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1 Background49

This section explains the theoretical background relating to the machine learning approaches taken in50

this work, as well as the biological foundations associated with our main objective.51

1.1 Biological foundations52

1.1.1 DNA and expression mechanisms53

The genome is defined as “the complete set of DNA in an organism” [1]. DNA (deoxyribonucleic54

acid) is a double-stranded molecule in the nucleus of cells, consisting of four nucleotide bases:55

adenine, thymine, guanine and cytosine. DNA is divided into sequences called genes, which code56

for proteins. Genotype describes the constitution of a gene, whereas phenotype refers to observable57

characteristics, as a result of genotype and interactions with the environment [1]. The expression of58

each gene is controlled through the regulation of transcription and translation processes [2], which59

produce proteins from genes.60

During transcription of a gene, one DNA strand acts as a template. The enzymes DNA helicase and61

RNA polymerase separate the strands. As ribonucleotides attach to the complementary DNA bases,62

RNA polymerase catalyses the production of phosphodiester bonds between the ribonucleotides,63

forming the RNA transcript. The RNA transcripts are then translated into polypeptides and utilised in64

biological functions.65

1.1.2 RNA-Seq66

The transcriptome is the complete set of RNA molecules expressed by the genome. The expression of67

each gene in the genome is controlled through the regulation of transcription and translation processes68

[2]. RNA-Seq is a Next-Generation Sequencing technology developed in the mid-2000s, which can69

be used to study gene expression in organisms [3].70

During RNA-Seq, once RNA molecules have been extracted from the tissue, complementary DNA71

(cDNA) fragments are formed from the transcripts. This involves RNA fragmentation, reverse72

transcription, adapter ligation and PCR amplification. High-throughput sequencing is then used to73

obtain a short sequence read from each cDNA. These reads are aligned to a reference genome or74

transcriptome [3]. Abundance is estimated for each transcript, for example, as reads per kilobase of75

transcript per million mapped reads (RPKM) [4].76

1.1.3 Risk genes and gene modules77

Risk genes can predispose an individual to developing certain disorders due to their involvement in78

known disease processes. Gene modules are sets of genes which have similar expression profiles and79

are involved in related biological processes, such as metabolic, immune and disease pathways [5]. By80

identifying and characterising particular gene modules, we can gain insight into their potential roles81

in disease pathways, leading us to effective therapeutic gene targets.82

1.1.4 Gene Ontology enrichment analysis83

Gene Ontology (GO) terms refer to a specific biological process, molecular function or cellular84

component. Genes are annotated to “GO terms” to indicate their involvement in the corresponding85

processes. Through GO enrichment analysis [6], [7] of a particular gene set, we can discover GO86

terms that are over-represented in the sample of genes in comparison to the whole genome. We87

calculate a p-value as the probability of the number of genes in the input list being annotated to88

a certain GO term (sample frequency), given the number of genes annotated to this term in the89

reference genome (background frequency). False Discovery Rate (FDR) [8] can also be calculated90

from p-values. In this work, the GO enrichment analysis tool is used to discover the biological91

processes associated with detected gene modules.92

1.2 Differential expression analysis93

Differential expression analysis is a common method currently used to identify potential risk genes.94

Gene expression data, such as RNA-seq or microarray data, is pre-processed and visualised. Genes95

that have significantly different expression levels in afflicted patients compared to healthy individuals96

are identified as genes that potentially contribute to the disease. For example, [9] and [10] compare97

treatment-naïve IBD patients to healthy controls in this manner, using volcano plots and heatmaps98

to visualise the data. They also analyse the genes further using functional enrichment analysis, to99

identify potential associated biological pathways. A similar differential analysis is performed in [11]100

and [12] for Ulcerative Colitis, identifying potential drivers of disease.101
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This section summarises some fundamental methods currently used in differential expression analysis,102

in which gene expression is compared between samples.103

1.2.1 Log-fold change104

We can find the log-fold change in expression between two samples of tissues or individual cells.105

This is expressed as a ratio and can be calculated using:106

log2(x2/x1) (1)

where x1 is the normalised count (expression value) for sample 1 and x2 is the normalised count for107

sample 2 [13].108

This shows how much the gene expression differs between the samples on a logarithmic scale. We109

can identify whether genes are upregulated or downregulated in the second sample compared to the110

first sample. Gene expression data is often visualised using log-fold change values, for example in111

hierarchical clustering heatmaps and volcano plots. This helps us to interpret the behaviour of genes112

and identify outliers.113

1.2.2 Welch’s t test114

The Student’s t test is a statistical test that can be used to determine whether a sample of data is115

significantly different to another sample of data by comparing their means [14].116

We can compare the gene expression values of afflicted patients with those of healthy controls to117

identify significant genes. Welch’s t test is an adaptation of the Student’s t test. It is suitable for118

the given application as it is reliable even when the two groups have unequal variance and unequal119

sample sizes. Like the Student’s t test, it assumes that the data in each group is normally distributed120

[15].121

We first define the null hypothesis - that there is no significant difference between the mean values of122

the two groups [16]. We can compute the t statistic using Eq 2 [15]:123

t′ =
µ1 − µ2√
s21
n1

+
s22
n2

(2)

where µi, ni and s2i are the mean, sample size and sample variance of group i. We then compute the124

degrees of freedom [15]:125

v =

(
1
n1

+ u
n2

)2

1
n2
1(n1−1)

+ u2

n2
2(n2−1)

(3)

where126

u =
s22
s21

(4)

We can use a t-distribution table or software library to find the p-value of the t statistic with the127

calculated degrees of freedom. The p-value is the probability that we would obtain a t statistic at least128

as large as what we calculated if the null hypothesis were true i.e. the probability that the results are129

due to chance [14]. A two-tailed test is appropriate if the mean of one sample may be higher or lower130

than the other; this results in a two-tailed p-value, which must be halved. If the resulting p-value131

is below a set threshold e.g. 0.05 or 0.01, we can reject the null hypothesis and state that there is a132

statistically significant difference between the means, at the given significance level [16].133

1.2.3 Volcano plots134

Volcano plots are commonly used to visualise RNA-Seq data. We plot the magnitude of the fold-135

change in gene expression on the x axis, and the significance (p value) on the y axis, where these values136

are log-transformed. Using this plot, we can easily identify genes that are statistically significant and137

most differentially expressed in relation to controls. The most upregulated genes will be further to138

the right and the most downregulated genes further to the left. Genes further to the top have a greater139

significance [17]. In this work, we assess significance using Welch’s t test.140
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1.3 Dimensionality reduction141

As gene expression data often has a large number of variables, the data is usually transformed into a142

lower dimensional space, while retaining important information, to ease downstream analysis.143

1.3.1 Principal Component Analysis144

A widely used method for dimensionality reduction of gene expression data is Principal Component145

Analysis (PCA). This is a statistical technique used to project the data into a lower-dimensional146

subspace.147

As explained in [18], if we have N datapoints xN , we can define a D-dimensional vector u1 to be a148

projection from D dimensions to 1, where the projection of our datapoints is uT
1 x. We can compute149

the sample covariance matrix of our datapoints xn using:150

S =
1

N

N∑
n=1

(xn − x)(xn − x)T (5)

which summarises the variances and correlations between features. The variance of the projected151

data is given by uT
1 Su1. By differentiating with respect to u1 we find that Su1 = λ1u1, meaning152

that u1 is an eigenvector of S with eigenvalue λ1. We can set u1 as the eigenvector with maximum153

variance; this is called the principal component. Each subsequent principal component is chosen such154

that it maximises variance and is orthogonal to all previous principal components. We can use a scree155

plot to show the amount of variance explained by each principal component.156

The original datapoints can then be expressed as a linear combination of the principal components:157

xn =

D∑
i=1

(xT
nui)ui =

D∑
i=1

αniui (6)

By selecting the first M principal components, we can use Eq 6 to project the data from D to M158

dimensions while maximising variance.159

1.3.2 Autoencoders160

Autoencoders are a type of neural network that can learn to reconstruct input data using supervised161

deep learning. In general, they consist of encoder and decoder sections with a bottleneck layer in162

the middle. By training the network using backpropagation, the autoencoder can learn a feature163

representation of the input within the bottleneck layer, which is usually the smallest layer in the164

architecture [19]. It can therefore be used to represent data in a lower-dimensional subspace.165

We can write the encoder section as a function g that depends on the input xi:166

hi = g(xi) (7)

where hi ∈ Rq is the latent feature representation of the input [19]. The decoder section can be167

written as a function f which maps the latent features to the output:168

x̃i = f(hi) = f(g(xi)) (8)

where x̃i ∈ Rn. Therefore, we train the autoencoder to find f(·) and g(·) such that the difference169

between the input and output is minimised [19]. Since this is a regression problem, a common loss170

function to use is Mean Squared Error:171

LMSE =
1

M

M∑
i=1

|xi − x̃i|2 (9)

where M is the number of datapoints in the training dataset, xi is an input and x̃i is the reconstructed172

version of the input. This quantifies the difference in the inputs and outputs using squared errors173
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[19]. Activation functions are also important for introducing non-linearity into the model, such as the174

rectified linear unit (ReLU) or sigmoid activation function [19].175

We can use stochastic gradient descent to train the neural network, in which we repeatedly pass batches176

of input data through the network, known as a forward pass, calculate the loss and backpropagate the177

loss through the network to update the weights. One epoch is completed when all training inputs have178

passed through the network once i.e. one forward and one backward pass [18]. In the backward pass179

we use the chain rule to calculate the gradient of the loss function with respect to the weights. We180

can then update the weights of the network using a specified learning rate α. Eventually, we converge181

to a local minimum of the cost function, resulting in a trained network [18]. Autoencoders are useful182

in a wide range of applications such as feature extraction, image compression, image denoising and183

dimensionality reduction [20].184

1.3.3 t-distributed Stochastic Neighbour Embedding (t-SNE)185

A widely used technique for non-linear dimensionality reduction is t-distributed Stochastic Neighbour186

