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Supplemental Methods 
 

1. Cohort Definition 

Yale-New Haven Health System (YNHHS) cohort: We identified individuals who had 
undergone a baseline echocardiogram from 2015 to 2021 at one of five YNHHS-affiliated 
hospitals (Yale-New Haven, Bridgeport, Lawrence & Memorial and Greenwich Hospitals in 
Connecticut, USA, & Westerly Hospital in Rhode Island, USA) or one of the affiliated outpatient 
sites. The original YNHHS cohort included all (n=6,931) studies from the original deep learning 
model report, where mild and moderate AS had previously been oversampled by 5-fold. We 
limited our analysis to studies used in the validation, internal and external testing samples.1 This 
was done to avoid data leakage from the model’s original training set. We further enriched the 
study sample with studies (n=4,447) of patients without severe AS at baseline from the same 
study period. We included individuals: i) with baseline peak aortic valve velocity (AV Vmax) of 
less than 4 m/sec at baseline, ii) without history of AVR at baseline, and iii) with studies that 
included PLAX videos. After applying these criteria, 8,798 unique patients were included in the 
analysis, for whom we retrieved all follow-up echocardiographic reports, procedures, and death 
reports.  
 

Cedars-Sinai Medical Center (CSMC) cohort: For further testing in an additional 
geographically distinct cohort, all transthoracic echocardiograms performed at CSMC (Los 
Angeles, California, USA) between 1 January 2018 and 31 December 2019 were retrieved, as 
previously reported.1 After excluding studies with prosthetic aortic valves, 4,000 TTEs were 
sampled at random. After applying the same criteria as the YNHHS cohort, 3,801 individuals 
with baseline TTE were included in the study.  
 

UK Biobank (UKB) cohort: The UK Biobank is a prospective observational study of 
502,468 participants aged 40-69 years who were recruited between 2006 and 2010 which 
continues to collect extensive phenotypic and genotypic details using multimodal data capture.2 
Though the UK Biobank is not perfectly representative of the broader UK population,3 its size, 
accuracy, depth of phenotypic and genomic characterization, and prospective nature have 
identified it as a valuable source for epidemiological research and validation of risk stratification 
tools in overall healthy community-dwelling individuals, that are often under-represented in 
hospital-based cohorts. We focused our analysis on 45,479 individuals who were enrolled in the 
imaging assessment by CMR,4 which was performed between 2014 and 2020. We included 
eligible individuals who underwent cardiac MRI imaging as part of a follow-up comprehensive 
imaging visit, using a detailed protocol that has been previously described.4 This allowed us to 
expand our analysis to individuals who underwent imaging independent of symptoms, thus 
minimizing confounding by indication, while alleviating potential confounding effects from 
signals that overfit to technical aspects of echocardiography. After excluding individuals who 
had withdrawn consent, those with AVR prior to CMR imaging and those for whom the files 
could not be processed to generate videos, we included 45,474 eligible individuals.  
 

2. Interpretation Of Clinical Echocardiograms 
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AS severity: In both the YNHHS and CSMC cohorts, the presence of AS severity was 
adjudicated based on the original echocardiographic report and reflected the final severity grade 
assigned by the interpreting physician. This was adjudicated by the reading physician based on 
an integrated assessment of traditional echocardiographic and Doppler criteria, such as peak 
aortic valve (stenosis) jet velocity, mean transaortic/trans-valvular gradient, and mean valve area, 
as assessed by the continuity equation. According to the guidelines, cut-offs of ³4 m/sec, ³40 
mm Hg and less than <1.0 cm2, respectively, were consistent with severe AS.5 However the final 
determination regarding the presence and severity of AS was made by the interpreting physician 
who had access to all images and measurements and signed the final clinical report. It should 
also be noted that even though Doppler-derived parameters may have been missing from the 
structured database, the interpreting physician had access to all required images and Doppler 
recordings to make a determination about the presence and/or severity of AS. Cases classified as 
“mild-moderate”, or “moderate-severe”, were grouped with the “mild” and “moderate” severity 
groups, respectively, as per our previous development study where they were included in the 
control set.1 Cases with low-flow, low-gradient severe AS or paradoxical AS, were included in 
the “severe” group, consistent with our prior work, and were therefore excluded from our 
subsequent analysis.1  
  
