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Materials and Methods 19 

GWAS data collection and multiple independent associations analysis 20 

GWAS datasets of serum urate, eGFRcrea, BUN, UACR, gout and CKD used in this study 21 

are downloaded from CKDGen Consortium (https://ckdgen.imbi.uni-freiburg.de). GWAS 22 

datasets of leptin measurement, crohn disease, multiple sclerosis and intelligence are 23 

downloaded from GWAS Catalog (http://ftp.ebi.ac.uk/pub/databases/gwas/ 24 

summary_statistics/). To obtain the independent associations of GWAS loci, we used 25 

FUMA (1) (https://fuma.ctglab.nl/snp2gene) with default parameters and r2 threshold to 26 

define independent significant SNPs is < 0.8. LocusZoom plots of the interest regions were 27 

visualized with LocusZoom (http://locuszoom.org). 28 

LDSC regression analysis  29 

We downloaded chromatin segmentation of different tissues from EpiMap (2), and active 30 

enhancer regions were used as functional categories for LDSC (3). LDSC regression 31 

analysis was performed with LDSC version 1.0.1 by following the tutorial 32 

(https://github.com/bulik/ldsc/wiki). The results of LDSC regression coefficient Z-scores 33 

were visualized with the R package pheatmap version 1.0.12.  34 

Locus-specific stratification strategy and functional variants identification 35 

Previous studies reported a total of 267 unique lead SNPs in three GWASs on serum urate 36 

level (4, 5). For each locus within 500kb of the reported lead SNP, we quartered the 37 

significance of variant-trait associations from highest to lowest. Variants with the top 38 

quartile associations were extracted as rank 1 high-risk variants and were used for 39 

subsequent analysis. Open chromatin regions of kidney cell types obtained from our kidney 40 

scATAC-seq data for functional annotation. Functional SNPs were identified by 41 

overlapping high-risk variants itself or its LD extension with regulatory elements of kidney 42 

cell types. For those high-risk variants that did not overlap with regulatory elements by 43 

itself, we performed LD extension of the variants. Proxy SNPs were extracted with r2 > 0.8 44 

using LDlinkR version 1.1.2 (6). A total of 1328 functional high-risk variants were 45 

identified.  46 

Other fine-mapping methods 47 
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For LD extension, proxy SNPs were determined as SNPs within high LD (r2 > 0.8) with 48 

lead SNPs. Bayesian fine-mapping was performed as described previously (7). Specially, 49 

for each locus, we first pre-filtered variants in at least low LD (r2 > 0.1) with the lead SNPs. 50 

We calculated approximate Bayes factors (aBF) for each variant using the effect estimates 51 

(β) and standard errors (SE), assuming prior variance w=0.04. We calculated the posterior 52 

probability of association (PPA) by dividing the aBF for each variant by the sum of aBFs 53 

for all variants included in the signal. We then defined the 99% credible set as the smallest 54 

set of variants that added up to 99% PPA. The SNPs extracted by LD extension and 55 

Bayesian fine-mapping were then annotated using open chromatin regions of kidney cell 56 

types. Functionally annotated variants were categorized as functional high-risk variants in 57 

these two methods. Colocalization SNPs of urate-associated loci with kidney eQTLs were 58 

obtained from published manuscript and considered as the functional high-risk variants in 59 

colocalization (4).  60 

Comparation of other fine-mapping methods to LSS 61 

GWAS results of serum urate (EA Tin) were used to compare all other fine-mapping 62 

methods to LSS. Interpretable loci are defined as loci in which functional high-risk variants 63 

can be identified. For enrichment analysis of genetic contribution for functional high-risk 64 

variants, a random equal number of non-significant variants in the serum urate GWAS 65 

summary were used as control. The odds ratio was calculated as the enrichment of disease 66 

association from the functional high-risk variants compared to that of random control 67 

variants. 68 

Annotation of the variants 69 

PheWAS plot is generated from https://atlas.ctglab.nl/PheWAS. CADD score is obtained 70 

from https://cadd.gs.washington.edu. 71 

scATAC-seq and scRNA-seq analysis 72 

For the pre-processing of the 10x-based kidney scATAC-seq data, reads were aligned to 73 

the hg38 human genome by using the "cellranger-atac count" function in cellranger-atac 74 

version 2.0.0. Quality control measurements and filtering were conducted using the ArchR 75 

version 1.0.2 (8) with default parameters. We re-analyzed the kidney scRNA-seq dataset 76 
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by using scRNA-seq pipeline in Seurat version 3.0.0 (9) and annotating with markers 77 

reported in previous manuscript (10). 78 

Construction of transcriptional regulatory network 79 

We leveraged the integrated kidney scRNA-seq and scATAC-seq data by ArchR version 80 

