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Supplementary Text

Imaging data types and processing.

Overall, we used 101 regional brain volumes and 63 cortical thickness measures from T1-
weighted structural MRI¥3, 110 DTI parameters from diffusion MRI* 90 parcellation-based
network-level traits in resting and task fMRI®, respectively, 46 derived OCT measures®, 41
abdominal imaging traits, as well as 82 cardiac MR traits from the short-axis, long-axis, and aortic
cine images3. These traits captured the structural and functional characteristics of the human
brain, abdomen, eye, heart, and aorta.

Briefly, the advanced normalization tools’ (ANTs) was used to generate regional brain volumes
for 98 cortical and subcortical areas, as well as 3 global brain volume measures, including the
total gray matter volume, total white matter volume, and total brain volume. Similarly, 63 global
and regional cortical thickness measures were also generated by ANTs. In addition, we applied
the ENIGMA-DTI pipeline®® to diffusion MRI and generated 110 tract-averaged parameters,
including the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial
diffusivity (RD), and mode of anisotropy (MO) for 21 predefined major white matter tracts, as
well as across the whole brain (5 x 22). For resting and task fMRI, we used a parcellation-based
approach with the Glasser360 atlas'® and partitioned the cerebral cortex into 360 regions in 12
functional networks!?!, including the primary visual, secondary visual, auditory, somatomotor,
cingulo-opercular, default mode, dorsal attention, frontoparietal, language, posterior
multimodal, ventral multimodal, and orbito-affective networks. We calculated the mean
functional connectivity for each pair of networks (including within the same network) and mean
functional connectivity of the whole cortex. Derived OCT measures contain measurements for
thickness of different retinal layers and their subfields, as well as the vertical cup-to-disc ratio
and disc diameter, which were derived from Category 100079 in the UK Biobank. Quality control
was done as the suggestions outlined in Data-Fields 28552 and 2855343, retaining images with
an image quality score > 45. Subsequently, only OCT measures with sample size greater than
30,000 were retained, resulting in 46 measures with an average sample size of 62,425.

Abdominal imaging traits were derived from Category 158213, Category 126*1°, Category 149%
20 and Category 1592! within the UK Biobank, encompass various measurements related to body
fat/muscle composition, as well as characteristics of the liver, lung, kidney, pancreas, and spleen.
To ensure data quality, images of low quality were removed, and identified through error
indicators specified in Data-Fields 23363, 23358, 23359, 23361, 23364, 23360, 23362, and 23357.
Outliers deviating more than +5 median absolute deviations from the median were removed.
Then, a rank-based inverse normal transformation was applied to achieve normality. These
processes yielded 41 abdominal measures with an average sample size of 43,516. The 82 cardiac
MRI traits were from 6 categories, including 64 traits of left ventricle, 4 of left atrium, 4 of right
ventricle, 4 of right atrium, 3 of ascending aorta, and 3 of descending aorta. In total, there were
623 imaging traits across 8 imaging modalities (Table S1).

Sleep data in the phenotypic and genetic connection analyses.
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For phenotypic association analyses, we studied 7 self-reported sleep traits and 3 accelerometer-
derived sleep duration traits. The 7 self-reported sleep traits including sleep duration (“About
how many hours sleep do you get in every 24 hours? (please include naps)”, Data-Field 1160);
getting up in morning (“On an average day, how easy do you find getting up in the morning? 1)
not at all easy; 2) not very easy; 3) fairly easy; 4) very easy”, Data-Field 1170); morning/evening
person (chronotype, “Do you consider yourself to be 1) definitely a ‘morning’ person; 2) more a
‘morning’ person than an ‘evening’ person; 3) more an ‘evening’ person than a ‘morning’ person;
4) definitely an ‘evening’ person?”, Data-Field 1180); nap during day (“Do you have a nap during
the day? 1) never/rarely; 2) sometimes; 3) usually.”, Data-Field 1190); sleeplessness/insomnia
(“Do you have trouble falling asleep at night or do you wake up in the middle of the night? 1)
never/rarely; 2) sometimes; 3) usually.”, Data-Field 1200); snoring (“Does your partner or a close
relative or friend complain about your snoring?”, Data-Field 1210); and daytime dozing/sleeping
(narcolepsy, “How likely are you to doze off or fall asleep during the daytime when you don't
mean to? (e.g. when working, reading, or driving) 1) never/rarely; 2) sometimes; 3) often; 4) all
of the time.”, Data-Field 1220). We used the data coded by the UKB study and removed the
subjects with responses “do not know” or “prefer not to answer”. The 3 accelerometer-derived
sleep duration measurements were collected from Return 1942, Return 2242, and Data-Field
40046 across multiple studies???4. Subjects with inadequate wear time (Data-Field 90015), poor
calibration (Data-Field 90016), or missing calibration (Data-Field 90017) were removed.