LVEF (left ventricular ejection fraction): The LVEF label was obtained from the final 
echocardiographic report and was assigned by the interpreting physician using one of the 
following methods: i) three-dimensional (3D) echocardiography, ii) 2D echocardiography based 
on the Simpson’s biplane method; or iii) a range by visual assessment, reported in 5% increments 
(i.e., <5%, 5-10%, 10-15%, 20-25%, 25-30%, … 70% or greater). If the LVEF was reported as a 
range, then we used the median of the range (e.g. 52.5% for a range of 50-55%). 
 
Doppler-derived parameters and the peak velocity ratio (dimensionless valve index): Doppler-
derived parameters were extracted from the final echocardiographic report. To account for 
between-study variability in the Doppler angle or flow states, we also calculated the peak 
velocity ratio (also known as dimensionless valve index), defined as the ratio of the peak velocity 
in the left ventricular outflow tract (LVOT Vmax) to the AV Vmax. This was chosen over the 
ratio of the velocity time integrals (VTI) to minimize data missingness. 
 

3. Pre-processing Of Echocardiographic Videos 
 

Deployment of the DASSi model in echocardiographic studies involves the input of a full study, 
which is de-identified, down-sampled, and then processed for automated view classification to 
identify the specific videos from each study that correspond to PLAX views. The down-sampled 
16-frame clips extracted from 2D PLAX videos are processed in a 3D-ResNet18 network 
architecture trained to detect severe AS, and predictions are based on an ensemble of three 
models with a combination of three initializations: random, Kinetics-400, and self-supervised 
learning for echocardiograms.6 Model-specific study-level predictions represent the average 
predictions across all PLAX videos in a study for a given model. Finally, study-level predictions 
are averaged to form an ensemble, with the output (DASSi) reflecting the probability (from 0 to 
1) of a severe AS phenotype across all videos of a given study. Further information on the 
method development as well as the use of self-supervised learning for echocardiographic model 
training have been previously reported.1,6 
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4. Cardiac Magnetic Resonance (CMR) Study Interpretation 

 
In the UK Biobank, participants underwent a 20-minute cardiac magnetic resonance (CMR) 
protocol without a pharmacological stressor or contrast agent, which was integrated into a 30-
minute combined CMR and abdominal magnetic resonance imaging (MRI) protocol performed 
using a clinical wide bore 1.5 Tesla scanner (MAGNETOM Aera, Syngo Platform VD13A, 
Siemens Healthcare, Erlangen, Germany).4 The UK Biobank CMR protocol was performed as 
part of a protocolized research protocol and there was no clinical reporting. The left ventricular 
ejection fraction measurements were derived from the structured dataset that has been made 
publicly available. We took the average of the following data-fields, or the absolute value of one 
if the other one was missing: data-fields 22420: “LV ejection fraction”,7 and 24103: “LV 
ejection fraction”,8 derived through automated measurements without strict quality control as 
reported in the respective references. 
 

5. Pre-Processing Of CMR Cine Videos 
 
Imaging biomarkers are often developed and confined within a single modality, however those 
that are built on the detection of pertinent anatomical and functional features should exhibit 
modality-invariance. Proving the prognostic value of a biomarker across two or more modalities 
is important, since i) it supports the notion that the algorithm learns key representations of the 
disease, rather than technical confounders specific to the acquisition process; ii) it maximizes the 
value of AI algorithms by enabling zero-shot predictions in new cohorts and clinical settings; iii) 
it augments our ability to opportunistically risk stratify for AS using existing data streams. We 
tested this hypothesis by translating DASSi to CMR imaging using the UK Biobank registry. 