Embedding (t-SNE) [21]. Most commonly, it is used to reduce the data to 2 or 3 dimensions for187

visualisation.188

We first compute conditional probabilities that represent the similarity between datapoints in high-189

dimensional space using:190

pi|j =
exp(−||xi − xj ||2/2σ2

i )∑
k ̸=l exp(−||xk − xl||2/2σ2

i )
(10)

As van der Maaten and Hinton explain in [21], “The similarity of datapoint xj to datapoint xi is191

the conditional probability pi|j that xi would pick xj as its neighbour if neighbours were picked in192

proportion to their probability density under a Gaussian centred at xi.”193

The joint probability of i and j can then be written as:194

pi,j =
pi|j + pj|i

2N
(11)

where N is the number of datapoints. The Gaussian kernel is set according to the density of the data195

points. We can learn a mapping from this space to the low-dimensional space by minimising the196

KL-divergence between the high-dimensional distribution P and a low-dimensional distribution Q.197

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(12)

The qi,j distribution is computed in a similar way as pi,j , however qi|j is calculated using the198

heavy-tailed student t distribution:199

qi|j =
(1 + ||yi − yj ||2)−1∑
k ̸=j(1 + ||yk − yj ||2)−1

(13)

With a heavier tail than the Gaussian distribution, points further from the reference point are given200

more probability mass. This helps to avoid the crowding problem, in which similar points in high-201

dimensional space are mapped to the same point in low-dimensional space. The optimisation is202

carried out using gradient descent. The final mapping therefore optimally represents the similarities203

between high dimensional points in low dimensional space, while preserving the structure of the data.204

An important hyperparameter used in this algorithm is perplexity, Perp(Pi) = 2H(Pi). This can be205

interpreted as “the effective number of neighbours” taken into account when computing conditional206

probabilities pi|j in high dimensional space. Specifically, binary search is used to find the σj value207

that results in a perplexity of the conditional distribution that is close to the target perplexity within a208

given tolerance. Perplexity can have a significant impact on the mapping, shifting emphasis in terms209

of the local and global structure of the data [22].210

1.4 Clustering algorithms211

This section explains the clustering algorithms and evaluation metrics used in this work.212
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1.4.1 K-Means clustering213

K-Means is an iterative algorithm used to assign each datapoint xn to one of k clusters. It aims to214

minimise the objective function (Eq 14), which represents the sum of squared distances from each215

datapoint to the centre of its assigned cluster µk:216

J =

K∑
n=1

K∑
k=1

rnk||xn − µk||2 (14)

The variable rnk is used as an indicator, where rnk = 1 if datapoint xn is assigned to cluster k and 0217

otherwise. The aim is to find the optimal rnk and µk that minimises J [18]. The key points of the218

algorithm are as follows:219

1. Select a number of k clusters with which to perform clustering.220

2. Randomly initialise the centroids (centres) for each cluster.221

3. Assign each datapoint to the closest cluster, using a distance metric like Euclidean distance.222

4. Assign new centroids for each cluster, by calculating the mean of the newly assigned223

datapoints.224

5. Repeat steps 3 and 4 until convergence or the maximum number of iterations is reached.225

The optimisation steps 3 and 4 correspond to the Expectation (E) and Maximisation (M) steps of226

the Expectation-Maximisation (EM) algorithm respectively. The EM algorithm is widely used in227

probabilistic models for finding maximum-likelihood estimates of parameters [18]. During the E step,228

we fix the cluster centres and assign each datapoint to the closest cluster using rnk.229

rnk =

{
1, if k = argminj ||xn − µj ||2
0, otherwise (15)

During the M step, we fix the indicator variable and recalculate the cluster centroids by finding the230

mean of the datapoints in each cluster k:231

µk =

∑
n rnkxn∑
n rnk

(16)

At completion each datapoint is assigned to one of the k clusters [18].232

1.4.2 Gaussian Mixture Models233

Another way to perform clustering is using Gaussian Mixture Models (GMMs). This method involves234

finding a probability distribution over clusters using a weighted average of Gaussian distributions235

[18].236

The marginal distribution of a GMM can be expressed as p(x) =
∑

z p(z)p(x|z) =237 ∑K
k=1 πkN (x|µk,Σk). Each component k is represented using a multivariate Gaussian distri-238

bution with mean vector µk and covariance matrix Σk. The mixing coefficients πk are associated239

with a K-dimensional random variable z that indicates cluster membership, such that zk ∈ {0, 1} and240

p(zk = 1) = πk. We can sample from this distribution using ancestral sampling i.e. sample from241

p(z) and then from p(x|z) [18].242

We can also define the responsibility as γ(zk) ≡ p(zk = 1|x) which describes the responsibility of243

component k for ‘explaining’ the given datapoint x. Given a set of datapoints, we can use maximum-244

likelihood estimation to find the parameters of the distribution to best model the data. We aim to245

maximise the log of the likelihood function:246

ln p(X|π,µ,Σ) =

N∑
n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
(17)
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There is no closed-form solution for this purpose for GMMs, so we use the iterative Expectation-247

Maximisation algorithm [18]. During the E step, we use the current parameter values of µk, Σk and248

πk to calculate responsibilities using Eq 18:249

γ(zk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

(18)

We use these calculated responsibilities to re-estimate the parameters during the M step using the250

following equations:251

µnew
k =

1

Nk

N∑
n=1

γ(znk)xn (19)

Σnew
k =

1

Nk

N∑
n=1

γ(znk)(xn − µnew
k )(xn − µnew

k )T (20)

πnew
k =

Nk

N
(21)

where γ(znk) = p(zk = 1|xn) and Nk =
∑N

n=1 γ(znk). The E step and M step are successively252

repeated until we find a local maximum for the log-likelihood [18]. The final parameters are then253

used to construct the GMM. This provides a soft clustering of the given datapoints.254

The K-Means algorithm assumed that the clusters spread out evenly in all directions. By contrast,255

GMMs can handle non-spherical clusters, and the covariance can be tuned to form clusters that fit the256

shape of the data more closely [18].257

1.4.3 Consensus clustering258

Consensus clustering is an approach that is gaining popularity as a more reliable alternative to vanilla259

clustering algorithms. It involves performing several partitionings of the same dataset and uses a260

function to find a consensus among these, resulting in a clustering that can outperform each individual261

partitioning in accuracy and stability [23], even in the presence of noise, outliers and sample variations262

[24].263

After obtaining a set of basic partitionings, Π = {π1, π2, ..., πr}, of the data objects, X =264

{x1, x2, ..., xn}, the goal of consensus clustering is to find a consensus partitioning π such that265

we maximise:266

Γ(π,Π) =

r∑
i=1

wiU(π, πi) (22)

where Γ : Nn × Nnr → R is a consensus function, U : Nn × Nn → R is a utility function and267

wi ∈ R++ is the weight specified for πi by the user [24].268

In this work, we utilise the Weighted Ensemble Consensus of Random (WECR) K-Means algorithm269

[23] for the identification of potential gene modules.270

1.4.4 Hierarchical clustering271

Hierarchical clustering takes either a top-down (divisive) or bottom-up (agglomerative) approach. In272

the bottom-up approach, each datapoint starts off as an individual cluster and at each step, pairs of273

clusters are merged according to a similarity metric and linkage method. The top-down approach starts274

with all datapoints as part of a single cluster and splits clusters recursively until we obtain individual275

datapoints [25]. The type of linkage, such as single, complete, average, Ward or centroid linkage276

[26], [27], describes how we define the distance between two clusters. In this work, hierarchical277

agglomerative clustering is employed with Euclidean distance, using average linkage. This means278

clusters with the lowest average distance are merged, where this distance is calculated as the average279

of distances between all possible pairs of datapoints. The final clustering can be visualised using a280

dendrogram, which shows the history of merges and the similarity between clusters [25].281
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1.4.5 Evaluation metrics282

There are many possible techniques that can be used to evaluate clustering results. They can be used283

to select optimal models in both individual and consensus clustering.284

Silhouette analysis Through silhouette analysis, we can assess the separation distance between285

clusters using the Silhouette Coefficient. The Silhouette Coefficient s for a sample xi in cluster k can286

be calculated using Eq 23:287

s(xi) =
b(xi)− a(xi)

max(b(xi), a(xi))
(23)

where a(xi) is the mean distance from the sample to all other points in the same cluster k, and b(xi)288

is the mean distance from the given sample to all points in the next closest cluster [28]. The silhouette289

value can vary between -1 and 1. Values close to 1 indicate well-separated clusters, whereas values290

close to 0 show that datapoints are near the decision boundary. As values become closer to -1 there291

is a greater probability that some points may be in the incorrect cluster, as it shows that a(xi) is292

greater than b(xi). Higher silhouette values indicate that the datapoints are more likely to be clustered293

correctly [28]. A silhouette plot [29] [30] can be used to visualise silhouette values across all samples294

in the dataset after clustering. The thickness of a bar shows the size of a cluster and we can see how295

the silhouette values vary across the samples within and between clusters. This allows us to assess296

the separability and quality of clustering [29].297

Davies-Bouldin Index The Davies-Bouldin Index (DBI) evaluates the separation distance between298

pairs of clusters, which should be as large as possible, as well as within-cluster scatter, which should299

be as small as possible [31]. It is defined as:300

DBI =
1

K

K∑
i=1

max
i;j ̸=i

Si + Sj

di,j
(24)

where K is the number of clusters and di,j is the distance between clusters i and j. The scatter301

within a cluster is given by Si =
1

|Ci|
∑

xj∈Ci
||xj − vi||, where Ci refers to cluster i, xj refers to a302

datapoint assigned to cluster i and vi is the centroid of cluster i. The DBI can range from 0 to infinity.303