For genetic correlation analyses, we used 34 publicly available sleep genome-wide association
studies (GWAS), covering 7 distinct sleep traits. These contained 5 GWAS on self-reported sleep
duration?2?’ (including 1 short sleep duration and 1 long sleep duration), 5 accelerometer-
derived sleep duration?%2829 (including 1 short sleep duration and 1 long sleep duration), 2 on
ease of getting up in the morning?>2%, 6 on chronotype®>-27:3%31 2 on daytime napping?®32, 5 on
insomnia?>263335 4 on narcolepsy?>2%3® (including 1 adjusted for BMI), and 5 on snoring?>26:37,38
(including 1 adjusted for BMI). All sleep GWAS were on human reference GRCh37 (hgl9). See
Table S3 for a full list of the sleep GWAS used.

Clinical outcomes collection and quality control.

To evaluate the genetic similarities between sleep and diseases associated with these organs, we
systematically collected 113 GWAS summary statistics of 50 diseases/traits spanning a wide
range of organs, covering 7 neurological/psychiatric disorders, 13 cardiovascular diseases/traits,
2 diabetes, 2 eye diseases, 10 kidney diseases/traits, 4 liver diseases/traits, and 12 lung
diseases/traits. We aimed to comprise a diverse set of diseases/traits and collected datasets that
had the largest sample sizes. These were obtained from various sources, including knowledge
portals like the Human Genetics Amplifier and GWAS Catalog®. Disease-specific consortia, such
as CKDGen?° for kidney-related traits, were also used. GWAS from the East Asian ancestry for
cross-population genetic correlation analyses were mainly collected from Sakaue et al*l.
Additionally, GWAS originally based on the human reference GRCh38 (hgl8) were liftover to
GRCh37 (hg19) to ensure alignment with other GWAS datasets for subsequent analyses. Please
refer to Table S7 for a comprehensive list of the 113 GWAS datasets of diseases/traits used in
our analyses.

(8]
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Fig. S1 Phenotypic associations between sleep and multi-organ imaging traits.

The -log10(P-value) and correlation coefficients between 10 sleep traits and multi-organ imaging
traits, including 101 regional brain volumes, 63 cortical thickness, 110 DTl parameters, 90 resting
fMRI traits, 90 task fMRI traits, 82 cardiac MRI traits, 46 derived OCT traits, and 41 abdominal
imaging traits. Associations survived the false discovery (FDR) rate of 5% (P < 1.60 x 1072) and
were validated in the two approaches were highlighted with colors. Each sleep trait is labeled
with a different color. A red dashed line represents the threshold from Bonferroni correction (P
< 8.03x107°), and a black dashed line represents threshold from FDR correction (P <
1.60x 1072). See Table S1 for more information of these imaging traits.
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Fig. S2 Phenotyp

We illustrate the correlation coefficients between sleep (y axis) and resting fMRI traits (x axis).

The color represents correlation estimates. The coefficients that pass the false discovery (FDR)
rate of 5% (P < 1.60 X 1072) were marked with asterisk. The coefficients pass the FDR multiple

testing but not validated in our approaches were marked with plus sign.
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Fig. S3 Phenotypic associations between sleep and task fMRI traits.