1.0.2 to compute the linkage score between chromatin accessible regions and gene 81 

expression (‘peak-to-gene links') by using the "getPeak2GeneLinks" function in ArchR 82 

with default parameters. We further filtered out the linkages of peak-to-gene with high 83 

linkage score with abs (linkage score) > 0.6 and with genes expressed in not less than 5% 84 

cells.  85 

Gene regulatory prioritization score 86 

In order to prioritize the risk genes, we calculated a GRPS for each candidate gene by 87 

considering cumulative regulatory factors including the risk significancy of its linked 88 

causal variants, the regulation strength from its linked causal variants, and the polygenic 89 

effects of multiple independent variants as follow: 90 

 91 

where GRPSg is the cumulative regulatory prioritization score of gene g, n is the number 92 

of linked risk-peaks (peaks with high-risk variants identified by LSS) for gene g; R is the 93 

peak-to-gene linkage score for peak k on gene g; P is the highest disease association of 94 

high-risk variant in peak k. GRPS value were used to prioritize 160 candidate genes 95 

identified by LSS. The top 25% of ranked genes by GRPS prioritization were visualized 96 

with the ggplot2 version 3.1.1.  97 

Other gene prioritization methods 98 

For H-MAGMA (11), exonic and promoter SNPs were assigned to the genes in which they 99 

reside, while intronic and intergenic SNPs were coupled to their regulated genes based on 100 

high linkage score detected in peak-to-gene links. Then we ran H-MAGMA version 1.08 101 

with the default parameter and obtained the gene prioritization. The priority by Open 102 

Targets Genetics (12) is downloaded by searching for 'urate measurement' at Open Targets 103 
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(https://genetics.opentargets.org). The priority by ABC-Max with keyword 'UA' (uric acid) 104 

is downloaded from Supplementary Table 10 of previous manuscript (13).  105 

Performance of gene prioritization methods in predicting potential drug targets 106 

Drug targets for treatment of hyperuricemia and gout were obtained from the 107 

Supplementary Table 1 of previous manuscript (14). To compare the performance of 108 

different gene prioritization methods in predicting potential drug targets, the priority scores 109 

obtained by each method are first subjected to quantile normalization using the R package 110 

preprocessCore version 1.60.2. Predicted probability and odds ratio for putative drug 111 

targets of priority genes by different strategies was calculated using logistic regression 112 

from “glm” in R package stats version 4.2.2. The predictor of the logistic regression model 113 

was the normalized priority score of gene, and the response of the model was whether the 114 

gene was drug target (0: no; 1: yes). 115 

Gene enrichment analysis  116 

For identified candidate causal genes, gene ontology and pathway enrichment analysis and 117 

DisGeNET enrichment analysis were performed with Metascape version 3.5 118 

(http://metascape.org). Supporting evidence for candidate genes came from three sources: 119 

genes associated with hyperuricemia or gout in DISEASE (https://diseases.jensenlab.org/), 120 

genes were the strongest association with urate-related phenotypes in PheWAS 121 

(https://atlas.ctglab.nl/PheWAS), or genes for which mechanisms were explored in 122 

previous studies (15-17). The evidence score is sum score of above supports. 123 

CRISPR activation 124 

CRISPRa experiments were performed as previously described procedure (18-20). Lenti 125 

dCAS-VP64_Blast (Addgene, #61425) and lenti MS2-P65-HSF1_Hygro (Addgene, 126 

#61426) were packed as lentivirus and transfected to HEK293T cells to generate stable 127 

synergistic activation mediator (SAM) cell lines under 200 μg/mL Hygromycin (Thermo 128 

Fisher Scientific, 10687010) and 5 μg/mL Blasticidin (Thermo Fisher Scientific, 129 

A1113903) selection for 14 days. sgRNA of rs1165183-harboring-CRE was designed by 130 

IDTdna (https://sg.idtdna.com/site/order/designtool/) and the sgRNA of non-human-131 

genome-targeting was derived from human GeCKOv2 library (18) as the negative control 132 
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(Table S4). The sgRNA were then inserted into lenti sgRNA (MS2) Puro backbone 133 

(Addgene, #73795) using BsmBI (NEB, R0739S) sites. The lentivirus of sgRNA was 134 

prepared and transfected into stable SAM cell lines under 2 μg/mL Puromycin (Thermo 135 

Fisher Scientific, A1113803) selection for 48 hours. 136 

Quantitative real-time Polymerase Chain Reaction (qRT-PCR)  137 

Total mRNA was extracted using TaKaRa MiniBEST Universal RNA Extraction Kit 138 

(Takara, 9767) following manufacturer’s instruction. The RNA obtained (500 ng) was 139 

reverse-transcribed using PrimeScript™ RT Master Kit (Takara, RR036A) following the 140 

manufacturer’s instruction. mRNA levels for SLC17A4 were measured by qRT-PCR using 141 

Power SYBR™ Green PCR (Applied Biosystems™, 4367659) according to the 142 

manufacturer’s instruction (Table S4).  143 

SLC17A4 overexpression 144 

The mammalian expression vector pcDNA3.1-GFP and pcDNA3.1-SLC17A4 was 145 

purchased from GenePharma. Transfection of negative control plasmid and overexpressing 146 

plasmid were performed using Lipofectamine 3000 (Invitrogen, L3000015) according to 147 

the manufacturer’s instruction. For transfection, HEK293T cells were seeded in 24-well 148 

plates at ~50% confluency, and then transfected with 500 ng plasmids for each well. After 149 