Better clustering models are indicated by lower DBI values, as these indicate that the clusters are304

compact and separated well [31].305

Calinski-Harabasz Index The Calinski-Harabasz Index (CH index) evaluates a clustering model306

using between-cluster variance, which measures separation distance between clusters, and within-307

cluster variance, showing how tightly packed each cluster is [32]. It is defined in Eq 25.308

CH(K) =
B(K)(N −K)

W (K)(K − 1)
(25)

309

B(K) =

K∑
k=1

ak||xk − x||2 (26)

310

W (K) =

K∑
k=1

∑
C(j)=k

||xj − xk||2 (27)

Here, K is the number of clusters and N is the sample size. B(K) is the between-cluster variance and311

should be as large as possible, whereas W (K) is within-cluster variance and should be as small as312

possible. The CH index is the ratio between these measures, ranging from 0 to infinity. Higher CH313

index values indicate a greater quality of clustering as it shows that the clusters are better separated314

and more compact [32].315
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Bayesian Information Criterion The Bayesian Information Criterion (BIC) is metric used to316

select the best model from a collection of candidate models Mk for k ∈ {k1, ...kL}. BIC is useful in317

clustering for choosing the model that fits the data best [33]. The BIC for model Mk is defined as:318

BIC = k ln(n)− 2 lnL(Θ̂k|x) (28)

where n is the number of samples, k is the number of parameters, and Θ̂k is the set of model319

parameters that maximises the likelihood of the data L(Θ̂k|x). The term k ln(n) penalises complex320

models with large numbers of parameters. The model with the minimal BIC value is said to be321

optimal as it has the best balance between model fit and complexity [33].322

Accuracy and F1-Score After post-processing our KMeans and GMM clustering results, we obtain323

cluster assignments that correspond to disease phenotype predictions. As a result, we can assess324

classification performance using accuracy and F1-score.325

These rely on four components (for binary classification) [34]:326

• True Positives (TP): Number of samples correctly predicted as positive.327

• False Positives (FP): Number of samples incorrectly predicted as positive.328

• True Negatives (TN): Number of samples correctly predicted as negative.329

• False Negatives (FN): Number of samples incorrectly predicted as negative.330

where one class is assigned as “positive” and the other “negative”.331

Accuracy [35] can be calculated using:332

accuracy =
TP + TN

TP + FP + TN + FN
(29)

However, this measure can produce unreliable results when class sizes are imbalanced.333

Therefore, accuracy is often used in conjunction with F1-score, which is the harmonic mean of334

precision and recall [34]:335

Precision =
TP

TP + FP
(30)

Recall =
TP

TP + FN
(31)

F1-Score =
2× Precision×Recall

Precision+Recall
(32)

Recall is used to identify what proportion of the true positive instances were identified by the model,336

whereas precision shows the proportion of positive predictions that were correct. There is often337

a trade-off between precision and recall. F1-score combines these metrics and is robust to class338

imbalance. This work uses a weighted F1-score; this is a weighted sum of the class-wise F1-scores,339

in which the weights are proportional to the class size [34].340

1.5 Explainability341

It is often difficult to determine how decisions are made in machine learning models, particularly342

when complexity is high. The ability to explain the reasoning behind machine learning model343

predictions is very important in sensitive fields such as law and healthcare. For example, it is critical344

for healthcare practitioners to know that any insights drawn or suggestions made are grounded in345

reality with sound judgement. Moreover, legal requirements are beginning to restrict the use of346

uninterpretable “black-box” models in sensitive domains due to a lack of transparency [36], [37]. This347

section describes two state-of-the-art methods for machine learning explainability: class-contrastive348

techniques and SHAPley Additive exPlanations (SHAP).349
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1.5.1 Class-contrastive techniques350

Class-contrastive reasoning is widespread in the social sciences. Studies in human cognition [38]351

have revealed that explanations are inherently contrastive; justifications for a belief or action are352

usually desired in contrast to another i.e. “Why P rather than Q?”, where Q may be implied by the353

context [39].354

This approach is now being applied in state-of-the-art machine learning research to reveal which355

factors led to a model’s decision. The idea is to explain why the model made the given decision in356

contrast to another. For example, as demonstrated by Banerjee et al. in [40], a model may determine357

that a patient is at high risk of mortality due to their dementia and cardiovascular disease, whereas358

the risk would be much lower if they were not suffering from these diseases. By allowing us to359

distinguish predictions based on specific features, the transparency and interpretability of a model360

can be greatly improved.361

1.5.2 SHAPley Additive exPlanations (SHAP)362

SHAPley Additive exPlanations (SHAP) [41] is a state-of-the-art method for explaining machine363

learning model predictions, using a game theory approach for feature attribution.364

The classic SHAP method formulates the problem as a game in which each feature is a player and365

makes contributions to the outcome, which is the model prediction. A new model is trained for every366

possible coalition (subset) of features S ⊆ F . We can find the contribution of a feature by finding367

the prediction of a model trained with the feature included in the coalition fS∪{i}(xS∪{i}), and368

comparing this to the prediction of a model trained with the feature withheld fS(xS). The Shapley369

value ϕi of a feature i is a weighted average of the contribution of that feature across all possible370

coalitions:371

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})− fS(xS)] (33)

Because we have to train a new model for all possible subsets of features, the classic SHAP method372

can become computationally intractable when the model includes a significant number of features.373

Variants of this algorithm have been proposed to approximate the original method. Two notable374

variants are treeSHAP and kernelSHAP. TreeSHAP is the more efficient of the two, but can only375

be used for tree-based machine learning models such as decision trees or random forests [42]. By376

contrast, kernelSHAP is model-agnostic.377

KernelSHAP provides an efficient approximation to SHAP values using weighted linear regression378

based on sampling. Rather than retraining a new model for each coalition, we marginalise the missing379

features out of the model. In Eq 34, we define a fidelity function L that measures how unfaithful is a380

surrogate model g in approximating the model f , in the feature subspace defined by z′. Here, we381

use z′ ∈ {0, 1}M to define the coalition of features, where M is the number of input features. The382

features included in the coalition have a corresponding value of 1 and missing features are represented383

by a value of 0. We carry out a sum of the loss calculated over all models.384

L(f, g, πx′) =
∑
z′∈Z

[f(hx(z
′))− g(z′)]2πx′(z′) (34)

We generate synthetic samples for each model, where each baseline sample z is drawn from the385

same probability distribution as the input features. We can compute the model output f(hx(z
′))386

as E[f(z)|zS ] = EzS |zS [f(z)]. However, feature independence is assumed so f(hx(z
′)) ≈387

EzS
[f(z)] ≈ f([zS , E[zS ]]). This means we simulate missing features using expectation values, to388

show that these features carry no information. We use z′ to represent a perturbed version of the389

sample z, where the included features take their value from the input instance we are analysing. The390

hx function is used to map the samples to a potentially higher-dimensional space.391

The kernel weighting function (Eq 35) is used to penalise coalitions where the number of features is392

far from zero or M. When |z′| is close to zero this demonstrates the independent effects of features,393

whereas when |z′| is close to M, this shows how features interact with each other [43].394
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πx′(z′) =
(M − 1)

(Mchoose|z′|)|z′|(M − |z′|)
(35)

We then perform linear regression to minimise the fidelity function L. This gives rise to a linear395

equation, in which the resulting coefficients are the SHAP values of the corresponding features:396

g(z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (36)

The SHAP value represents the importance of a feature in terms of its influence on the model397

prediction. SHAP values are additive and can be summed, as shown, to approximate the output of the398

model for a given data instance.399

2 Related work400

The following is a summary and critique of existing literature related to the techniques employed in401

this work.402

2.1 Dimensionality reduction and cluster analysis403

RNA-Seq datasets can be very high-dimensional due to the number of genes involved, further404

complicated by noise. It is therefore common practice to reduce the dimensionality using feature405

selection [44] or feature extraction [45] after data pre-processing, before performing further analysis.406

Feature selection can be more interpretable, as a subset of the original genes are selected for analysis,407

often using statistical tests. However, feature extraction can reduce the dataset to a very small number408

of variables by transforming the original features, while maximising variance. This is useful for409

larger datasets and can allow different types of patterns to be detected. A technique widely used for410

feature extraction is Principal Component Analysis (PCA). This has performed very well throughout411

the past few decades for analysing gene expression data [45]–[48]. However, PCA only captures412

linear relationships within the data, and as demonstrated in [46], it can fail to detect important413

biological information. This is more apparent with small sample sizes and when effect size is small414

i.e. phenotype is affected by very small changes in gene expression. It can also be difficult to415

determine which principal components contain relevant information [46].416

Recently, deep learning models such as autoencoders have shown compelling performance in the417

analysis of high-dimensional single-cell RNA-Seq data [49]–[52]. Autoencoders can improve the418

signal-to-noise ratio [52] as the structure forces the model to learn an effective representation within419

a small number of latent variables in the bottleneck layer. Autoencoders also capture non-linear420

relationships within the data and can outperform PCA for dimensionality reduction and clustering, as421

demonstrated in [52]. This research has mostly focused on single-cell RNA-seq. We aim to reveal422

the strengths and weaknesses of the PCA and deep autoencoder techniques in the analysis of bulk423

