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shaPRS walkthrough examples

The following three examples may help to explain the application of shaPRS in three illustrative scenarios of SNPs: fully shared, non-shared and partially shared effect between studies.

Fully shared SNP. A SNP whose effect is 100% shared between proximal and adjunct studies. These are frequently null SNPs that have a true effect size of 0 (). Here, the estimated lFDR would be close to 1 (=1), so the shaPRS equation

 ,

would simplify to 

.
Thus here the final SNP estimate would become close to identical to the meta-analysis (). 

SNP specific to proximal study. A SNP that only has an effect in the proximal study, but not in the adjunct study. An example of this would be some SNPs in the NOD2 region in our IBD analyses, which has an effect only on CD susceptibility. Here, the estimated lFDR would be 0 (=0). Therefore, the shaPRS equation would simplify to 
.

Thus here the final SNP estimate would become close to the proximal study (). 

SNP partially shared between studies. A SNP that has an effect on both phenotypes, but with different effects in proximal and adjunct studies (which should give rise to a low lFDR for the variant’s Cochran’s test). Here, the estimated lFDR would be x (=x), which would be a value between zero and one. Therefore, the shaPRS equation would become
.

Which would make  take on an intermediate value between the proximal and the meta-analysis that depends on the exact degree of effect sharing, specific to each SNP.

Missing SNPs and practical application of shaPRS 
By default, the shaPRS R package will keep SNPs that are missing in the adjunct data by using their proximal data estimates, which is expected to produce the best overall quality PRS in practical applications. However, for our comparisons we excluded all SNPs that were missing from the adjunct datasets to ensure all methods worked off the same set of SNPs. Incorporating estimates from proximal-only SNPs would have had the effect of adding a constant value to all methods' PRS, which would not have altered the rank order of the methods.
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	S Fig 1 a. The effect of varying the composition of heterogeneity in the genetic correlation (the proportion of shared causal effects to their correlation) across the five methods. The X-axis shows the three different compositions that were used to generate the same genetic correlation (rG = 0.5). The axis labels are coded as p/r, which are the shared fraction of causal SNPs / effect size correlation of these SNPs. Y-axis is the squared correlation between the predicted and observed phenotypes on the test set and the error bars represent the standard error of mean. Meta-analysis (blue) represents the PRS built from combining both phenotypes. Single dataset (green) represents PRS built from only the individuals from the proximal dataset. shaPRS (yellow) is our method, MTAG (blue) is a baseline method that generates PRS via estimate SNP effect sizes based on constant parameters,  and SMTPred (purple) is the baseline method that produced a PRS by balancing the PRS for proximal and adjunct datasets based on their genetic correlation. b. The same scenario as a, with the addition of the extra heterogeneity created by SNPs of large effect that contributed 5% non-shared heritability.
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	S Fig 2: a, b, c, d, e and f Histograms of lFDR of heterogeneity between ancestries for asthma, height, BRCA, CAD, and T2D and between UC/Crohn’s disease for IBD, respectively.
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S Fig 3: Heatmap of results for all 162 simulation scenarios, colours indicate squared correlation between simulated and predicted phenotypes for example scenarios, where warmer values indicate better performance. N is the sample size, half, full and double are 7,022, 14,044 and 28,088 individuals, respectively. p is the fraction of causal SNPs shared between the proximal and adjunct datasets, cor is the correlation of effect sizes between these SNPs. split is the ratio of the proximal to adjunct dataset sizes. rG is the genetic correlation between the proximal to adjunct datasets.
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S Fig 4: Heatmap of the squared correlation between simulated and predicted phenotypes in the additional 36 scenarios exploring selected parameters. p is the fraction of causal SNPs shared between the proximal and adjunct datasets, cor is the correlation of effect sizes between these SNPs. split is the ratio of the proximal to adjunct dataset sizes. Warmer colours indicate better performance. a. Sample size N = 14,044, with a proximal/adjunct sample ratio of 50/50, 40/60 or 20/80, a genetic correlation between proximal and adjunct traits of 0.5 with a heritability of 0.25 from a 1,000 causal variants, no extra heterogeneity created by SNPs of large effect. b. The same scenario as a, with a heritability of 0.75. b.  c. The same scenario as b, with a heritability of 0.5 and 3,000 causal SNPs. d. The same scenario as c, with a 5,000 causal SNPs. 
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S Fig 5:  shaPRS maximises accuracy of polygenic risk scores across divergent ancestry groups when only GWAS summary statistics are available. Barplot of the results of the cross-ancestry analysis that compared the accuracy of six different methods to produce a PRS. LDpred2 and PRS-CS are the LDpred2 method on auto option and the PRS-CS method, both trained on only the target ancestry datasets. shaPRS+LDpred2 and shaPRS+PRS-CS add preprocessing by shaPRS to leverage the adjunct datasets whilst generating a target ancestry-specific PRS. PRS-CSx-stage1 combines the proximal and adjunct summary data without the reliance on additional genotype validation data. PRS-CSx  follows on from PRS-CSx-stage1 by performing an additional step of finding the best linear combination of the proximal and adjunct PRS files by using additional genotype validation data. As PRS-CSx assumes a different use-case than our paper, it is only included as a point of reference. Barplot for the EUR proximal with EAS adjunct scenario of PRS performance evaluated by the area under the receiver operating characteristic curve (AUC) of the predicted and observed phenotypes. The error bars represent the 95% confidence intervals which were computed with 2,000 stratified bootstrap replicates.