We illustrate the correlation coefficients between sleep (y axis) and task fMRI traits (x axis). The
color represents correlation estimates. The coefficients that pass the false discovery (FDR) rate
of 5% (P < 1.60 x 1072) were marked with asterisk. The coefficients pass the FDR multiple testing

but not validated in our approaches were marked with plus sign.
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Fig. S4 Phenotypic associations between sleep and cortical thickness.
We illustrate the correlation coefficients between sleep (y axis) and cortical thickness (x axis).
The color represents correlation estimates. The coefficients that pass the false discovery (FDR)
rate of 5% (P < 1.60 X 1072) were marked with asterisk. The coefficients pass the FDR multiple

testing but not validated in our approaches were marked with plus sign.
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Fig. S5 Phenotypic associations between sleep and regional brain volumes.

We illustrate the correlation coefficients between sleep (y axis) and regional brain volumes (x
axis). The color represents correlation estimates. The coefficients that pass the false discovery
(FDR) rate of 5% (P < 1.60 X 1072) were marked with asterisk. The coefficients pass the FDR
multiple testing but not validated in our approaches were marked with plus sign.
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Fig. S6 Phenotypic associations between sleep and DTI parameters.

We illustrate the correlation coefficients between sleep (y axis) and DTl parameters (x axis). The
color represents correlation estimates. The coefficients that pass the false discovery (FDR) rate
of 5% (P < 1.60 x 10~2) were marked with asterisk. The coefficients pass the FDR multiple testing
but not validated in our approaches were marked with plus sign. BCC FA, mean fractional
anisotropy (FA) of body of corpus callosum; GCC FA, mean FA of genu of corpus callosum; BCC
MD, mean diffusivity (MD) of body of corpus callosum; GCC RD, mean radial diffusivity (RD) of
genu of corpus callosum.
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Fig. S7 Phenotyp

We illustrate the correlation coefficients between sleep (y axis) and abdominal MRl traits (x axis).

The color represents correlation estimates. The coefficients that pass the false discovery (FDR)
rate of 5% (P < 1.60 X 1072) were marked with asterisk. The coefficients pass the FDR multiple

testing but not validated in our approaches were marked with plus sign.
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Fig. S8 Phenotyp

We illustrate the correlation coefficients between sleep (y axis) and eye imaging traits (x axis).

The color represents correlation estimates. The coefficients that pass the false discovery (FDR)
rate of 5% (P < 1.60 X 1072) were marked with asterisk. The coefficients pass the FDR multiple

testing but not validated in our approaches were marked with plus sign.
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Fig. S9 Phenotypic associations between sleep and cardiac MRI traits.

We illustrate the correlation coefficients between sleep (y axis) and cardiac MRI traits (x axis).
The color represents correlation estimates. The coefficients that pass the false discovery (FDR)
rate of 5% (P < 1.60 X 1072) were marked with asterisk. The coefficients pass the FDR multiple
testing but not validated in our approaches were marked with plus sign.
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Fig. S10 Genetic correlations between sleep and multi-organ imaging traits.

The -log10(P-value) and genetic correlation between GWAS of 34 sleep traits and multi-organ
imaging traits, including 101 regional brain volumes, 63 cortical thickness, 110 DTI parameters,
90 resting fMRI traits, 90 task fMRI traits, 82 cardiac MRI traits, 46 derived OCT traits, and 41
abdominal MRI traits. Each sleep trait is labeled with a different color. A red dashed line
represents the threshold from Bonferroni correction (P < 2.36x 107°), and a black dashed line
represents threshold from FDR correction (P < 5.08x 10~*). Associations survived the false
discovery (FDR) rate of 5% (P < 5.08x 10~*) were highlighted. See Table S1 and Table S3 for more
information on GWAS of imaging traits and sleep traits, respectively.
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101 regional brain volumes, 63 cortical thickness, 110 DTI

ing

traits (x axis), includ
parameters, 90 resting fMRI traits, 90 task fMRI traits, 82 cardiac MRl traits, 46 derived OCT traits,

We illustrate the genetic correlation between GWAS of 34 sleep traits (y axis) and 623 multi-
organ imaging

and 41 abdominal MRI traits. The color represents correlation estimates. The coefficients that

pass the false discovery (FDR) rate of 5% (P < 5.08 x 10~%) were marked with asterisk.