RNA-Seq data.424

Cluster analysis has been successful in discovering disease subtypes [53]–[56], cell types [57],425

[58] and drug development [59]–[61]. Apart from classical methods like KMeans and hierarchical426

clustering [62]–[66], other model-based and novel machine learning approaches are being applied for427

cluster analysis. For example, a multivariate Poisson-log normal mixture model is used in [67], a428

form of neuralised clustering proposed in [68] and genes are clustered using count-based correlations429

and dispersion estimation in [69]. However, in these works, clustering is usually carried out directly430

on genes to form groupings. We instead take the approach of grouping tissue samples based on the431

similarity of individual patient expression profiles, extracting gene modules at a later stage using a432

more involved process.433

Although clustering is effective for exploratory analysis, it can be useful to anchor this to concrete434

data. Classifiers are usually trained separately, for example using Random Forests [70] or Support435

Vector Machines [71]. To our knowledge, there have been no works that adapt a mixture-based436

clustering model for classification of disease phenotype based on RNA-Seq data. We apply this437

method for interpretable analysis and seamless coupling to explainability techniques.438

12



2.2 Explainability439

Explainable AI (XAI) is becoming increasingly important for sensitive applications. Two important440

approaches to XAI are feature attribution and class-contrastive techniques. Feature attribution441

methods are used to calculate the degree to which each feature contributes to the model prediction.442

These include Shapley Additive Predictions [41], LIME [72] and Anchors [73]. The class-contrastive443

approach uses counterfactual-based examples to explain why a data instance would be placed in one444

class over another, also utilising features.445

Explanations can be local, to analyse predictions for particular data instances, or global, to explain446

the systematic behaviour of the model in general. Our work focuses on class-contrastive techniques447

and SHAP, including local and global explanations for the identification of gene targets.448

2.2.1 SHapley Additive exPlanations: applications449

SHapley Additive exPlanations (SHAP) [41] is a state-of-the-art method for generating explanations450

via feature attributions. There are many implemented variants of SHAP, such as kernelExplainer,451

treeExplainer and gradientExplainer [74], which can offer faster approximations and versions of452

the algorithm tailored for specific types of models. It can therefore be used in a wide range of453

applications, and has been applied successfully for the analysis of gene expression data [75]–[79].454

For example, Yap et al. demonstrate the utility of SHAP when applied to a tissue classifier in [75].455

The SHAP GradientExplainer is suitable for neural networks and was used to find the individual456

contributions of genes to predictions. The most important genes identified by SHAP were congruent457

with those identified by differential expression analysis, and were associated with the expected458

biological processes when applying functional enrichment analysis. It can even be used to find459

the relative significance of regulatory pathways, as shown by Hayakawa et al. in their application460

of SHAP to a graph convolutional network classifier that predicts diffuse large B-cell lymphoma461

(DLBCL) subtypes [76].462

More specifically related to this work, Yu et al. use a deep autoencoder in [77] to learn gene expression463

representations, applying treeExplainer SHAP to measure the contributions of genes to each of the464

latent variables. During functional enrichment analysis, the most important genes distinguished465

by SHAP led to the identification of many more enriched pathways than those genes identified by466

differential expression analysis. The use of an autoencoder to learn representations is similar to our467

work, but in [77], SHAP is applied directly to the hidden layer, which limits interpretability of the468

findings. In this work, we enhance interpretability in relation to disease phenotype, by applying SHAP469

to our mixture model. As explained in the main document, we use a novel approach to incorporate470

inter-feature dependence into kernelSHAP for more robust explanations.471

2.3 Gene module identification472

The identification of gene modules is a crucial step in characterising the genetic component of disease.473

Weighted Gene Co-expression Network Analysis (WGCNA) [80], [81] was proposed by Zhang et al.474

in 2005. This involves the use of a weighted gene co-expression network and hierarchical clustering.475

It has been applied in many works to identify potential gene modules and centralised hub genes as476

biomarkers for various diseases [82]–[84]. However, it can be sensitive to noise and the results can477

be highly dependent on the choice of parameters [5], such as the soft-thresholding parameter which478

controls correlations [80].479

Other methods also tend to include a clustering aspect and/or network construction [85]–[87] to480

organise genes. Zhang et al. propose to combine two well-known algorithms in [85] to identify481

gene modules involved in hepatocellular carcinoma. The Newman algorithm is used to build a482

gene co-expression network, before applying the KMeans algorithm for secondary clustering. This483

approach optimises for the modularity of gene sets but does not attempt to quantify the contribution484

of each gene set to disease phenotype or progression. The computational complexity may also limit485

scalability to larger datasets. Our approach employs clustering but avoids the computational costs486

associated with network construction. Instead, we capture complex gene and sample relationships487

implicitly via the use of mixture modelling and a deep autoencoder that can infer both linear and488

non-linear relationships.489

More specifically related to this work, in [68], Lu et al. propose an integrated deep learning490

framework that uses a deep autoencoder for dimensionality reduction of single-cell RNA-Seq data491

and reformulates the K-Means clustering procedure using a neural network. They use an adversarial492
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approach to identify sets of genes that can explain differences between clusters. This is achieved493

by identifying perturbations of gene expression profiles that cause cells to move from one cluster494

to another. This yields lists of genes that can explain a cluster or pair of clusters. However, the495

underlying gene expression distributions are not taken into account. By comparison, our novel496

class-contrastive technique uses information about healthy expression profiles to inform perturbations.497

This improves efficiency and promotes more realistic cluster explanations.498

The authors claim to account for gene dependencies in [68] by jointly handling the non-linear499

embedding and neuralised clustering. This not explained further and is validated only on synthetically500

generated dependent genes. Our approach explicitly accounts for inter-feature dependence by501

analysing the underlying data distributions and correlations between genes using data from real502

patients. Our approach also leads to more interpretable findings, as we use a probabilistic model503

derived from a GMM that captures relationships between phenotypes. Although [68] produces504

cluster-wise rankings on genes, it does not take account of how expression level can affect gene505

relevance, a useful aspect of our approach. It is also not possible for a sample to be associated with506

more than one cluster. Using a Gaussian Mixture Model, we provide a richer representation of sample507

relationships and a verifiable probabilistic model. The application of SHAP then provides specific508

gene contributions for each patient by phenotype, which can be combined for cluster-wise or global509

explanations.510

3 Further results and technical details511

3.1 Differential expression analysis512

As a preliminary analysis of the data selected from the RISK dataset [10], [88], we produced a513

volcano plot, shown in Figure 1, on the basis of Welch’s t test [15]. Various thresholds can be used to514

select different subsets of genes, based on significance and/or extent of fold-change.515

We then carried out hierarchical agglomerative clustering with average linkage and Euclidean distance516

on the entire sample i.e. 260 patients and 221 genes. The results are shown in Fig 2, generated517

using the seaborn library [89]. The darker the colour, the more downregulated the gene is and a518

lighter colour signifies greater upregulation. The clustering results in groups of patients with similar519

expression profiles as well as distinct groups of genes with similar expression patterns. These could520

potentially correspond to gene modules.521

Using a volcano plot threshold of 1E-25 for significance level and 2.2 for absolute fold-change, we522

selected a sample of the most significant genes. The expression of these 87 genes is visualised in523

Figure 3, across a random subset of 30 patients. We can see that the correlations in gene expression524

patterns still hold, and that the extent of differential expression becomes greater as symptoms become525

more severe. For example, in general, Crohn’s disease (CD) deep ulcer patients have the greatest526

degree of downregulation and upregulation of these genes, followed by CD no ulcer patients, followed527

by healthy controls. This signifies that these genes may contribute to the development of CD, and528

that the extent of differential expression may be implicated in symptom severity. However, some529

genes were not identified to be significant using the t test, but are linked to IBD in the literature, such530

as IRGM, HLA_DRB1 and IL10. This indicates that there may be other factors at play.531

Differential gene expression analysis is informative in a broad sense, but can be too simplistic to532

accurately capture the nuances of the mechanisms underlying disease. When comparing only the533

expression of individual genes, it is difficult to draw specific conclusions. Other important factors are534

not considered, such as gene dependencies. Our work aims to address this by associating differential535

expression with disease phenotype in a more in-depth way, utilising and extending state-of-the-art536

machine learning explainability techniques.537
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Figure 1: Volcano plot of gene sample.
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Figure 2: Hierarchical clustering heatmap including all 260 patients and all 221 genes.
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Figure 3: Hierarchical clustering heatmap including a random set of 30 patients and a selected subset
of 87 genes informed by Welch’s t test.

3.2 Dimensionality reduction techniques538

Autoencoders have been shown to effectively reduce dimensionality and noise in gene expression539

data. The structure of our autoencoder is detailed in Table 1. The training and validation loss curves540

for the final model are shown in Figure 4. We can see that the loss reduces and converges very quickly.541

The training and validation loss are almost identical from epoch 60 onwards which shows that the542

model is not overfitting to the data.543
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Table 1: Autoencoder architecture.
Layer type Output size # Params

Encoder
Dense 442 98124

Batch Normalisation 442 1768
LeakyReLU 442 0

Dense 221 97903
Batch Normalisation 221 884

LeakyReLU 221 0
Dense 32 7104

Decoder
Dense 221 7293

Batch Normalisation 221 884
LeakyReLU 221 0

Dense 442 98124
Batch Normalisation 442 1768

LeakyReLU 442 0
Dense 32 97903

Figure 4: Autoencoder training and validation loss curves.

