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Data

Whole-exome sequencing is available for 369 samples. We used the genetic variants that passed all the
filtering steps employed by the authors of the initial publication[2]. We utilized the HGVS nomenclature
standard information, available in the supplementary data of the original publication, Table S7-Variants
for Analysis, column hgvsc. We transformed this information using the “one-hot” encoding[9]. In initial
experimentation, we observed that hgvsc includes 4912 distinct variants. The number of samples with a
specific variant (frequency) range from 1 to 109, with most of the mutations (2435) appearing only in
two samples. To select the mutation events to retain, we optimized a parameter named
qguantile_dnaseq. This parameter ranged from 0 to 1 and encoded the quantile of the frequency
distribution that we used in our analysis. For example, when quantile_dnaseq = 0, we used all variants.
When quantile_dnaseq = 1, none of the variants were used. When quantile_dnaseq = 0.5, we used the
variants whose frequency was higher than the median of the frequency distribution. We set
quantile_dnaseq to 0, 0.5, and 0.9. As an extra filtering step for variant selection, we used the
tumor_only variable available in the supplementary data of the original publication. We employed a
cross-validation procedure to optimize percentile_dnaseq in combination with tumor_only; see the
section Training & Testing protocol below.

RNA sequencing is available for 328 samples. We transformed the Counts Per Million (CPM) expression
values, already available in the BeatAML dataset, according to the equation: CPMyansformed =
log,(CPM + 107°). This choice serves two purposes. Firstly, the CPM expression of a gene is better
comparable across samples versus the Read Per Kilobase Million (RPKM) normalization that is highly
variable among samples[10]. Secondly, the use of log; allows for the CPM expression values to be
approximated with the Gaussian distribution versus the Negative Binomial distribution. We added 10°®
before calculating the log, to avoid infinity values in our data.

Gene expression level is highly variable in the data. Selecting genes present in at least a specific fraction
of samples or above an expression level is typical in differential expression analysis. Our preliminary
analysis shows that such filtering would benefit our models. We identified the best subset of genes by
optimizing a parameter named quantile_rnaseq employing two filtering approaches: the mean
expression or the variance of each gene. quantile_rnaseq ranged from 0 to 1 and corresponded to the
guantile of the distribution of the mean expression or the variance of the genes to retain. For example,
when quantile_rnaseq = 0, we kept all genes. When quantile_rnaseq = 0.5, we kept the genes whose
mean expression or variance is above or equal to the median of the respective distribution. When
quantile_rnaseq = 1, we kept no genes. We set quantile_rnaseq to be 0, 0.5 and 0.9. Furthermore, and
only in the case where we used the variance as the filtering method, we identified the outliers genes
using the 1.5 * IQR rule (3.553 genes), removed them and then applied the quantile_rnaseq filtering.
We did not perform the same step when we employed the mean expression, as only ~100 genes were
outliers. The above steps happened in the following order: log, transformation, outliers removal in the
case of the variance filtering method, and gene selection using quantile_rnaseq, either with the mean
expression or the variance filtering methods. We used a cross-validation process to identify the best
combination of the filtering method and quantile_rnaseq value; see the section Training & Testing
protocol below.

Clinical data are available for 409 samples. After consulting our hematology expert, we used the
following clinical data. Categorical data included: inferred_ethnicity, consensus_sex, isRelapse,
isDenovo, isTransformed, finalFusion, priorMalignancyNonMyeloid, cumulativeChemo,
priorMalignancyRadiationTx, priorMDSMoreThanTwoMths, priorMDSMPNMoreThanTwoMths,
priorMPNMoreThanTwoMths, ELN2017, specificDxAtAcquisition, specimenGroups, FAB / Blast



Morphology, Karyotype, Other Cytogenetics, Surface Antigens (Immunohistochemical Stains), FLT3-ITD,
NPM1, priorMalignancyType, priorMDS, priorMDSMPN, priorMPN, dxAtInclusion, specificDxAtInclusion,
dxAtSpecimenAcquisition, specimenType. Numerical data included: ageAtSpecimenAcquisition,
%Basophils in PB, %Blasts in BM, %Blasts in PB, %Eosinophils in PB, %Monocytes in PB, Hemoglobin,
LDH, Platelet Count, WBC Count, ageAtDiagnosis, timeOfSampleCollectionRelativeTolnclusion.

Furthermore, we corrected inconsistent data entries in the following clinical features

- Inthe “% Blasts in BM” feature, there were three cases where instead of a number, there were
“>50” or “>95” data entries. In these cases, we imputed a random number ranging between 51
and 96 to the maximum available number in the data.

- Forthe “% Blasts in PB” feature, we changed one entry equal to “>90” to a random number
between 90.1 and 99.2, two entries equal to “<5” to a random number between 0.1 and 4.9,
and three entries equal to “rare” to a random number between 0.1 and 0.9.



