.8544	0.0002	0.1400	0.0021	0.0000
	K (Observed value)	0.852	0.021	0.754	0.517	0.589	18.621	1.019	4.056	17.806
6-HC	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
0110	DF	1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.3559	0.8856	0.3853	0.4720	0.4430	0.0000	0.3128	0.0440	0.0000
	K (Observed value)	0.375	0.034	0.576	5.952	0.010	5.952	0.146	2.143	8.109
17 +- HC	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
	DF	1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.5403	0.8544	0.4477	0.0147	0.9223	0.0147	0.7021	0.1432	0.0044

Table S13. Kruskal-Wallis tests of fatty acid quantification between ETI treatment time-points and healthy controls.

						Fatty acid				
		Acetic	Propionic	Isobutyric	Butyric	Isovaleric	Valeric	4-methyl	Hexanoic	Heptanoic
	K (Observed value)	0.157	0.004	0.352	0.526	0.000	11.309	2.968	3.915	11.373
0-HC	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
	DF	1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.6924	0.9474	0.5529	0.4683	1.0000	0.0008	0.0849	0.0478	0.0007
	K (Observed value)	0.096	0.096	0.246	0.035	1.112	8.862	1.428	5.268	11.966
3-HC	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
3-00	DF	1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.7565	0.7565	0.6198	0.8524	0.2917	0.0029	0.2321	0.0217	0.0005
	K (Observed value)	0.600	0.000	1.116	2.623	0.243	15.000	2.964	3.101	12.062
6-HC	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
0.10	DF	1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.4386	1.0000	0.2908	0.1053	0.6221	0.0001	0.0851	0.0782	0.0005
	K (Observed value)	0.735	0.735	2.535	1.815	0.015	9.375	0.462	1.815	4.343
17+-HC	K (Critical value)	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841	3.841
	DF	1	1	1	1	1	1	1	1	1
	p-value (one-tailed)	0.3913	0.3913	0.1113	0.1779	0.9025	0.0022	0.4967	0.1779	0.0372

Table S14. Kruskal-Wallis tests of fatty acid relative abundance ETI treatment time-points and healthy controls.

	Across ETI Therapy			Between ETI & Healthy Controls	
	R	-0.0061		R	0.0794
0-3	p (same)	0.4428	0-HC	p (same)	0.105
0-3	Bonferroni-corrected p value	0.4516	0-110	Bonferroni-corrected p value	0.1067
	Permutations	9999		Permutations	9999
		0.0100			0.0040
	R	-0.0188		R	-0.0013
3-6	p (same)	0.5393	3-HC	p (same)	0.4222
	Bonferroni-corrected p value	0.5417		Bonferroni-corrected p value	0.4367
	Permutations	9999		Permutations	9999
	 R	-0.0624		 R	0.1502
0 47.	p (same)	0.6692	6.110	p (same)	0.0393
6-17+	Bonferroni-corrected p value	0.6744	0-HC	Bonferroni-corrected p value	0.0407
	Permutations	9999		Permutations	9999
	R	-0.0475		R	0.2480
0-6	p (same)	0.8064	17+-HC	p (same)	0.0467
00	Bonferroni-corrected p value	0.8122		Bonferroni-corrected p value	0.047
	Permutations	9999		Permutations	9999
	R	-0.1939			
0-17+	p (same)	0.9724			
5 17 1	Bonferroni-corrected p value	0.9757			
	Permutations	9999			

 Table S15. ANOSIM summary statistics of fatty acid relative abundances across ETI treatment time-points and compared with healthy control participants.

_	% Relative	e abundance	_		
Fatty acid	ETI 6 Months	Healthy Controls	Av. Dissimilarity	% Contribution	Cumulative (%)
Butyric	27.3	21.4	4.767	28.24	28.24
Acetic	49.7	50.6	3.931	23.28	51.52
Propionic	17.5	17.5	3.236	19.17	70.69
Valeric	0.276	3.15	1.438	8.517	79.2
Hexanoic	0.678	2.19	1.177	6.974	86.18
Isobutyric	2.2	2.54	1.112	6.586	92.76
Isovaleric	2.4	2.21	1.048	6.209	98.97
Heptanoic	0.0045	0.305	0.1502	0.8899	99.86
4-methyl	0.0209	0.049	0.02314	0.137	100
Total dissin	nilarity		16.88		

Table S16. Similarity of percentage (SIMPER) analysis of fatty acid
compositional dissimilarity between healthy controls and pwCF following 6 months and
17+ months (extended) ETI therapy.

_	% Relativ	e abundance	_		
Fatty acid	ETI 17+	Healthy Controls	Av. Dissimilarity	% Contribution	Cumulative (%)
Acetic	46.9	50.6	4.823	28.73	28.73
Butyric	27.5	21.4	4.329	25.79	54.52
Propionic	21	17.5	3.427	20.41	74.93
Valeric	0.458	3.15	1.347	8.023	82.95
Hexanoic	0.416	2.19	1.065	6.341	89.29
Isobutyric	1.45	2.54	0.8098	4.824	94.12
Isovaleric	2.17	2.21	0.8068	4.806	98.92
Heptanoic	0.01	0.305	0.1491	0.8881	99.81
4-methyl	0.05	0.049	0.0321	0.1912	100
Total dissim	nilarity		16.79		

faecal relative SCFA abundance.					
SCFA	Var. Exp (%)	p (%) pseudo- <i>F</i>			
Valeric	4	2	0.002		
Propionic	4	2	0.002		
Butyric	2.7	1.4	0.018		
Total	10.7				

Table S17. RDA to explain percent variation in microbiota from faecal relative SCFA abundance.

219 Figure S4. Faecal SCFA redundancy analysis species biplots for the whole microbiota. The 24 taxa contributing 220 most to the dissimilarity (cumulatively > 50%) between healthy control and pwCF samples following 17+ months 221 (extended) ETI therapy from the SIMPER analysis (Table 2) are shown independently of the total number of ASVs 222 identified (531). Orange points represent taxa that were identified as core for the pwCF group following 17+ 223 (extended) ETI therapy, grey points are satellite, and the white (black stroke) points represent taxa that were 224 absent. Biplot lines depict SCFA that significantly explained total variation in taxa relative abundance within whole 225 microbiota analysis at the $p \le 0.05$ level (Table S17). Species plots depict the strength of explanation provided by 226 the given clinical variables, with taxa shown in the same direction of a SCFA considered to have a higher value 227 than those that are not. The percentage of microbiota variation explained by each axis is given in parentheses.

results between baseline and En treatment				
3	Difference	-0.339		
	t (Observed value)	-0.398		
	t (Critical value)	2.160		
	DF	13		
	p-value (Two-tailed)	0.697		
6	Difference	-1.750		
	t (Observed value)	-1.923		
	t (Critical value)	2.179		
	DF	12		
	p-value (Two-tailed)	0.079		
17+	Difference	-1.429		
	t (Observed value)	-1.000		
	t (Critical value)	2.447		
	DF	6		
	p-value (Two-tailed)	0.356		

Table S18. Summary statistics for paired t-test PAC-SYM results between baseline and ETI treatment

(extended) E l'i samples.			
OCTT	K (Observed value)	0.040	
	K (Critical value)	3.841	
	DF	1	
	p-value (one-tailed)	0.842	
SBWC	K (Observed value)	3.438	
	K (Critical value)	3.841	
	DF	1	
	p-value (one-tailed)	0.064	

Table S19. Kruskal-Wallis summary statistics for gut function MRI metrics between baseline and 17+ (extended) ETI samples.