We restricted our analysis to long axis cines for cardiac function through the left ventricular 
outflow tract view, which includes the same anatomical structures as the echocardiographic 
PLAX view which was used for the development of DASSi on echocardiography.4 Next, we 
defined an automatic pipeline that extracts individual .DICOM files from each study-specific 
folder, identifies long axis cine views of the LVOT tract using the available .DICOM headers 
that suggest a 3-chamber view (CINE-segmented-LAX-3Ch), windows the grayscale according 
to the default center and width of each study, converts the windowed data to 8-bit .avi files while 
selecting every other frame (thus creating 25-frame-long clips, by skipping every other clip in 
the original 50 frames of each view-specific cine) and down-samples to 112 x 112 pixels. The 
sagittal clips are then rotated by 90 degrees to match the orientation of a PLAX view, cropped 
(removing 30 pixels from the new left/right side, 20 pixels from the top and 30 pixels from the 
bottom) to remove structures traditionally not seen on echocardiography, and the grayscale is 
then inversed to ensure that the myocardial wall appears brighter than its cavity. This enables an 
MRI2echo transition that does not modify the composition of the underlying signal. The final 
clips, resampled to 112 x 112 pixels, were then used for direct DASSi inference. 
 

6. Key definitions 
 
Aortic valve replacement (AVR) or valvuloplasty procedures: In the YNHHS echocardiography 
cohort, this was defined based on ICD-9 or ICD-10 codes. We included all ICD-10 codes starting 
with “02RF”, which included all prosthetic valve types via transcatheter or open approach. We 
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also included ICD-10 codes starting with “”027F” to account for valvuloplasty/dilation 
procedures. For ICD-9 codes, we included codes: “35.01”, “35.11”, “35.21”, “35.21”, “35.22”, 
“35.96”. In the CSMC cohort AVR procedures were identified through linkage with the local 
electronic health record and thoracic surgery databases. Surgical AVR cases performed for 
severe aortic regurgitation or aortic valve endocarditis without prior evidence of AS were 
censored at the time of surgery and were not included as cases in the outcome analysis. In the 
UK Biobank (OPCS3/4 codes), we used the following codes: "K26", "K261", "K262", "K263", 
"K264", "K265", "K268", "K269", "K302", "K312", "K322”, "K352", "313.2". 

Aortic stenosis (AS) history: In the YNHHS and CSMC cohorts, this was defined based on the 
echocardiographic report of the corresponding echocardiographic study. In the UK Biobank, and 
in the absence of aortic stenosis-specific measurements, this was adjudicated based on the 
presence of an ICD-10 code reflective of aortic stenosis: 'I350', 'I352', 'I060', 'I062'. Since the 
CMR study was not protocolled for AS and no clinical reporting was performed, we were unable 
to formally adjudicate the presence/severity of AS in these patients based on cross-sectional 
imaging data. 

Clinical outcomes: For the YNHHS cohort, outcomes were assessed until April 18, 2023. AVR 
was defined based on procedure codes corresponding to percutaneous or open AVR with any 
valve type or valvuloplasty/aortic valve dilation. Both in-hospital and out-of-hospital death 
reports were obtained from the vital statistics log maintained by the health system, drawn from 
social security administration and state vital statistic records. In the CSMC cohort, mortality data 
were available until January 1, 2023, transcatheter-only AVR data until May 24, 2022, and 
surgical AVR data until December 31, 2021. In the UK Biobank, deaths were adjudicated 
through linkage to national death registries (data-field 40000; “Date of Death”), whereas AVR 
was defined using operative procedures (data-field 41273; “Operative procedures – OPCS3” and 
data-field 41272; “Operative procedures – OPCS4”) and the associated dates. The date of the last 
recorded death/procedure in the available data (“2020-12-03”) was used for right censoring of 
the remaining observations. 
 

7. Saliency maps 
 
We used the Grad-CAM (Gradient-weighted Class Activation Mapping) method,23 as previously 
described in our recent work,1 to produce saliency maps that provide a visual interpretation of the 
deep learning model’s outputs. Briefly, saliency maps emphasize the areas of the input video that 
are most influential when a neural network provides inference on a given label (i.e., aortic 
stenosis phenotype in this manuscript), as determined by the gradient/weight of each input pixel. 
Here, heatmaps were created for each frame of an echocardiographic video scaled to the 
resolution that is required by the deep learning model (112 x 112 pixels). We then took the 
maximal value for each pixel across the time dimension, thus providing a graphical summary of 
which sections of the image contribute the most to the model’s inference.
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eTable 1 | Demographics and echocardiographic characteristics in the YNHHS and CSMC cohorts by AS stage. 
 YNHHS cohort CSMC cohort 