Fig. S11 Genetic correlations between sleep and mult
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Fig. S12 Selected genetic locus that was associated with both insomnia and DTI parameters.

In 99g22.31, we observed the shared association (LD 72 > 0.6) between insomnia (index variant
rs10761240) and BCC PC3 (index variant rs10117691). We also observed the shared association
with lung function, depression, and intelligence. BCC PC3, the third PC of FA in body of corpus
callosum in brain diffusion MRI. The posterior probability of Bayesian colocalization analysis for
the shared causal variant hypothesis (PPH4) is 85.4%.
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Fig. S13 Selected genetic locus that was associated with both chronotype and DTl parameters.

In 6p22.2, we observed the shared association (LD 2 > 0.6) between chronotype (index variant
rs766406) and RLIC MD (index variant rs9366651). We also observed the shared association with
asthma, lung cancer, age of smoking initiation, and educational attainment. RLIC MD, mean MD
of retrolenticular part of internal capsule in brain diffusion MRI.
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Fig. S14 Selected genetic locus that was associated with both insomnia and DTI parameters.

In 15026.1, we observed the shared association (LD 7% > 0.6) between insomnia (index variant
rs176647) and PLIC PC1 (index variant rs150302). We also observed the shared association with
smoking status. PLIC PC1, the first PC of FA in posterior limb of internal capsule in brain diffusion
MRI. The posterior probability of Bayesian colocalization analysis for the shared causal variant
hypothesis (PPH4) is 87.1%.
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Fig. S15 Selected genetic loci that were associated with both ease of getting up in the morning
and regional brain volumes.

In 2p11.2, we observed the shared association (LD 2 > 0.6) between ease of getting up in the
morning (index variant rs1606803) and volume of brain stem (index variant rs62157778). The
posterior probability of Bayesian colocalization analysis for the shared causal variant hypothesis
(PPH4) is 0.983.
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Fig. S16 Selected genetic loci that were associated with both chronotype and regional brain
volumes.

In 2p11.2, we observed the shared association (LD 2 > 0.6) between chronotype (index variant
rs11681299) and volume of brain stem (index variant rs62157778).
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Fig. S17 Selected genetic loci that were associated with both chronotype and regional brain
volumes.

In 11q14.1, we observed the shared association (LD 72 > 0.6) between insomnia (index variant
rs667730) and volume of the left putamen (index variant rs746502769). The posterior probability
of Bayesian colocalization analysis for the shared causal variant hypothesis (PPH4) is 0.9061. We
also observed the shared associations with neuroticism, depressive symptoms, insomnia, and
ease of getting up in the morning.
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Fig. S18 Selected genetic loci that were associated with both insomnia and regional brain
volumes.

In 18921.2, we observed the shared association (LD 7% > 0.6) between insomnia (index variant
rs10502966) and volume of the left putamen (index variant rs375051009). We also observed the
shared associations with educational attainment, intelligence, depression, cognitive ability,
smoking initiation, and gastroesophageal reflux disease.
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Fig. S19 Selected genetic loci that were associated with both insomnia and resting fMRI traits.

In 19q13.32, we observed the shared association (LD 72 > 0.6) between insomnia (index variant
rs429358) and resting functional connectivity in the frontoparietal network (index variant
rs429358). The posterior probability of Bayesian colocalization analysis for the shared causal
variant hypothesis (PPH4) is 0.980. We also observed the shared associations with type 2 diabetes,
LDL cholesterol, cognitive decline, age-related macular-degeneration, and Alzheimer’s disease.
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Fig. S20 Selected genetic loci that were associated with both insomnia and abdominal MRI
traits.

In 19q13.32, we observed the shared association (LD 72 > 0.6) between insomnia (index variant
rs429358) and the average proton density fat fraction (PDFF) in the liver (index variant rs429358).
The posterior probability of Bayesian colocalization analysis for the shared causal variant
hypothesis (PPH4) is 0.980. We also observed the shared associations with type 2 diabetes, LDL
cholesterol, cognitive decline, age-related macular-degeneration, and Alzheimer’s disease.
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Fig. S21 Selected genetic loci that were associated with both insomnia and cardiac MRl traits.