	Table S1 | Range of parameters evaluated in the simulation experiments.

	parameter
	range

	sample size
	7,022, 14,044 and 28,088 training individuals

	phenotype split (proximal/adjunct)
	50/50, 40/60 and 20/80

	five large effect SNPs
	enabled or disabled

	









rG composition
	
	rG
	shared fraction 
of causal SNPs 
	effect size correlation

	
	0.1   
	1

	0.1
	0.55
	0.182

	
	1
	0.1

	
	0.25
	1  

	0.25
	0.625
	0.4

	
	1
	0.25

	
	0.5
	1 

	0.5
	 0.75
	0.667

	
	1
	0.5




	
Sample size represents the number of individuals used for training the PRS, which were chosen to be approximately half , equal to  or double  the size of our UC GWAS datasets (N = 4,647 cases and 10,308 controls). Phenotype split represents the percentage of the samples with quantitative phenotypes simulated for each of the two traits, given as proximal/adjunct. The ‘five large effect SNPs’ represents the choice to include five highly penetrant SNPs that explained 5% of the non-shared heritability of each trait. rG composition represents the different ways genetic correlations were constructed as a product of three different  ‘shared fraction of causal SNPs’ and ‘effect size correlation’ estimates. 





	Table S2 | Leveraging information from GWAS studies with different ancestries

	Target ancestry
	trait
	data
	information pooling
	PRS
	r2
	AUC

	




EUR
	




T2D
	
proximal (EUR)
	
N/A
	LDpred2
	0.0075
	0.624

	
	
	
	
	PRS-CS
	0.00958
	0.639

	
	
	

proximal 
+ adjunct
	
PRS-CSx
	PRS-CSx
	0.0125
	0.658

	
	
	
	
	PRS-CSx-stage1
	0.0114
	0.650

	
	
	
	
shaPRS
	LDpred2
	0.0129
	0.661

	
	
	
	
	PRS-CS
	0.0127
	0.659

	




EUR
	




height
	
proximal
	
N/A
	LDpred2
	0.0976
	



N/A

	
	
	
	
	PRS-CS
	0.116
	

	
	
	

proximal 
+ adjunct
	
PRS-CSx
	PRS-CSx
	0.123
	

	
	
	
	
	PRS-CSx-stage1
	0.121
	

	
	
	
	
shaPRS
	LDpred2
	0.122
	

	
	
	
	
	PRS-CS
	0.122
	

	




EUR
	




BRCA
	
proximal
	
N/A
	LDpred2
	0.00828
	0.599

	
	
	
	
	PRS-CS
	0.00529
	0.584

	
	
	

proximal 
+ adjunct
	
PRS-CSx
	PRS-CSx
	0.00836
	0.602

	
	
	
	
	PRS-CSx-stage1
	0.00684
	0.593

	
	
	
	
shaPRS
	LDpred2
	0.00955
	0.607

	
	
	
	
	PRS-CS
	0.00724
	0.596

	




EUR
	




CAD
	
proximal
	
N/A
	LDpred2
	0.00666
	0.605

	
	
	
	
	PRS-CS
	0.0195
	0.676

	
	
	

proximal 
+ adjunct
	
PRS-CSx
	PRS-CSx
	0.0179
	0.670

	
	
	
	
	PRS-CSx-stage1
	0.0179
	0.670

	
	
	
	
shaPRS
	LDpred2
	0.0164
	0.663

	
	
	
	
	PRS-CS
	0.0169
	0.665

	




EUR
	




asthma
	
proximal
	
N/A
	LDpred2
	0.0115
	0.595

	
	
	
	