 Missing No AS reported Sclerosis without 
Stenosis Mild AS Moderate AS Missing No AS reported Sclerosis 

without Stenosis Mild AS Moderate AS 

Total counts (n)  4755 1047 2017 979  3392 251 83 75 
Age (years) - 65 [55,76] 75[67,82] 75 [68,82] 77 [69,84] - 65 [52,76] 75 [68,82] 80 [73.50,87] 84 [75.50,89] 

Sex (female) - 2411 (50.7) 515 (49.2) 916 (45.4) 408 (41.7) - 1500 (44.7) 111 (44.2) 44 (53.0) 30 (40) 
African American race 

1091 

519 (12.5) 70 (7.5) 105 (6.0) 43 (5.0) 

 
106  

507 (15.4) 32 (13.0) 8 (9.8) 4 (5.7) 
Asian race 77 (1.9) 10 (1.1) 15 (0.9) 6 (0.7) 266 (8.1) 22 (8.9) 3 (3.7) 5 (6.9) 
White race 3201 (77.1) 794 (85.4) 1571 (89.5) 781 (90.0) 1890 (57.4) 151 (61.1) 56 (68.3) 55 (75.3) 
Other racea 356 (8.6) 56 (6.0) 65 (3.7) 38 (4.4) 245 16 6 5 

Hispanic ethnicityb 1334 415 (10.3) 59 (6.5) 98 (5.8) 41 (5.0) 385 (11.7) 26 (10.5) 9 (11.0) 4 (5.5) 
LVIDd Index (cm/m2) 1642 2.4 [2.2,2.6] 2.4 [2.2,2.6] 2.4 [2.2,2.6] 2.3 [2.1,2.6]  2.4 [2.1,2.7] 2.3 [2.1,2.7] 2.5 [2.2,2.9] 2.4 [2.2,2.7] 

LA Vol. Index (cm3/m2) 1377 29 [22,38] 33 [25,44] 34 [27,43] 35 [27,46] 616 - - - - 
LA Area Index (cm2/m2) - - - - - 808 10.2 [8.4,12.7] 10.8 [8.6,13.6] 12.4 [9.9,16.7] 11.9 [9.4,15.1] 

RVSP (mmHg) 2486 28 [22,35] 30 [24,39] 30 [25,37] 30 [26,38] 2405 27 [21,37] 33 [25,43] 29 [24,39] 35 [28,47] 
E/E' Avg 1719 9 [7,12] 11 [9,15] 12 [9,16] 13[10,17] - - - - - 

LVEF (%) 190 62 [56,66] 62 [56,66] 63 [58,67] 63 [58,68] 0 61 [55,66] 60 [52,67] 61 [54,66] 62 [50,66] 
AV area (cm2) 3388 1.9 [1.4,2.6] 1.6 [1.4,2.0] 1.5 [1.2,1.7] 1.0 [0.9,1.2] 2510 2.1 [1.3,2.6] 2.1 [1.7,2.6] 1.5 [1.4,1.8] 1.1 [0.9,1.3] 

AV Mean Grad. (mmHg) 2578 5 [4,11] 7 [5,10] 14 [11,16] 24 [21,29] 2146 5 [3,9] 5 [4,8] 11 [8,14] 20 [13,24] 
AV Peak Velocity (m/sec) - 1.4 [1.2,1.8] 1.7 [1.4,2.04] 2.5 [2.3,2.8] 3.3 [3.1,3.6] 914 1.3 [1.1,1.7] 1.4 [1.2,1.7] 2.3 [2.0,2.5] 2.8 [2.4,3.2] 

DVI (by peak velocity) 635 0.69 [0.56,0.80] 0.59 [0.48,0.70] 0.43 [0.37,0.50] 0.31 [0.27,0.36] 980 0.73 [0.58,0.84] 0.71 [0.59,0.81] 0.47 [0.40,0.55] 0.34 [0.28,0.40] 
DASSi - 0.14 [0.05,0.27] 0.24 [0.11,0.39] 0.42 [0.25,0.58] 0.61 [0.48,0.72] 0 0.14 [0.06,0.27] 0.19 [0.11,0.31] 0.44 [0.29,0.56] 0.57 [0.47,0.70] 