Same input setup
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Supplementary Figure 1. Evaluate overfitting across all drugs, datatypes, and datatypes’ combinations.
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Statistical tests

comparison pvalue
1: clinical Vs clinical+rnaseqg 1.961787e-86
2: clinical W5 clinical+rnaseg+variants 9.6817465e-85
3: clinical W5 clinical+variants 8.7598587
4: clinical VS rnaseqg 1.389324e-85
5: clinical VS rnaseg+variants 8.8862385521
6: clinical WS variants 3.73452e-12
7: clinical Vs all data(same input) 6.0881677282
2: clinical Vs all data(diff input) 8.881113324
9: clinical+rnaseq V5_clinical+rnaseg+variants 8.402325
18: clinical+rnaseq VS clinical+variants 5.3974582-86
11: clinical+rnaseg VS rnaseq 8.7778793
12: clinical+rnaseq VS rnaseg+variants 8.28313
13: clinical+rnaseg VS variants  2.7858e-23
14: clinical+rnaseg VS all data(same input) g.33260851
15: clinical+rnaseg VS _all data(diff_input) 8.1815735
16: clinical+rnasegsvariants VS clinical+variants 8.80882678584
17: clinical+rnaseg+variants VS rnaseq B.6508736
13: clinical+rnaseg+variants VS rnaseg+variants 8.7737897
19: clinical+rnaseg+variants VS variants 1.462212e-19

268: clinical+rnaseg+variants VS all data(same input) g.8255547
21: clinical+rnaseg+variants VS all data{diff input) 8. 4855563

22: clinical+variants V5 rnaseq 2.698592e-85
23: clinical+variants VS rnaseg+variants ©.881835585
24 clinical+variants V5 variants 1.8556763e-12
25: clinical+variants V5 all data(same input) B.8884233569
26: clinical+variants VS all data(diff input) 6.882547331
27: rnaseq Vs rnaseg+variants B.4652069
28: rnaseg_V5_wvariants 9.9660152-22
20: rnaseq V5 all data(same input) 8.5115677
28: rnaseg V5 all data(diff input) 8.126243
31: rnaseg+variants VS variants 6.827828e-19
32: rnaseg+variants VS all data(same input) 8.951542
33: rnaseg+variants VS all data(diff input) g.6313553
34: variants_V5_all data({same_input) 5.180968%e-28
35: variants VS all data({diff input) 2.833550e-19
36: all data(same input) VS all data(diff input) 8.5225295

Supplementary table 1. Wilcoxon test results, evaluating if the differences of the medians observed in
Pearson correlations in Figure 2, achieved across different datatypes or datatypes’ combinations, are
statistically significant.



Performance - Detailed Pearson correlations

Best performing models, same_input

median pearson 0.327 | median spearman 0.319
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Supplementary Figure 2. Pearson correlation on the external test set in the 10-fold nested cross-

validation in the same_in

put setting.



Different input setup

Number of samples

clinical clinical+variants clinical+rnaseg clinical+rnaseg+variants
Min. : 79.8  Min. : 74.8 Min. ;54,8 Min. : 53.8
1st Qu.:3398.2 1st Qu.:387.8 1st Qu.:278.2  1st Qu.:246.2
Median :347.8 Median :313.8 Median :285.% Median :253.8
Mean :313.5 Mean (2836 Mean 1256.7  Mean (227 .8
3rd Qu.:352.8 3rd Qu.:317.8 Jrd Qu.:208.8 3rd Qu.:256.8
Max. (3088 Max. 1358.8 Max. (3188 Max. (281.8

Supplementary Table 2. The distribution summary of the available number of samples per inhibitor and
datatype.



Pearson correlation, 10-fold nested CV
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Best performing models, different_input

median pearson 0.322 | median spearman 0.304
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Models’ interpretation

Drugs families
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Supplementary Figure 4. The number of drug families per inhibitor. Seventy-one drugs belong to one
drug family, thirty-two drugs belong to two families, etc.
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Supplementary Figure 5. The number of inhibitors per drug family. Ten families have one inhibitor, four
families have two inhibitors, etc.
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Supplementary Figure 6. The fraction of the number of times a model selected a datatype or a datatype
combination for a drug family during the ten-fold nested cross-validation. Yellow corresponds to a
fraction equal to zero, and dark red to a fraction equal to one.
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Spearman = -0.63
p-value: 1.59e-05
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Supplementary Figure 7. Relationship between the maximum fraction (x-axis) a drug family achieved and
the number of its members (y-axis). The fewer the members, the higher the attained fraction, with their

Spearman correlation of -0.63 to be highly statistically significant.
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Different RNASeq configurations selected for each drug

Here, we focused our analysis on which configurations our models selected when we employed only the
RNAseq data for training and testing because they produced the best models when used in isolation. To
automate the feature selection and filtering process, we used two different methods, mean expression
and variance, and we optimized the quantile_rnaseq parameter. Using quantile_rnaseq, we removed a
different proportion of the genes incrementally using either their mean expression or their variance as
the filtering method; see section Data in Methods for more details. Our algorithm had the option to
filter the data or to keep everything. Filtering helps the performance of our algorithm as it was selected
1061 out of 1220 runs, with variance to be chosen 578 times and mean expression 483 times,
Supplementary Figure 8.