In 11p11.2, we observed the shared association (LD 7?2

> 0.6) between insomnia (index variant

rs10838708) and WT AHA 8 (index variant rs10838708). WT AHA 8, regional myocardial-wall

thickness at end-diastole.
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Fig. S22 Selected genetic loci that were associated with both chronotype and cardiac MRI traits.

In 22q13.1, we observed the shared association (LD 72 > 0.6) between chronotype (index variant
rs139911) and AAo max area (index variant 22:40592080_CT_C). AAo max area, ascending aorta
maximum area.
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Fig. S23 Selected genetic loci that were associated with both chronotype and derived OCT

measures.

In 14924.3, we observed the shared association (LD 72 > 0.6) between chronotype (index variant
rs4903203) and INL ELM thickness right (index variant rs551602396). We also observed the
shared association with highest math class taken and educational attainment.
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Fig. S24 Selected genetic loci that were associated with both insomnia and derived OCT
measures.

In 3p24.2, we observed the shared association (LD 2 > 0.6) between insomnia (index variant
rs4858708) and disc diameter trans left (index variant rs7640943). We also observed the shared
association with risk-taking tendency and smoking status.
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Fig. S25 Selected genetic loci that were associated with both chronotype and derived OCT
measures.

In 1p13.2, we observed the shared association (LD 2 > 0.6) between chronotype (index variant
rs6537747) and ISOS RPE thickness central subfield left (index variant
1:113074602_GTTTTTGT_G). We also observed the shared association with mean arterial
pressure, blood pressure, and hypertension.
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Fig. $26 Genetic correlations between sleep and diseases/traits.

The correlation coefficients between GWAS of 34 sleep traits and 7 groups of diseases/traits,
including seven brain disorders, 13 cardiovascular diseases/traits, two diabetes, 2 eye diseases,
ten kidney traits/diseases, four liver traits/diseases, and 11 lung functions/diseases. Each trait is
labeled with a different color. Correlations survived the false discovery (FDR) rate of 5% (P < 1.55
x 1072) were highlighted. See Table S7 and Table S3 for more information on GWAS of multi-
organ traits/diseases and sleep traits, respectively.
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We illustrate the genetic correlations between sleep (y axis) and diseases/traits (x axis). The color
represents correlation estimates. The coefficients that pass the false discovery (FDR) rate of 5%

Fig. S27 Genetic correlations between sleep and diseases/traits.
(P <1.55 x 10~2) were marked with asterisk.
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We illustrate the cross-ancestry genetic correlation between sleep and type 2 diabetes. The red
bars represent genetic correlations between sleep and type 2 diabetes within the European
population, while the blue bars represent genetic correlations between sleep (European) and
type 2 diabetes (East Asian). Sleep traits whose genetic correlations pass the false discovery (FDR)

Fig. S28 Cross-ancestry genetic correlations between sleep and type 2 diabetes.

rate of 5% (P < 1.81 X 1072) with type 2 diabetes within the European population were plotted.
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Fig. S29 Cross-ancestry genetic correlations between sleep and type 1 diabetes
We illustrate the cross-ancestry genetic correlation between sleep and type 1 diabetes. The red
bars represent genetic correlations between sleep and type 1 diabetes within the European
5 population, while the blue bars represent genetic correlations between sleep (European) and
type 1 diabetes (East Asian). Sleep traits whose genetic correlations pass the false discovery (FDR)
rate of 5% (P < 1.81 X 1072) with type 1 diabetes within the European population were plotted.
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Fig. S30 Cross-ancestry genetic correlations between sleep and chronic obstructive pulmonary

disease.

We illustrate the cross-ancestry genetic correlation between sleep and chronic obstructive

pulmonary disease (COPD). The red bars represent genetic correlations between sleep and COPD

within the European population, while the blue bars represent genetic correlations between
sleep (European) and COPD (East Asian). Sleep traits whose genetic correlations pass the false

discovery (FDR) rate of 5% (P < 1.81 X 1072) with COPD within the European population were

plotted.
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Fig. S31 Cross-ancestry genetic correlations between sleep and asthma disease.