Deaths (≥6 months) - 382 120 286 168 - 281 21 14 15 
AVR events (≥6 months) - 66 11 246 392 - 42 0 11 3 

a Other race includes American Indian or Alaskan Native, Native Hawaiian or other Pacific Islander, more than one race, or not reported. 
b Reported separately of race in the YNHHS cohort; reported with race in the CSMC cohort. 
Categorical variables are summarized as counts (valid percentages). Continuous variables are presented as median [25th, 75th percentile]. AS: aortic stenosis; AV: 
aortic valve; CSMC: Cedars-Sinai Medical Center; DASSi: digital aortic stenosis severity index; E/e’: early diastolic transmitral flow velocity to tissue Doppler 
mitral anular early diastolic velocity; LA: left atrium; LVEF: left ventricular ejection fraction; LVIDd: left ventricular internal diastolic dimeter; MRI: magnetic 
resonance imaging; RVSP: right ventricular systolic pressure; YNHHS: Yale-New Haven Health System. 
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eTable 2 | Percentage of participants with progression in AV-Vmax stratified by DASSi. 
 

 YNHHS cohort CSMC Cohort 
Threshold for AV 

Vmax  change 

DASSi <0.2 DASSi  
0.2-0.39 

DASSi  
0.4-0.59 

DASSi ≥0.6 DASSi <0.2 DASSi  
0.2-0.39 

DASSi  
0.4-0.59 

DASSi ≥0.6 

>0 m/sec/year 913 (54.5%) 950 (64.5%) 980 (74.3%) 794 (78.2%) 367 (49.2%) 136 (48.7%) 92 (57.5%) 63 (58.9%) 
>0.1 m/sec/year 527 (31.4%) 607 (41.2%) 711 (53.9%) 607 (59.8%) 251 (33.6%) 105 (37.6%) 77 (48.1%) 55 (51.4%) 
>0.2 m/sec/year 316 (18.9%) 364 (24.7%) 460 (34.9%) 437 (43.1%) 177 (23.7%) 77 (27.6%) 64 (40.0%) 45 (42.1%) 
>0.3 m/sec/year 195 (11.6%) 224 (15.2%) 304 (23.0%) 316 (31.1%) 149 (20.0%) 67 (24.0%) 55 (34.4%) 41 (38.3%) 
>0.4 m/sec/year 123 (7.3%) 148 (10.0%) 200 (15.2%) 222 (21.9%) 121 (16.2%) 59 (21.1%) 53 (33.1%) 36 (33.6%) 

AS: aortic stenosis; AV-Vmax: peak aortic valve velocity; CSMC: Cedars-Sinai Medical Center; DASSi: digital aortic 
stenosis severity index; YNHHS: Yale-New Haven Health System. 
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eTable 3 | Positive and negative likelihood ratios across baseline DASSi thresholds and AV-
Vmax groups for discrimination of rapid AV-Vmax progression (≥ 0.4 vs <0.4 m/sec/year). 
 

DASSi 
threshold 

Participants 
below threshold 

(n, %) 

Sensitivity  
(95% CI) 

Specificity 
(95% CI) 

Positive LR(+) 
(95% CI) 

Negative LR(-) 
(95% CI) 

Baseline AV Vmax <2.5 m/sec 
0.2 781 (53.6) 0.62 (0.57-0.65) 0.58 (0.56-0.61) 1.47 (1.36-1.57) 0.66 (0.6-0.74) 
0.3 1127 (77.4) 0.41 (0.35-0.47) 0.82 (0.8-0.84) 2.34 (1.92-2.67) 0.71 (0.64-0.79) 
0.4 1322 (90.7) 0.2 (0.16-0.25) 0.94 (0.93-0.95) 3.24 (2.56-4.48) 0.85 (0.79-0.89) 
0.5 1426 (97.9) 0.06 (0.04-0.08) 0.99 (0.98-0.99) 5.86 (3.4-11.8) 0.95 (0.94-0.97) 