Figure 5 shows the proportion of variance explained by the number of principal components, when544

using PCA for dimensionality reduction. This figure was adapted from [90]. We reduce to 32545

dimensions as this retains 91% of the variance [91]. We also reduce to 32 dimensions with the546

autoencoder for comparison purposes.547
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Figure 5: PCA scree plot, adapted from [90].

3.3 Gaussian Mixture Model clustering548

Below are some additional technical details and results relating to the training process of GMM549

clustering.550

3.3.1 PCA-based dimensionality reduction551

19



Figure 6: Sample of training results for GMM clustering after applying PCA and tSNE (perplex-
ity=190) for dimensionality reduction. Results on the training set with four cluster labels shown (top
left) and true labels shown (top right). Results on the validation set after post-processing shown on
bottom right, alongside corresponding silhouette plot on bottom left. Clusters 0, 1 and 2 correspond
to “control”, “CD no ulcer” and “CD deep ulcer” clusters respectively.

Figure 7: Effect of tSNE perplexity value on clustering and classification performance of GMM, with
dimensionality reduced by PCA and tSNE, in terms of accuracy, F1-score and average silhouette
score calculated on the validation set.
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For two clustering models, PCA was used alongside tSNE for dimensionality reduction of the pre-552

processed RNA-Seq data. We first trained the GMM and KMeans models on the training set using553

various perplexity values for tSNE. For example, Figure 6 shows a sample of training results for554

the GMM when using a perplexity of 190 for tSNE, alongside PCA. We show the clustering on the555

training set with cluster labels (top left) and true labels (top right). After obtaining the initial clusters,556

we apply a post-processing step to classify disease phenotype, as explained in the main document.557

We show the post-processed clustering on the validation set with predicted labels on the bottom right,558

alongside the corresponding silhouette plot on the bottom left. In this example, the model somewhat559

distinguishes the classes but the clusters are not well-separated, as demonstrated in the silhouette plot.560

Most silhouette values are above 0.5 in clusters 0 and 2 but many have very negative values in cluster561

1 so may be incorrectly assigned.562

In Figure 7, we can see how dramatically the performance can vary, based on the perplexity chosen563

for tSNE. Perplexity determines the “effective number of neighbours” taken into account when564

calculating conditional probabilities that represent datapoint similarity. This can shift the focus565

between the local and global structure of the data. We tuned the perplexity by maximising the566

silhouette score (clustering quality), accuracy and F1-score (classification ability). For example, here567

we chose a perplexity of 150 as high scores were consistently achieved.568

3.3.2 Autoencoder-based dimensionality reduction569

The same process was applied when the autoencoder was used for dimensionality reduction; please570

see the previous section for more details.571

For the other two clustering models, our trained autoencoder was used alongside tSNE for dimension-572

ality reduction of the pre-processed RNA-Seq data. We first trained the GMM and KMeans models573

on the training set using various perplexity values for the tSNE algorithm. For example, a sample574

of results for GMM clustering on the training and validation set are shown in Fig 8, when using a575

perplexity of 40 for tSNE.576
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Figure 8: Sample of training results for GMM clustering after applying our autoencoder and tSNE
(perplexity=40) for dimensionality reduction. Results on the training set with four cluster labels
shown (top left) and true labels shown (top right). Results on the validation set after post-processing
shown on bottom right, alongside corresponding silhouette plot on bottom left. Clusters 0, 1 and 2
correspond to “control”, “CD no ulcer” and “CD deep ulcer” clusters respectively.

Fig 9 shows the effect of perplexity on classification and clustering performance as described above.577

The effect is markedly different to that of PCA (Fig 7) as the method of feature extraction for the578

autoencoder is much different to that of PCA. Here we chose a perplexity of 130 for deploying the579

model on the test set, as high validation scores are achieved.580
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Figure 9: Effect of tSNE perplexity value on clustering and classification performance of GMM, with
dimensionality reduced by our autoencoder and tSNE, in terms of accuracy, F1-score and average
silhouette score calculated on the validation set.

3.4 KMeans clustering581

Figure 10 shows a visualisation of the final results for KMeans clustering on the test set.582
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Figure 10: KMeans clustering model results after applying dimensionality reduction using autoen-
coder and tSNE (perplexity=90) (left) and PCA and tSNE (perplexity=160) (right). Deployed on
the test set with true labels shown (top third) and predicted labels shown (middle third). Silhouette
plots are shown for KMeans clusters after applying autoencoder-tSNE (left) and PCA-tSNE (right)
methods, with clusters 0, 1 and 2 corresponding to “control”, “CD no ulcer” and “CD deep ulcer”
respectively.
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Below are some additional results relating to the training process of KMeans clustering. These583

correspond to those of the GMM in Section 3.3.584

3.4.1 PCA-based dimensionality reduction585

Figure 11: Sample of training results for KMeans clustering after applying PCA and tSNE (perplex-
ity=190) for dimensionality reduction. Results on the training set with four cluster labels shown (top
left) and true labels shown (top right). Results on the validation set after post-processing shown on
bottom right, alongside corresponding silhouette plot on bottom left. Clusters 0, 1 and 2 correspond
to “control”, “CD no ulcer” and “CD deep ulcer” clusters respectively.
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Figure 12: Effect of tSNE perplexity value on clustering and classification performance of KMeans,
with dimensionality reduced by PCA and tSNE, in terms of accuracy, F1-score and average silhouette
score calculated on the validation set.

3.4.2 Autoencoder-based dimensionality reduction586

Figure 13: Sample of training results for KMeans clustering after applying our autoencoder and tSNE
(perplexity=40) for dimensionality reduction. Results on the training set with four cluster labels
shown (top left) and true labels shown (top right). Results on the validation set after post-processing
shown on bottom right, alongside corresponding silhouette plot on bottom left. Clusters 0, 1 and 2
correspond to “control”, “CD no ulcer” and “CD deep ulcer” clusters respectively.
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Figure 14: Effect of tSNE perplexity value on clustering and classification performance of KMeans,
with dimensionality reduced by our autoencoder and tSNE, in terms of accuracy, F1-score and average
silhouette score calculated on the validation set.

3.5 Evaluation and comparison of KMeans and GMM587

The final clustering and classification evaluation results are shown in Table 2. Despite the popularity588

of KMeans for RNA-Seq analysis in the literature, GMMs are demonstrably a much better method in589

the given context, achieving higher scores across the board for classification after post-processing, in590

the binary and multi-class settings. For example, accuracies and F1-scores are consistently above 90%591

in GMMs for binary classification but remain in the 80s with KMeans. The underlying distributions592

of the RNA-Seq data are Gaussian due to normalisation, making GMMs highly suitable. Because593

GMMs allow the covariance to be tuned, the mixture components become much better fitted to the594

data than the clusters in KMeans, which assumes spherical distributions. GMMs provides density595

estimation, which can be used to infer a more accurate phenotype in the post-processing step for596

classification. It also improves the visualisation of relationships between the expression profiles of597

different classes of patients. We can demonstrate the degree of association of each patient to each598

cluster, which in this case can indicate the severity of disease.599

In general, the average silhouette scores are lower when using GMMs in comparison to KMeans,600

meaning the clusters are not as well-separated. This suggests that there may be a trade-off between601

classification and clustering quality. In the silhouette plots of Figure 10 and Figure 2 (main document),602

there are more negative silhouette scores in the “CD no ulcer” cluster for GMMs, showing greater603

uncertainty in this cluster. However, the average silhouette scores do not reach above 0.8 using either604

method. Classification performance is arguably more important than clustering quality in this context,605

since the phenotype classes are expected to be highly overlapping. When coupled with explainability606

techniques such as SHAP, an accurate classifier can lead to the identification of important risk genes607

and gene modules. In contrast to the current state-of-the-art, this process results in a verifiable and608

interpretable visual model, making it more applicable in clinical settings.609

3.6 Evaluation and comparison of dimensionality reduction methods610
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Table 2: Clustering and classification evaluation results for final GMM and KMeans models, using
autoencoder and PCA dimensionality reduction methods. Results shown for binary classification
(controls and all CD patients) and multi-class classification (control, CD no ulcer and CD deep ulcer).

Binary (control & CD) Multi-class (all labels)
Autoencoder PCA Autoencoder PCA

GMM Accuracy / % 94.9 92.3 71.8 64.1
F1-Score / % 96.7 94.9 71.5 62.6
Silh. score 0.382 0.410 0.320 0.317

KMeans Accuracy / % 84.6 82.1 64.1 59.0
F1-Score / % 89.3 88.1 61.9 58.3
Silh. score 0.556 0.409 0.469 0.334

We can see that using the autoencoder results in better performance overall compared to PCA when611

using GMMs. This is true for both binary and multi-class classification. For example, the accuracy and612

F1-score are 2.6% and 1.8% higher respectively when using the autoencoder for binary classification.613

For multi-class classification the difference is even larger at ∼8%. The clustering quality is more614

similar, with a negligible difference in silhouette scores in the multi-class setting and PCA achieving615

a higher average silhouette score by 0.028 in the binary setting.616

When applying the KMeans algorithm, the autoencoder still leads to a better performance than PCA,617

although the differences are slightly less pronounced than with the GMMs. For example, the accuracy618

and F1-scores are 5.1% and 3.6% higher respectively for multi-class classification. When using619

KMeans, the clusters are not as well-fitted to the data due to the assumption of spherical distributions620

and lack of density estimation. This means the post-processing applied for classification is not621

as effective and performance is worse in comparison to the GMMs, regardless of dimensionality622

reduction technique.623

PCA is a linear dimensionality reduction method that has been widely applied in RNA-Seq analysis624