	PRS-CS
	0.0099
	0.588

	
	
	

proximal 
+ adjunct
	
PRS-CSx
	PRS-CSx
	0.0134
	0.603

	
	
	
	
	PRS-CSx-stage1
	0.0113
	0.595

	
	
	
	
shaPRS
	LDpred2
	0.0136
	0.604

	
	
	
	
	PRS-CS
	0.0123
	0.599











	Target ancestry
	trait
	data
	information pooling
	PRS
	r2
	AUC

	




AFR
	




BMI
	
proximal
	
N/A
	LDpred2
	0.0025
	



N/A

	
	
	
	
	PRS-CS
	0.0037
	

	
	
	

proximal 
+ adjunct
	
PRS-CSx
	PRS-CSx
	0.0210
	

	
	
	
	
	PRS-CSx-stage1
	0.0053
	

	
	
	
	
shaPRS
	LDpred2
	0.0196
	

	
	
	
	
	PRS-CS
	0.0249
	

	




AFR
	




height
	
proximal
	
N/A
	LDpred2
	0.0035
	



N/A

	
	
	
	
	PRS-CS
	0.0039
	

	
	
	

proximal 
+ adjunct
	
PRS-CSx
	PRS-CSx
	0.0282
	

	
	
	
	
	PRS-CSx-stage1
	0.0091
	

	
	
	
	
shaPRS
	LDpred2
	0.0126
	

	
	
	
	
	PRS-CS
	0.0039
	

	




AFR
	




LDL
	
proximal
	
N/A
	LDpred2
	0.0559
	



N/A

	
	
	
	
	PRS-CS
	0.0082
	

	
	
	

proximal 
+ adjunct
	
PRS-CSx
	PRS-CSx
	0.0563
	

	
	
	
	
	PRS-CSx-stage1
	0.0296
	

	
	
	
	
shaPRS
	LDpred2
	0.0208
	

	
	
	
	
	PRS-CS
	0.0187
	


Table of the results of the cross-ancestry analysis that compared the accuracy of six different methods to produce a PRS. Target ancestry is the genetic ancestry of the target individuals on whom the final PRS was evaluated. trait is the phenotype evaluated. data is the summary statistic datasets used for training. Proximal is the GWAS conducted in the target ancestry and proximal+adjunct is the target and adjunct GWAS together. The adjunct GWAS was sourced from Japanese individuals in case of European target PRS, and European individuals in the case of African target PRS. information pooling is the method that was used to pool the information from the proximal and adjunct datasets. N/A is when no information pooling took place, PRS-CSx is the PRS-CSx method and shaPRS is the method presented in this paper. PRS is the method that was used to generate the final PRS profiles. LDpred2 is the PRS generated by the LDpred2-auto method that used no additional genotype data. PRS-CS is the PRS generated by the PRS-CS method that used no additional genotype data. PRS-CSx is the PRS generated by the PRS-CSx method that used validation data to weigh between the target and adjunct PRS. PRS-CSx-stage1 is the PRS generated by the PRS-CSx method that did not use validation data to weigh between the target and adjunct PRS.  r2 is the squared Pearson correlation coefficient between predicted and observed phenotypes. AUC is the area under the receiver operating characteristic curve of the predicted and observed phenotypes. All PRS were evaluated on strictly non-overlapping subsets of the UK Biobank. 









	Table S3 | shaPRS performance relative to other methods in IBD subtypes

	Other method
	CD
	UC

	proximal
	0.103 (-4%)
	0.052 (-22%)

	meta-analysis
	0.095 (-12%)
	0.061 (-6%)

	SMTPred
	0.100 (-7%)
	0.059 (-10%)

	MTAG
	0.096 (-11%)
	0.044 (-39%)

	shaPRS
	0.107 (N/A)
	0.065 (N/A)


Table of the results for the inflammatory bowel disease subtype analysis that shows the performance improvements achieved by shaPRS relative to other methods. The values in each row are r2, the squared Pearson correlation coefficient between predicted and observed phenotypes, followed by the percentage difference relative to shaPRS. CD is Crohn’s disease and UC is ulcerative colitis.

