Baseline AV Vmax 2.5-2.9 m/sec 
0.2 127 (22.9) 0.92 (0.88-0.96) 0.3 (0.26-0.35) 1.31 (1.23-1.48) 0.27 (0.12-0.43) 
0.3 254 (45.9) 0.73 (0.67-0.77) 0.55 (0.51-0.59) 1.62 (1.4-1.9) 0.49 (0.41-0.63) 
0.4 408 (73.7) 0.38 (0.32-0.42) 0.79 (0.75-0.83) 1.77 (1.41-2.12) 0.79 (0.75-0.87) 
0.5 518 (93.5) 0.11 (0.06-0.15) 0.96 (0.93-0.98) 2.4 (1.23-5.12) 0.93 (0.88-0.99) 

Baseline AV Vmax 3.0 -3.9 m/sec 
0.2 47 (8.9) 0.99 (0.97-1.0) 0.14 (0.11-0.18) 1.14 (1.1-1.2) 0.11 (0.03-0.22) 
0.3 132 (25.0) 0.89 (0.86-0.92) 0.34 (0.29-0.38) 1.35 (1.26-1.47) 0.33 (0.23-0.42) 
0.4 257 (48.7) 0.67 (0.62-0.74) 0.59 (0.55-0.64) 1.63 (1.44-1.9) 0.56 (0.44-0.67) 
0.5 416 (78.8) 0.29 (0.24-0.36) 0.84 (0.82-0.89) 1.85 (1.49-2.72) 0.84 (0.75-0.9) 

AV-Vmax: peak aortic valve velocity; CI: confidence interval; DASSi: digital aortic stenosis severity index; LR: 
likelihood ratio.  
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eTable 4 | Association between DASSi and AV-Vmax with AVR. 
Independent variable AVRa (HR [95% CI], p value) 

 AV-Vmax <2.5 m/sec AV-Vmax 2.5-2.9 m/sec AV-Vmax 3.0-3.9 m/sec 

DASSi (per 1SD incr.) 2.23 [1.36-3.68], p=0.002 1.30 [1.13-1.50], p<0.001 1.39 [1.25-1.55], p<0.001 