[45]–[48]. However, it has been demonstrated that PCA can fail to detect important biological625

information, and has limitations when analysing small datasets or when effect size is small [46].626

In complex contexts involving disease subtypes, autoencoders may be more suitable, due to their627

abilities in reducing noise and capturing linear and non-linear relationships. In future work, more628

advanced architectures can be explored, such as convolutional or variational autoencoders.629

Regardless of dimensionality reduction method, the clusters overlap a lot by nature, as we are630

analysing subtypes of the same disease. This leads to similar performance in terms of clustering quality631

between methods. The GMM silhouette plots are nearly identical between PCA and autoencoder in632

Figure 2 (main document), but the autoencoder leads to slightly more negative scores in the “CD no633

ulcer” cluster and PCA leads to more negative scores in the “CD deep ulcer” cluster. In Figure 10634

(KMeans), the cluster sizes are slightly different and PCA leads to a few more negative values in the635

“CD no ulcer” cluster. These slight differences are likely artefacts of the different methods of feature636

extraction employed by PCA and the autoencoder.637

Overall, optimal performance is achieved by the GMM clustering model using the autoencoder and638

tSNE for dimensionality reduction. Coupled with SHAP for explainability, we can draw important639

insights about risk genes and gene modules which can be applied in clinical contexts.640

3.7 Cluster explainability using kernelSHAP with feature dependence641

3.7.1 Force plots642

SHAP force plots show how features contributed to the model prediction for a given data instance.643

We show force plots for the “control” class and “CD deep ulcer” class for Patient 260, in Figures 15644

and 16 respectively. The emboldened number shows the predicted probability of the patient being645

assigned to the given class. Genes in pink make a positive contribution towards this probability, and646

genes in blue a negative contribution.647
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When compared to the plots with feature independence (Fig 18 and 19) the contributions across the648

genes are slightly more equal in Figures 15 and 16. This may be because gene correlations are taken649

into account, so contributions are more evenly spread across correlated sets.650

Figure 15: Force plot of Patient 260 for “control” class - dependent features.

Figure 16: Force plot of Patient 260 for “CD deep ulcer” class - dependent features.

3.7.2 Beeswarm plot651

Figure 17 shows the beeswarm plot for CD deep ulcer with feature dependence included, which can652

be compared with the corresponding plot with feature independence in Figure 22. This shows the top653

20 genes in terms of their influence on the “CD deep ulcer” class and the distributions of their impact654

on predictions. Each dot represents the SHAP value of that gene for a given patient, corresponding to655

the “CD deep ulcer” class. The colours also show how the expression value affects the impact on656

model predictions. The feature values are mixed fairly well across the distributions, likely due to657

the variants of each gene, which can encompass both causative and protective effects. Similarly to658

the summary plot, many established IBD genes are shown, such as NOD2, MEP1B, IRGM, JAK2,659

PTPN2, FOLH1 and the IL10s [92]–[98].660

The genes IL10, IL10RA and IL10RB included in this plot are also known to be major risk factors.661

Interleukin-10 (IL-10) is an anti-inflammatory cytokine heavily involved in maintaining haemostasis662

in the intestinal tract. It does this by preventing pro-inflammatory cytokines like tumour necrosis663

factor (TNF) and IL-12 from being released. The IL-10 receptor contains α and β subunits. IL-10RB664

codes for the β subunits which are compatible with many different cytokines. When IL10 binds with665

IL10R, it activates Janus Kinase 1 (JAK1), Tyrosine kinase 2 (TYK2) and/or Signal Transducer and666

Activator of Transcription 3 (STAT3) signalling to prevent inflammation. Therefore, disruption of667

these genes often leads to the inflammatory symptoms of IBD [98]. When incorporating feature668

dependence, we demonstrably obtain more genes that affect the downstream processes involved in669

inflammation. This suggests that by taking gene correlations and dependencies into account, we can670

reach further to the root causes of the condition, leading to more effective therapeutic targets.671
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Figure 17: Beeswarm plot for “CD deep ulcer”, showing how expression value affects the impact of a
gene on predictions for this class (feature dependence included). Genes are ranked by importance.
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3.8 Cluster explainability using original kernelSHAP672

The following are results obtained when applying the original kernelSHAP algorithm to our GMM673

classifier. Features are assumed to act independently.674

Figure 18: Force plot of Patient 260 for “control” class - independent features.

Figure 19: Force plot of Patient 260 for “CD deep ulcer” class - independent features.

Figure 20: Waterfall plot of Patient 260 for “CD deep ulcer” class - independent features.
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Figure 21: Summary plot showing top 20 genes in terms of their average impact on class predictions
across all patients - independent features. Genes ranked by importance.
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Figure 22: Beeswarm plot for “CD deep ulcer”, showing how expression value affects the impact of a
gene on predictions for this class (features independent). Genes are ranked by importance.

3.9 Identification and characterisation of potential gene modules675

The following are additional results obtained during the process of identifying and characterising676

potential gene modules. We include detailed results of Gene Ontology enrichment analysis.677
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Figure 23: Results of WECR clustering [23], to identify “CD deep ulcer” gene modules, using various
numbers of clusters k. Colour depth signifies extent of association.
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Figure 24: Results of WECR clustering [23], to identify “CD no ulcer” gene modules, using various
numbers of clusters k. Colour depth signifies extent of association.
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Figure 25: Plots for “CD deep ulcer” modules, to show how clustering evaluation metrics vary with
the number of clusters k. Metrics: Bayesian Information Criterion (BIC), Davies-Bouldin (DB)
Index, Silhouette Score (SIL) and Calinski-Harabasz (CH) Index.

Figure 26: Plots for “CD no ulcer” modules, to show how clustering evaluation metrics vary with the
number of clusters k. Metrics: Bayesian Information Criterion (BIC), Davies-Bouldin (DB) Index,
Silhouette Score (SIL) and Calinski-Harabasz (CH) Index.
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Figure 27: Final gene modules identified in association with CD symptoms without deep ulcer,
alongside relative contributions determined using SHAP values.

3.9.1 Gene Ontology enrichment analysis678

Similarly to the 117-gene module analysed in the main document, GO analysis of the 63-gene module679

produced similar results, shown in Figure 28 and Table 6, with the most enriched processes relating680

to signalling pathways involved in the immune response to pathogens. However, here we also see681

the detection of slightly different molecules such as bacterial lipopeptides and signalling pathways682

involving TLR6 (Toll-like receptor 6) and TLR2 (Toll-like receptor 2). These can recognise a wide683

variety of pathogen-associated molecular patterns (PAMPs) such as lipoproteins and peptidoglycans684

[99], which extends recognition to Gram-positive bacteria. We also see processes relating to em-685

bryonic digestive tract development, extra-cellular matrix disassembly and tumour necrosis factor686

production, most of which are well-established in IBD [100], [101]. This suggests that the smaller687

module represents the additional and extended routes to disease symptoms.688

The results for the 45-gene module are shown in Table 7 and Figure 29. We obtain similar results,689

such as neutrophil aggregation, with additional processes like autocrine signalling, immune response690

to fungus and use of the fc-gamma receptor signalling pathway. This suggests that the associations of691

“CD no ulcer” are more wide-ranging than “CD deep ulcer”; for example, fc-gamma receptors can692

recognise many different types of immunoglobulins [102].693

37



Figure 28: Gene Ontology enrichment analysis [6], [7], [103]: most enriched biological processes
associated with 63-gene module identified for CD with deep ulcer. Full details given in Table 6.
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Figure 29: Gene Ontology enrichment analysis [6], [7], [103]: most enriched biological processes
associated with 45-gene module identified in this work for CD without deep ulcer. Full details given
in Table 7.

Table 3: CD deep ulcer gene module memberships, corresponding to Figure 5 (main document).

Module A Module B Module C Module D
117 genes 63 genes 10 genes 31 genes

IRGM CXCL3 TYK2 C9orf71
MIF S100A12 LCN2 MEP1B

TIMM50 FAM92A3 CYP3A4 C6
WNT8A IL10RB APOB HMGCS2
GCM2 LSM5 KIAA1683 SHBG

LOC283299 LAMC3 LOC100288778 G3BP2
C7orf57 GRAMD1A GUSBP11 CYP4F11

CEACAM7 HLA_B TLR1 FOXD1
LOC339166 IL8 ICAM5 AGXT2

REG1P RNF24 LTA PNLIPRP2
LOC286114 FXYD5 APOA1

LOC100505851 TNFAIP2 GSTA1
PPP1R17 MMP7 TAS2R5

NCRUPAR FAM127B PTPN21
PGC FCN3 CUBN

table continues
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continue table
Module A Module B Module C Module D

SELE STAT3 TCF7L2
CRP DUOX2 G6PC

PROK2 MUC5B DHDH
FPR1 TNNT2 CDHR1

LOC147646 FCGR3B ATG16L1
HCAR3 JAK2 SLC5A12
NAT8 PTPN2 SLC34A3
FPR2 FCGR1B NAT8B

CXCL9 KCNJ15 GSTA5
TREM1 FCGR3A SLC10A2

CLEC5A LRRK2 SLC28A1
BPIFB1 TNFAIP3 APOA4
FRMD1 SERPINA9 FABP6
OTOP2 CXCL5 SLC13A1
SUSD2 TCN1 GSTA2
OSM HCAR2 SFRP5

IL10RA ZNF365
LCT DACT3

FOLH1B CXCR1
NOD2 TNFAIP6

FCGR1A ALDH1A2
FCRL3 HLA_DRB5
EFNB1 FOLH1

HSD11B1 S100A8
APOC3 TLR2
CSF3 TLR6

XPNPEP2 SAA2
CHI3L1 GLT1D1
CXCR2 WLS
REG1A FCRL4
IL1RN SLC11A1

LOC392364 MMP1
IL10 PTPN22

CXCL6 MMP3
FCN1 FCGR1C

LYPD1 FLJ35424
SLC6A4 SRRD
C16orf78 LRAT
RGS13 SHISA2

C19orf59 SLC23A3
LEPREL1 HLA_DRB1
PCDHB3 CXCL11

CPO TNF
TCF4 FADS6
PUM2 AQP9

SLC28A2 ACYP2
SLC22A4 FAM151A
FDCSP FGF11
CHST4
LATS2

DUOXA2
HSPA7

LOC100506115
FHIT

table continues
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continue table
Module A Module B Module C Module D