	Table S4A | CD - shaPRS comparison against other methods

	
	model difference
	LRT of nested vs complex model
 (p-value)

	method
	r2redux p
	Delong p
	other
	shaPRS

	SMTPred
	0.041
	0.23
	0.055
	2.290E-09

	MTAG
	0.053
	0.041
	4.550E-07
	3.69E-18




	Table S4B | UC- shaPRS comparison against other methods

	
	model difference
	LRT of nested vs complex model
 (p-value)

	method
	r2redux p
	Delong p
	other
	shaPRS

	SMTPred
	0.029
	0.044
	0.171
	1.530E-08

	MTAG
	2.440E-06
	5.310E-06
	0.138
	1.200E-24



Results from the formal evaluation of model difference between shaPRS and other methods for the inflammatory bowel disease subtype. The model difference column shows the p-values if there was a difference between shaPRS and the other methods via the ‘r2redux r_diff’ and the pROC’ Delong’ tests, respectively. The LRT of nested vs complex model column shows the p-values for a likelihood ratio tests that evaluate if adding shaPRS or the other (non-shaPRS) PRS onto a nested model improves over the complex model of shaPRS+other. A. Crohn's disease and B. is Ulcerative Colitis.










	Table S5A | EUR-EAS asthma - shaPRS comparison against other methods

	
	
	method
	PRS-CSx
	PRS-CSx-stage1

	



model difference
	shaPRS-PRSCS
	r2redux p
	9.420E-07
	0.0026

	
	
	delong p
	3.290E-06
	0.00257

	
	shaPRS+LDpred2
	r2redux p
	0.047
	4.83E-13

	
	
	delong p
	0.0947
	5.64E-12

	



LRT of nested vs complex model
	shaPRS-PRSCS
	other
	2.11E-37
	7.420E-09

	
	
	shaPRS
	0.00296
	7.12E-32

	
	shaPRS+LDpred2
	other
	2.02E-16
	3.260E-07

	
	
	shaPRS
	9.32E-34
	3.28E-81



	Table S5B | EUR-EAS height - shaPRS comparison against other methods

	
	
	method
	PRS-CSx
	PRS-CSx-stage1

	
model difference
	shaPRS-PRSCS
	r2redux p
	1.100E-03
	0.387

	
	shaPRS+LDpred2
	r2redux p
	0.821
	0.127

	



LRT of nested vs complex model
	shaPRS-PRSCS
	other
	2.66E-77
	1.870E-56

	
	
	shaPRS
	7.05E-34
	6.50E-69

	
	shaPRS+LDpred2
	other
	<2.225074e-308
	2.600E-297

	
	
	shaPRS
	<2.225074e-308
	<2.225074e-308








	Table S5C | EUR-EAS T2D - shaPRS comparison against other methods

	
	
	method
	PRS-CSx
	PRS-CSx-stage1

	
model difference
	shaPRS-PRSCS
	r2redux p
	0.533
	6.567e-06

	
	shaPRS+LDpred2
	r2redux p
	0.219
	2.359e-06

	



LRT of nested vs complex model
	shaPRS-PRSCS
	other
	1.114e-17
	1.106e-11

	
	
	shaPRS
	1.588e-24
	6.481e-56

	
	shaPRS+LDpred2
	other
	1.305e-28
	1.729e-16

	
	
	shaPRS
	2.942e-43
	1.816e-68




	Table S5D | EUR-EAS CAD- shaPRS comparison against other methods

	
	
	method
	PRS-CSx
	PRS-CSx-stage1

	
model difference
	shaPRS-PRSCS
	r2redux p
	0.005
	0.005

	
	shaPRS+LDpred2
	r2redux p
	2.992e-04
	3.067e-4

	



LRT of nested vs complex model
	shaPRS-PRSCS
	other
	7.982e-36
	5.069e-36

	
	
	shaPRS
	5.136e-13
	3.451e-13

	
	shaPRS+LDpred2
	other
	7.314e-53
	4.798e-53

	
	
	shaPRS
	1.251e-17
	8.696e-18











	Table S5E | EUR-EAS BRCA- shaPRS comparison against other methods

	
	
	method
	PRS-CSx
	PRS-CSx-stage1

	
model difference
	shaPRS-PRSCS
	r2redux p
	1.069e-05
	0.217

	
	shaPRS+LDpred2
	r2redux p
	0.001
	7.501e-10

	



LRT of nested vs complex model
	shaPRS-PRSCS
	other
	2.279e-21
	7.383e-07

	
	
	shaPRS
	0.619
	5.113e-15

	
	shaPRS+LDpred2
	other
	1.477e-05
	0.002

	
	
	shaPRS
	4.290e-28
	1.003e-53







	Table S5F | EUR-AFR BMI - shaPRS comparison against other methods

	
	
	method
	PRS-CSx
	PRS-CSx-stage1

	
model difference
	shaPRS-PRSCS
	r2redux p
	1.590E-01
	0.00164

	
	shaPRS+LDpred2
	r2redux p
	0.915
	0.0207

	