24 hours, RNA was extracted, then reverse-transcribed and SLC17A4 gene expression was 150 

measured by qRT-PCR. 151 

Determination of urate levels  152 

The negative control and SLC17A4-overexpressing HEK293T cells were treated with 80 153 

ug/mL uric acid sodium salt (Sigma, U2875). The urate content of the supernatants and 154 

broken cells was detected using the urate kit (Nanjing Jiancheng Bioengineering Institute, 155 

C012-2-1) after incubation for 24 hours in a 37°C incubator. Three biological replications 156 

were carried out for each group.  157 

Statistical Analysis 158 

The following statistical tests were performed by two-tailed Student’s t test (Fig. 5C, Fig. 159 

5D, Fig. 5E, Fig. S8B). Data on Fig. 5C, Fig. 5D, Fig. 5E, Fig. S8B are mean ± SD. 160 
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Fig. S1 Loci of serum urate GWAS with multiple independent associations. 163 

LocusZoom plots (left) and quantile-quantile plots (right) for GWAS results in loci with 164 

multiple independent associations, where chr6:1,747,631-2,247,631 with lead SNP 165 

rs7757144 (A), chr6:25,559,488-26,059,488 with lead SNP rs1359232 (B), 166 

chr11:65,489,351-65,989,351 with lead SNP rs4014195 (C) and chr6:6,859,432-167 

7,359,432 with lead SNP rs3904600 (D), respectively. 168 

  169 



 
 

9 
 

 170 
Fig. S2 Loci of serum urate GWAS with single association. LocusZoom plots (left) 171 

and quantile-quantile plots (right) for GWAS results at loci with single association, where 172 

chr4:4,532,412-5,032,412 with lead SNP rs1533096 (A), chr2:210,425,783-210,925,783 173 

with lead SNP rs1047891 (B), respectively. 174 

  175 
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 176 
Fig. S3 Tissue enrichment for genetic risk of serum urate. A heatmap displaying LD 177 

regression coefficient Z-scores for human tissues across three serum urate GWAS studies 178 

analyzed. Data are annotated by groups of tissues.  179 
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 180 
Fig. S4 Cell type contribution for genetic risk of serum urate. Number of high-risk 181 

variants overlapping with regulatory elements in unique kidney cell type. 182 

  183 
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 184 
Fig. S5 Identification of candidate causal genes for functional variants. (A) Peak-to-185 

gene links in kidney cell types including positive and negative regulation. Heatmaps 186 

showed the chromatin accessibility of regulatory elements and gene expression in peak-187 

to-gene links, respectively. The color represents z-score. (B and C) Top 5 enriched gene 188 

ontology and pathway terms on candidate causal genes linked with LSS (B) or LSS-only 189 

(C) high-risk variants. 190 

  191 
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 192 
Fig. S6 The complex regulation between variants and candidate causal genes. (A) 193 

LocusZoom plot of GWAS result at locus chr11: 64,315,390-64,815,390 with lead SNP 194 

rs71456318 (top), and genome browser view of the highlighted region (bottom). The 195 

genome browser includes tracks for chromatin accessibilities in kidney cell types, the 196 

position of the lead SNP and functional high-risk SNPs, the location of genes, and the 197 

peak-to-gene linkage. (B) Gene expression of SLC22A12 in kidney cell types. 198 

  199 
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 200 
Fig. S7 Application of LSS and GRPS to other GWAS studies. (A) Proportion of loci 201 

with multiple independent associations in GWAS of eGFRcrea, BUN, UACR, gout and 202 

CKD. (B) Number of interpretable loci in five diseases and traits among different 203 

strategies. (C) Number of candidate risk genes identified by different strategies. (D) Top 204 
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5 enriched diseases terms on candidate causal genes regulated by functional variants. (E) 205 

Risk genes are divided into 4 groups based on GRPS from highest to lowest, and the bar 206 

chart shows the percentage of genes supported by disease association from DISEASE 207 

displayed. 208 

  209 
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 210 
Fig. S8 Validating the regulatory and functional mechanisms of the risk gene. (A) 211 

Experimental scheme for CRISPRa with rs1165183-harboring-CRE. (B) Effects of 212 

SLC17A4 overexpression on the extracellular urate levels of HEK293T cells (n=3, two-213 

tailed Student’s t test, P-value for negative control cells which are untreated or treated 214 

with uric acid (UA) is <0.0001; P-value for negative control vs SLC17A4 OE cells which 215 

are all treated with UA is 0.0268, P-value for negative control cells vs SLC17A4 OE cells 216 

which are all untreated with UA is 0.3738, P-value for SLC17A4 OE cells which are 217 

untreated or treated with UA is <0.0001; * indicates P-value <0.05, NS indicates not 218 

significant). 219 

 220 

  221 
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