CYP3A7
EGFL6
MGAM

SLC22A5
CLVS1
OR2M3

LYPLAL1
IL1B

CRIP1
IL12B
MUC2
TTTY5
CLDN8

SLC6A14
AADAC
STAT1

SLC5A4
C5orf17
MUC1

TM4SF19
SAA1

GUCA2B
LOC100132831

SRSF4
FANCF
ITIH3

CNTFR
IL23R

MS4A10
NINJ2

MMP10
CLEC4D
SLC5A11

OTOP3
CYP4F2

TLR4
FMO1
CNR1

ABCC2
CD300E
S100A9
TM4SF4
UGT1A6
KLHL4
GPR89B
TPMT
SOAT2
DLG5
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Table 4: CD no ulcer gene module memberships, corresponding to Figure 27.

Module A Module B Module C Module D
19 genes 91 genes 66 genes 45 genes

TNNT2 LOC286114 IL10RB FPR1
CHST4 C7orf57 C6 CEACAM7
IL23R WNT8A FAM127B OSM
RGS13 LSM5 LOC100132831 CLEC4D
NAT8B BPIFB1 TCF7L2 NOD2
DACT3 LOC147646 FANCF FCGR3A
CXCL6 IL10 CRIP1 NINJ2
AGXT2 TM4SF19 LOC283299 PGC
APOC3 IRGM FABP6 TCN1

SLC5A12 C16orf78 ZNF365 CXCL9
TLR4 NCRUPAR FLJ35424 MMP10

SLC22A4 CLEC5A SLC22A5 GRAMD1A
LCT C5orf17 SERPINA9 LRRK2

ABCC2 LOC100505851 GSTA1 FCGR1B
LTA OR2M3 SLC13A1 LOC100506115

TLR1 SLC11A1 FCRL4 S100A9
HLA_DRB1 LEPREL1 HMGCS2 PROK2
FAM151A CRP MS4A10 SLC6A14
ATG16L1 LAMC3 GUCA2B HLA_DRB5

CHI3L1 SLC10A2 HCAR2
LOC339166 TYK2 IL1RN

PTPN2 ACYP2 IL10RA
DUOX2 CNR1 MMP3
HSPA7 TCF4 SAA2
CXCR2 CNTFR LCN2

PPP1R17 MGAM ICAM5
REG1P LYPLAL1 C19orf59
MMP1 CYP4F11 FCGR1A
PUM2 SHBG CSF3
FCRL3 TLR6 FOLH1B
CLDN8 TAS2R5 MUC5B
HCAR3 PTPN21 EGFL6
CYP3A7 LRAT CXCL5
MUC2 UGT1A6 ALDH1A2

AADAC GSTA2 FCGR3B
FHIT SLC6A4 JAK2

SHISA2 SRSF4 STAT1
SELE WLS LATS2

EFNB1 FRMD1 TNFAIP2
RNF24 C9orf71 MMP7

PCDHB3 FPR2 TREM1
FAM92A3 OTOP3 CD300E

CXCR1 G3BP2 S100A8
FCN1 FMO1 FCN3

CLVS1 CXCL3 AQP9
TIMM50 APOA1

G6PC ITIH3
FXYD5 KLHL4
DHDH HLA_B

FCGR1C IL8
STAT3 FADS6

table continues
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continue table
Module A Module B Module C Module D

SLC34A3 MEP1B
APOB APOA4

TNFAIP3 CUBN
TPMT CXCL11

LOC100288778 KIAA1683
CYP3A4 DLG5
TTTY5 SFRP5

SLC5A4 REG1A
FDCSP NAT8
GSTA5 SLC28A1

S100A12 CYP4F2
LOC392364 SLC23A3

SRRD SOAT2
KCNJ15 FGF11

DUOXA2 GUSBP11
TNFAIP6
LYPD1

TNF
PTPN22

TLR2
SLC28A2
TM4SF4
OTOP2
SUSD2

GLT1D1
IL12B

CDHR1
MIF

MUC1
GCM2

SLC5A11
IL1B

FOXD1
FOLH1

HSD11B1
XPNPEP2

CPO
PNLIPRP2

SAA1
GPR89B

694
Table 5: GO enrichment analysis results for CD deep ulcer module A (117-gene module).

GO biological process Homo
sapiens
(REF)

Gene
module

Fold
Enrich.

Raw P
value

FDR

(R)-carnitine transmembrane
transport

3 2 >100 2.67E-04 3.02E-02

Negative regulation of
interleukin-18 production

4 2 95.32 3.99E-04 3.99E-02

Positive regulation of T-helper
17 cell lineage commitment

4 2 95.32 3.99E-04 3.97E-02

Continued on next page695
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Table 5: GO enrichment analysis results for CD deep ulcer module A (117-gene module). (Continued)

Disaccharide catabolic process 4 2 95.32 3.99E-04 3.94E-02

Regulation of myeloid
dendritic cell activation

5 2 76.26 5.57E-04 4.91E-02

Positive regulation of
antibacterial peptide
production

5 2 76.26 5.57E-04 4.88E-02

Nucleotide-binding
oligomerization domain
containing 2 signalling
pathway

9 3 63.55 2.94E-05 5.39E-03

Negative regulation of myeloid
cell apoptotic process

18 4 42.36 4.77E-06 1.31E-03

Positive regulation of
granulocyte macrophage
colony-stimulating factor
production

15 3 38.13 1.06E-04 1.50E-02

Maintenance of
gastrointestinal epithelium

22 4 34.66 9.59E-06 2.17E-03

Positive regulation of
nitric-oxide synthase
biosynthetic process

18 3 31.77 1.72E-04 2.16E-02

Positive regulation of T-helper
1 type immune response

18 3 31.77 1.72E-04 2.14E-02

Positive regulation of acute
inflammatory response

27 4 28.24 1.98E-05 3.96E-03

Positive regulation of
icosanoid secretion

21 3 27.23 2.58E-04 2.99E-02

Positive regulation of
interleukin-17 production

28 4 27.23 2.25E-05 4.39E-03

Regulation of heterotypic
cell-cell adhesion

24 3 23.83 3.69E-04 3.79E-02

Negative regulation of lipid
catabolic process

26 3 22 4.57E-04 4.38E-02

Positive regulation of
macrophage activation

28 3 20.43 5.58E-04 4.87E-02

Negative regulation of
inflammatory response to
antigenic stimulus

28 3 20.43 5.58E-04 4.84E-02

Inflammatory response to
antigenic stimulus

40 4 19.06 8.10E-05 1.23E-02

Acute-phase response 42 4 18.16 9.66E-05 1.42E-02

Negative regulation of fatty
acid metabolic process

42 4 18.16 9.66E-05 1.41E-02

Negative regulation of type II
interferon production

43 4 17.73 1.05E-04 1.51E-02

Xenobiotic transport 43 4 17.73 1.05E-04 1.49E-02

Continued on next page696
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Table 5: GO enrichment analysis results for CD deep ulcer module A (117-gene module). (Continued)

Positive regulation of
interleukin-12 production

44 4 17.33 1.14E-04 1.55E-02

Neutrophil chemotaxis 81 7 16.47 3.88E-07 2.16E-04

Regulation of defence
response to virus by host

47 4 16.22 1.45E-04 1.95E-02

Positive regulation of receptor
signalling pathway via
JAK-STAT

47 4 16.22 1.45E-04 1.94E-02

Positive regulation of
interleukin-8 production

65 5 14.66 3.26E-05 5.84E-03

Regulation of viral-induced
cytoplasmic pattern
recognition receptor signalling
pathway

57 4 13.38 2.91E-04 3.15E-02

Positive regulation of
phagocytosis

75 5 12.71 6.21E-05 9.79E-03

Regulation of interleukin-10
production

61 4 12.5 3.72E-04 3.77E-02

Xenobiotic metabolic process 125 8 12.2 4.83E-07 2.51E-04

Regulation of chemokine
production

95 6 12.04 1.49E-05 3.23E-03

Regulation of B cell
proliferation

66 4 11.55 4.93E-04 4.64E-02

Positive regulation of B cell
activation

85 5 11.21 1.09E-04 1.50E-02

Positive regulation of reactive
oxygen species metabolic
process

69 4 11.05 5.79E-04 4.96E-02

Positive regulation of
NIK/NF-κB signalling

69 4 11.05 5.79E-04 4.93E-02

Defence response to
Gram-negative bacterium

94 5 10.14 1.71E-04 2.18E-02

Antimicrobial humoral
immune response mediated by
antimicrobial peptide

104 5 9.17 2.68E-04 2.98E-02

Positive regulation of
lymphocyte proliferation

146 7 9.14 1.57E-05 3.31E-03

Cellular response to
lipopolysaccharide

199 9 8.62 1.46E-06 5.41E-04

Regulation of cytokine
production involved in
immune response

121 5 7.88 5.22E-04 4.73E-02

Positive regulation of
peptidyl-tyrosine
phosphorylation

181 7 7.37 5.87E-05 9.55E-03

Sodium ion transport 183 6 6.25 4.74E-04 4.48E-02

Continued on next page697
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Table 5: GO enrichment analysis results for CD deep ulcer module A (117-gene module). (Continued)

Regulation of lymphocyte
mediated immunity

185 6 6.18 5.01E-04 4.65E-02

Regulation of T cell
proliferation

186 6 6.15 5.15E-04 4.70E-02

Cytokine-mediated signalling
pathway

372 11 5.64 5.23E-06 1.38E-03

Positive regulation of protein
kinase activity

365 9 4.7 1.51E-04 1.99E-02

Innate immune response 752 16 4.06 2.33E-06 7.57E-04

Negative regulation of cell
communication

1360 18 2.52 2.66E-04 3.05E-02

Negative regulation of
signalling

1361 18 2.52 2.68E-04 2.97E-02

698
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Table 6: GO enrichment analysis results for CD deep ulcer module B (63-gene module).