LRT of nested vs complex model
	shaPRS-PRSCS
	other
	7.11E-03
	1.290E-03

	
	
	shaPRS
	1.49E-07
	2.62E-16

	
	shaPRS+LDpred2
	other
	2.25E-06
	8.810E-04

	
	
	shaPRS
	8.98E-07
	2.33E-12




	Table S5G | EUR-AFR height - shaPRS comparison against other methods

	
	
	method
	PRS-CSx
	PRS-CSx-stage1

	
model difference
	shaPRS-PRSCS
	r2redux p
	9.810E-03
	0.25

	
	shaPRS+LDpred2
	r2redux p
	0.000104
	0.847

	



LRT of nested vs complex model
	shaPRS-PRSCS
	other
	4.16E-09
	2.32E-06

	
	
	shaPRS
	2.69E-01
	8.410E-11

	
	shaPRS+LDpred2
	other
	1.47E-12
	3.810E-07

	
	
	shaPRS
	9.96E-01
	7.73E-08












	Table S5H | EUR-AFR LDL - shaPRS comparison against other methods

	
	
	method
	PRS-CSx
	PRS-CSx-stage1

	
model difference
	shaPRS-PRSCS
	r2redux p
	1.130E-11
	0.00494

	
	shaPRS+LDpred2
	r2redux p
	9.81E-09
	0.0475

	



LRT of nested vs complex model
	shaPRS-PRSCS
	other
	1.83E-30
	4.04E-15

	
	
	shaPRS
	7.94E-01
	1.170E-03

	
	shaPRS+LDpred2
	other
	1.01E-27
	1.620E-13

	
	
	shaPRS
	2.97E-01
	4.11E-05


Table of the results for the formal evaluation of model difference between shaPRS and other methods for the cross-ancestry analyses. The model difference row shows the p values if there was a difference between shaPRS and the other methods via the ‘r2redux’ r_diff’ and for binary traits, the pROC’ Delong’ tests, respectively. The LRT of nested vs complex model row shows the p-values for a likelihood ratio tests that evaluate if adding shaPRS or the other PRS onto a nested model improves over the complex model of shaPRS+other. For these cross-ancestry analyses shaPRS was evaluated via both PRS-CS (shaPRS-PRSCS) and via LDpred2 (shaPRS+LDpred2). A. EUR-EAS asthma, B. EUR-EAS height, C. EUR-EAS T2D, D. EUR-EAS CAD, E. EUR-EAS BRCA, F. EUR-AFR BMI, G. EUR-AFR height and H. EUR-AFR LDL.
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	Fig S6: Heatmap of the median ‘r2diff’ -log10(p) model difference between shaPRS and other methods between simulated and predicted phenotypes for selected cross-trait genetic relationships. Warmer colours indicate stronger evidence for a difference between methods. a. A genome-wide genetic correlation between proximal and adjunct traits of 0.5 with a heritability of 0.5 from a 1,000 causal variants and no extra heterogeneity created by SNPs of large effect. Sample size N = 14,044, with a proximal/adjunct sample ratio of 50/50, 40/60 or 20/80, and where cor is the correlation of effect sizes between SNPs and P (or causalS) is the fraction of causal SNPs shared between the proximal and adjunct datasets,. split is the ratio of the proximal to adjunct dataset sizes. b. The same scenario as a, with the addition of extra heterogeneity created by five SNPs of large effect that contributed 5% non-shared heritability. Results across the complete set of simulated scenarios are shown in Fig S3.
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	Fig S7: Heatmap of the difference between median -log10(p) values of the likelihood ratio tests of the complex model (which included both shaPRS and the other method) versus the nested model that included either just shaPRS or just the other method for selected cross-trait genetic relationships. Positive values and warmer colours indicate stronger evidence for improving performance by adding shaPRS into the model than adding the other method. a. A genome-wide genetic correlation between proximal and adjunct traits of 0.5 with a heritability of 0.5 from a 1,000 causal variants and no extra heterogeneity created by SNPs of large effect. Sample size N = 14,044, with a proximal/adjunct sample ratio of 50/50, 40/60 or 20/80, and where cor is the correlation of effect sizes between SNPs and P (or causalS) is the fraction of causal SNPs shared between the proximal and adjunct datasets,. split is the ratio of the proximal to adjunct dataset sizes. b. The same scenario as a, with the addition of extra heterogeneity created by five SNPs of large effect that contributed 5% non-shared heritability. Results across the complete set of simulated scenarios are shown in Fig S3.
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