AV-Vmax (per 1 SD incr.) 3.71 [1.62-8.54], p=0.002 1.33 [1.15-1.53], p=0.04 1.21 [1.11-1.33], p<0.001 
a Estimates were derived from Fine-Gray proportional subdistribution hazards regression models accounting for 
the competing risk of death. All events were recorded following a 6-month blanking period in the YNHHS 
cohort. AV-Vmax: peak aortic valve velocity; AVR: aortic valve replacement; CI: confidence interval; DASSi: 
digital aortic stenosis severity index; HR: hazard ratio; SD: standard deviation; YNHHS: Yale-New Haven 
Health System. 
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eFigure 1 | Baseline DASSi phenotyping and observed rates of AS progression by AV-Vmax 
in the YNHHS cohort. (A) Density plot of the DASSi (digital aortic stenosis [AS] severity index) 
at baseline across AS severity groups. (B) Density plots of the observed, annualized rate of change 
in the peak aortic valve velocity across time (in m/sec/year) stratified by the baseline AS severity 
group. AV-Vmax: peak aortic valve velocity; AS: aortic stenosis; DASSi: digital aortic stenosis 
severity index; YNHHS: Yale-New Haven Health System. 
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eFigure 2 | Echocardiographic progression of aortic stenosis across baseline DASSi groups. 
Unadjusted rates of progression in AV-Vmax (peak aortic valve velocity) across baseline DASSi 
subgroups in the YNHHS and CSMC cohorts. Bars denote mean rates with corresponding error 
bars reflecting the standard errors of mean. AV-Vmax: peak aortic valve velocity; CSMC: 
Cedars-Sinai Medical Center; DASSi: digital aortic stenosis severity index; YNHHS: Yale-New 
Haven Health system.  
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eFigure 3 | Subgroup analysis of the association between baseline DASSi and 
echocardiographic aortic stenosis (AS) progression in the YNHHS cohort. Forest plot 
describing the association between baseline DASSi (0 through 1) and the annualized rate of 
change in the peak aortic valve velocity (AV-Vmax), across key subgroups. The graph illustrates 
the regression coefficients with the corresponding 95% confidence interval. AV-Vmax: peak aortic 
valve velocity; DASSi: digital aortic stenosis severity index; EF: ejection fraction; YNHHS: 
Yale-New Haven Health System. 
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eFigure 4 | Predicted versus observed rates of AV-Vmax progression across baseline DASSi 
levels. Loess regression plot demonstrating the association between baseline DASSi and the rate 
for echocardiographic progression in the AV-Vmax. Loess regression utilizes nonparametric 
modeling that enables local weighted regression to fit a smooth curve that can illustrate local 
patterns in data. The curve demonstrates similar trends across both cohorts (YNHHS and CSMC; 
blue and green, respectively) with overlapping 95% confidence bands for both observed and 
predicted values (in CSMC; green and red, respectively). AV-Vmax: peak aortic valve velocity; 
CSMC: Cedars-Sinai Medical Center; DASSi: digital aortic stenosis severity index; YNHHS: 
Yale-New Haven Health System.
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eFigure 5 | Plots of scaled Schoenfeld residuals. Plots providing an estimate of the time 
dependence of the DASSi (digital aortic stenosis index) coefficient relative to the outcome of 
AVR (aortic valve replacement) across (A) the YNHHS, and (B) the CSMC cohorts. A 
horizontal line suggests a consistent pattern across follow-up which favors the proportionality of 
hazards assumption. AVR: aortic valve replacement; CSMC: Cedars-Sinai Medical Center; 
DASSi: digital aortic stenosis severity index; YNHHS: Yale-New Haven Health System. 
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eFigure 6 | Association of baseline echocardiographic DASSi phenotypes with future AVR. 
Adjusted event-free survival curves derived from multivariable Cox regression models for aortic 
valve replacement (AVR) in the YNHHS (A) and CSMC (B) cohorts, respectively. Each curve 
represents a distinct baseline DASSi severity subgroup; associations are adjusted for age, sex, 
race, ethnicity, baseline peak aortic valve velocity and left ventricular ejection fraction. AV 
Vmax: peak aortic valve velocity; AVR: aortic valve replacement; CI: confidence interval; 
CSMC: Cedars-Sinai Medical Center; DASSi: digital aortic stenosis severity index; HR: hazard 
ratio; LVEF: left ventricular ejection; YNHHS: Yale-New Haven Health System.
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eFigure 7 | Subgroup associations between baseline echocardiographic DASSi phenotypes 
and future AVR in the YNHHS cohort. Forest plot denoting the hazard ratio and 
corresponding 95% confidence interval for a multivariable Cox regression of DASSi as a 
continuous variable (expressed in 0.1 increments) and time-to-aortic valve replacement (AVR). 
AV Vmax: peak aortic valve velocity; AVR: aortic valve replacement; DASSi: digital aortic 
stenosis severity index; LVEF: left ventricular ejection; YNHHS: Yale-New Haven Health 
System.
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eFigure 8 | Internal and external calibration curves for a DASSi-based model to predict 
future AVR. Analyses censored at t=4 years to ensure adequate follow-up that did not exceed 
the length of follow-up in the CSMC cohort. (A) Internal calibration with cross-validation across 
n=200 bootstrapping replications in the YNHHS cohort. (B) External validation of a YNHHS-
based model in the CSMC cohort. AVR: aortic valve replacement; CSMC: Cedars-Sinai Medical 
Center; DASSi: digital aortic stenosis severity index; MAE: mean absolute error; YNHHS: Yale-
New Haven Health System.
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eFigure 9 | Phenome-wide association of CMR-derived DASSi. Phenome-wide association 
study of DASSi based on ICD-10 diagnosis codes and related phenotypes in the n=45,474 
individuals from the UK Biobank included in the CMR analysis. The orange horizontal line 
denotes the significance level following Bonferroni correction. CMR: cardiac magnetic 
resonance; DASSi: digital aortic stenosis severity index. 
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