GO biological process Homo
sapiens
(REF)

Gene
module

Fold
Enrich.

Raw P
value

FDR

Toll-like receptor TLR6:TLR2
signalling pathway

2 2 >100 4.32E-05 7.17E-03

Detection of diacyl bacterial
lipopeptide

2 2 >100 4.32E-05 7.10E-03

Cellular response to diacyl
bacterial lipopeptide

4 2 >100 1.08E-04 1.45E-02

Negative regulation of
nucleotide-binding
oligomerization domain
containing 2 signalling
pathway

4 2 >100 1.08E-04 1.42E-02

Regulation of cellular response
to macrophage
colony-stimulating factor
stimulus

6 2 >100 2.00E-04 2.28E-02

Regulation of response to
macrophage
colony-stimulating factor

6 2 >100 2.00E-04 2.26E-02

Negative regulation of toll-like
receptor 2 signalling pathway

7 2 >100 2.57E-04 2.71E-02

Growth hormone receptor
signalling pathway via
JAK-STAT

8 2 91.92 3.21E-04 3.11E-02

Positive regulation of oxidative
stress-induced neuron death

9 2 81.7 3.91E-04 3.53E-02

Vitamin A metabolic process 9 2 81.7 3.91E-04 3.51E-02

Regulation of chronic
inflammatory response

10 2 73.53 4.69E-04 4.06E-02

Continued on next page700
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Table 6: GO enrichment analysis results for CD deep ulcer module B (63-gene module). (Continued)

Regulation of toll-like receptor
3 signalling pathway

10 2 73.53 4.69E-04 4.04E-02

Regulation of natural killer
cell proliferation

15 3 73.53 1.50E-05 2.92E-03

Positive regulation of
interleukin-18 production

10 2 73.53 4.69E-04 4.02E-02

Cellular response to UV-A 11 2 66.85 5.53E-04 4.40E-02

Positive regulation of
hepatocyte proliferation

11 2 66.85 5.53E-04 4.38E-02

Regulation of vascular wound
healing

11 2 66.85 5.53E-04 4.34E-02

Positive regulation of
nitric-oxide synthase
biosynthetic process

18 3 61.28 2.43E-05 4.46E-03

Microglial cell activation 31 4 47.44 2.39E-06 7.60E-04

Positive regulation of cytokine
production involved in
inflammatory response

25 3 44.12 5.90E-05 8.94E-03

Embryonic digestive tract
development

33 3 33.42 1.27E-04 1.62E-02

Neutrophil chemotaxis 81 7 31.77 3.93E-09 4.09E-06

Regulation of
neuroinflammatory response

35 3 31.51 1.49E-04 1.82E-02

Astrocyte development 37 3 29.81 1.74E-04 2.04E-02

Collagen catabolic process 41 3 26.9 2.31E-04 2.53E-02

Lipopolysaccharide-mediated
signalling pathway

42 3 26.26 2.47E-04 2.63E-02

Positive regulation of nitric
oxide biosynthetic process

43 3 25.65 2.64E-04 2.71E-02

Positive regulation of
interleukin-1 beta production

61 4 24.11 2.91E-05 5.21E-03

Extracellular matrix
disassembly

47 3 23.47 3.38E-04 3.18E-02

Positive regulation of receptor
signalling pathway via
JAK-STAT

47 3 23.47 3.38E-04 3.16E-02

Response to amyloid-beta 48 3 22.98 3.59E-04 3.28E-02

Chemokine-mediated
signalling pathway

83 5 22.15 4.04E-06 1.11E-03

Negative regulation of
interleukin-6 production

50 3 22.06 4.02E-04 3.57E-02

Regulation of interleukin-8
production

86 5 21.38 4.76E-06 1.24E-03

Positive regulation of type II
interferon production

78 4 18.85 7.26E-05 1.04E-02

Continued on next page701
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Table 6: GO enrichment analysis results for CD deep ulcer module B (63-gene module). (Continued)

Regulation of JUN kinase
activity

60 3 18.38 6.69E-04 5.00E-02

Positive regulation of tumour
necrosis factor production

101 5 18.2 1.01E-05 2.15E-03

Antimicrobial humoral
immune response mediated by
antimicrobial peptide

104 5 17.68 1.15E-05 2.37E-03

Acute inflammatory response 84 4 17.51 9.56E-05 1.32E-02

Killing of cells of another
organism

94 4 15.65 1.45E-04 1.78E-02

Positive regulation of
inflammatory response

145 6 15.21 3.33E-06 1.02E-03

Positive regulation of
interleukin-6 production

99 4 14.85 1.76E-04 2.05E-02

Regulation of phagocytosis 103 4 14.28 2.04E-04 2.27E-02

Positive regulation of
NF-kappaB transcription
factor activity

160 6 13.79 5.75E-06 1.40E-03

Positive regulation of MAP
kinase activity

117 4 12.57 3.26E-04 3.10E-02

Response to type II interferon 131 4 11.23 4.94E-04 4.12E-02

Intracellular receptor
signalling pathway

166 5 11.07 9.98E-05 1.35E-02

Positive regulation of
apoptotic signalling pathway

135 4 10.89 5.51E-04 4.41E-02

Calcium-mediated signalling 137 4 10.73 5.81E-04 4.49E-02

Positive regulation of
protein-containing complex
assembly

201 5 9.15 2.38E-04 2.54E-02

Defence response to bacterium 294 6 7.5 1.58E-04 1.91E-02

Positive regulation of protein
transport

316 6 6.98 2.32E-04 2.51E-02

Regulation of Wnt signalling
pathway

334 6 6.6 3.10E-04 3.06E-02

Negative regulation of
catabolic process

341 6 6.47 3.45E-04 3.21E-02

Response to virus 367 6 6.01 5.06E-04 4.20E-02

Positive regulation of
leukocyte activation

379 6 5.82 5.98E-04 4.60E-02

Negative regulation of cell
population proliferation

708 8 4.15 6.56E-04 4.92E-02

Response to organic cyclic
compound

871 9 3.8 5.57E-04 4.35E-02

Regulation of locomotion 1034 10 3.56 4.46E-04 3.91E-02
702

703
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Table 7: GO enrichment analysis results for CD no ulcer module D (45-gene module).

GO biological process Homo
sapiens
(REF)

Gene
module

Fold
Enrich.

Raw P
value

FDR

Neutrophil aggregation 2 2 >100 2.54E-05 8.09E-03

Antibody-dependent cellular
cytotoxicity

4 2 >100 6.33E-05 1.57E-02

Sequestering of zinc ion 4 2 >100 6.33E-05 1.54E-02

Positive regulation of
antibacterial peptide
production

5 2 >100 8.85E-05 1.95E-02

Peptidyl-cysteine
S-nitrosylation

6 2 >100 1.18E-04 2.27E-02

Autocrine signalling 7 2 >100 1.51E-04 2.75E-02

Positive regulation of
nitric-oxide synthase
biosynthetic process

18 4 >100 1.16E-07 1.14E-04

Positive regulation of
interleukin-17 production

28 3 51.3 3.64E-05 1.03E-02

Fc-gamma receptor signalling
pathway

29 3 49.53 4.01E-05 1.12E-02

Collagen catabolic process 41 3 35.04 1.05E-04 2.16E-02

Extracellular matrix
disassembly

47 3 30.56 1.54E-04 2.74E-02

Neutrophil chemotaxis 81 5 29.56 9.51E-07 6.45E-04

Defence response to fungus 58 3 24.77 2.79E-04 4.49E-02

Positive regulation of
inflammatory response

145 6 19.81 6.78E-07 4.81E-04

Positive regulation of tumour
necrosis factor production

101 4 18.96 6.71E-05 1.56E-02

Antimicrobial humoral
immune response mediated by
antimicrobial peptide

104 4 18.42 7.49E-05 1.72E-02

Positive regulation of
peptidyl-tyrosine
phosphorylation

181 5 13.23 4.11E-05 1.13E-02

Cellular response to
lipopolysaccharide

199 5 12.03 6.38E-05 1.53E-02

Defence response to bacterium 294 7 11.4 2.70E-06 1.31E-03

Cytokine-mediated signalling
pathway

372 7 9.01 1.22E-05 4.22E-03

Positive regulation of
DNA-binding transcription
factor activity

272 5 8.8 2.67E-04 4.34E-02

Innate immune response 752 12 7.64 3.25E-08 4.23E-05

Positive regulation of
programmed cell death

527 7 6.36 1.07E-04 2.15E-02
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