Furthermore, we clustered the drugs based on the times our models selected a filtering method during
the nested-cross validation run, Supplementary Figure 9. We observed four main groups. For the drugs
in the first group, the variance was selected in the majority of the runs. In the second group, the filtering
method deviated mainly between the variance and the mean expression. In the third group, our models
selected the mean expression in most of the runs. Lastly, in the fourth group, the filtering deviated
across all possibilities, variance, mean expression and no filtering, with most of the runs selecting no
filtering.

Likewise, we evaluated the distribution of the quantile_rnaseq parameter corresponding to the
proportion of the genes that survived our filtering step, Supplementary Figure 10. In most models, 629
out of 1220, half of the genes were retained (quantile_rnaseq = 0.5). Of these 629, 358 used the mean
expression, and 271 used the variance. Interestingly, 315 models out of 1220 used only one-tenth of the
genes, with 187 and 125 models using the variance and the mean expression, respectively. Finally, no
filtering or only outliers’ removal based on variance occurred 159 and 120 times, respectively.

12



Number of times a filtering method
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Supplementary Figure 8. The number of times the models selected a filtering method, mean_expression
or variance, across all 1220 runs.
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Supplementary Figure 9. RNAseq filtering methods selection. The number of times a model selected a
filtering method for a drug during model building in the ten-fold nested cross-validation. Yellow
corresponds to zero times and dark red to ten times. Four main clusters occurred. The first cluster, at the
top of the figure, contained drugs that the variance was selected most of the time. The second cluster
had drugs that the filtering method deviated between the variance and the mean expression. In the third
cluster, the models selected the mean expression more often. In the fourth cluster, the filtering method
deviated across all possibilities, and no filtering occurred most of the time.
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Supplementary Figure 10. The number of times ElasticNet selected a configuration across all 1220 runs.
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Different Whole Exome configurations selected for each drug

Next, we assessed which configurations were selected by our models when we used only whole exome
data to train and test our models because it is the primary type of data employed in clinical practice. Our
models chose the tumor_only filtering option in 650 out of 1220 runs, Supplementary Figure 11.
Clustering based on the number of times our models selected the tumor_only filtering option,
Supplementary Figure 12, resulted in three main clusters. One where the majority of the models
selected to use all variants, the second deviated between filtering or not, and the third where our
models selected tumor_only variants most of the time.

We optimized the quantile_dnaseq parameter every time, regardless of the tumor_only filtering step.
Quantile_dnaseq removes a proportion of the variants based on their frequency in the training samples.
Quantile_dnaseq took three values, 0, where no variants were removed, 0.5 and 0.9 where 50% and
90% of the variants were removed, respectively. Zooming in the cluster, where no tumor_only filtering
occurred, filtering using quantile_dnaseq was beneficial as it was selected 327 times, 133 and 194 times
quanlile_dnaseq was equal to 0.5 and 0.9, respectively, Supplementary Figure 13. A similar pattern also
occurred after tumor_only filtering. Our models filtered the variants using quantile_dnaseq 331 times,
111 times quantile_dnaseq was equal to 0.5 and 220 times to 0.9, Supplementary Figure 14.

700 —
600 —
500 —
400 —
300 -
200 —
100 —

MNumber of runs out of 1220

all tumor only

Supplementary Figure 11. The number of times ElasticNet selected all or the tumor_only variants across
all 1220 runs.
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all vs tumor only
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Supplementary Figure 12. Hierarchical Clustering of the inhibitors based on the number of times the
models selected all or the tumor_only variants during model building in the ten-fold nested cross-
validation. Yellow corresponds to zero times and dark red to ten times. Three main clusters occurred.
Starting from the top, the first cluster contained drugs that used all variants most of the time. The second
cluster had drugs that deviated between all and tumor_only variants, while the third cluster included
drugs that utilized the tumor_only variants most of the time.
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Variants - no filtering
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Supplementary Figure 13. The number of times quantile_dnaseq was equal to 0, 0.5, and 0.9 when
focusing on the drugs that belong in the top cluster of Supplementary Figure 11.
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Supplementary Figure 14. The number of times quantile_dnaseq was equal to 0, 0.5, and 0.9 when
focusing on the drugs that belong in the bottom cluster of Supplementary Figure 11.
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Clinical implications
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Supplementary Figure 15. The number of patients that administered a drug and their ex vivo drug
response is also available.
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Supplementary Figure 16. The number of alternative drugs, drugs that have been measured in the same

patient as the administered ones. For example, in the case of Crenolanid in most patients, 103

alternative drugs have been measured in the same patient. There is one patient with 72 alternative drugs

in the data. The same idea applies to the other boxplots.
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True AUCs of suggested and administered drugs
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Supplementary Figure 17. The distribution of the true AUC between the suggested (red) versus the
administered (green) drugs.
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