We illustrate the cross-ancestry genetic correlation between sleep and asthma. The red bars
represent genetic correlations between sleep and asthma within the European population, while

the blue bars represent genetic correlations between sleep (European) and asthma (East Asian).
Sleep traits whose genetic correlations pass the false discovery (FDR) rate of 5% (P < 1.81 x 1072)

with asthma within the European population were plotted.

5



0.6 7
EUR
EUR-EAS -
0.4
0.2 1
0.0 1 8] :|
~0.2 1
0.4 - 5 © [ [ [ N I\ ()
S § § &§ § & 8§ g
Y Y Y Y 3V Y Y Y
< <" < < < < Py <"
[ T T [ [ T [ T
- - - - s - - -
3] 3] 3] 3] 3] 3] [ 3
= [72] = (] o [0 [}
g g £ 9 s & 3§ IS
17} < 7} T o = T T
I5] 9 154 IS < 19 < <
Q K] Q poj < 4 I /
! o
/ / 5 / o) T o
o < o =~ IS .§ IS
g £ 8 ! g £ / £
= = IS
T O T IS T S
s 8§ 5 § § T § g
S N S £ 2] / £ =
Q & Q S < @ S
& & & £ s £
55 g
s L <
@

()
Fig. S32 Cross-ancestry genetic correlations between sleep and atrial fibrillation.
We illustrate the cross-ancestry genetic correlation between sleep and atrial fibrillation. The red

bars represent genetic correlations between sleep and asthma within the European population,
while the blue bars represent genetic correlations between sleep (European) and atrial fibrillation
(East Asian). Sleep traits whose genetic correlations pass the false discovery (FDR) rate of 5% (P

< 1.81 X 1072) with atrial fibrillation within the European population were plotted.
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Fig. S33 Mendelian randomization (MR) results with exposure being depression and outcome
being insomnia.

We illustrate results of MR of five methods with exposure being depression and outcome being
insomnia, with different GWAS summary statistics (showed in the title of each panel). Colors
represent if the pair is significant with the method specified on the left-hand side.
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Outcome: Getting up in morning — Jansen et al., 2019
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Fig. S34 Mendelian randomization (MR) results with exposure being schizophrenia and
outcome being sleep traits.

We illustrate results of MR of five methods with exposure being schizophrenia and outcome
being (A) ease of getting up in the morning; and (B) long sleep duration, with different GWAS
summary statistics (showed in the title of each panel). Colors represent if the pair is significant
with the method specified on the left-hand side.
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Fig. S35 Mendelian randomization (MR) results with exposure being bipolar disorder and

outcome being sleep duration.

We illustrate results of MR of five methods with exposure being bipolar disorder and outcome
being sleep duration, with different GWAS summary statistics (showed in the title of each panel).
Colors represent if the pair is significant with the method specified on the left-hand side.
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If significant FALSE —4- TRUE
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Fig. S36 Mendelian randomization (MR) results with exposure being bipolar disorder and
outcome being ease of getting up in the morning.

We illustrate results of MR of five methods with exposure being bipolar disorder and outcome

5 being ease of getting up in the morning, with different GWAS summary statistics (showed in the
title of each panel). Colors represent if the pair is significant with the method specified on the
left-hand side.
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If significant FALSE —4- TRUE
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Fig. S37 Mendelian randomization (MR) results with exposure being Alzheimer’s disease and
outcome being daytime napping.

We illustrate results of MR of five methods with exposure being Alzheimer’s disease and outcome
being daytime napping. Colors represent if the pair is significant with the method specified on
the left-hand side.
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If significant FALSE —4- TRUE
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Outcome: Insomnia — Watanabe et al., 2022
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Fig. S38 Mendelian randomization (MR) results with exposure being nonalcoholic fatty liver
disease and outcome being insomnia.

We illustrate results of MR of five methods with exposure being nonalcoholic fatty liver disease
and outcome being insomnia. Colors represent if the pair is significant with the method specified
on the left-hand side.
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If significant FALSE 4 TRUE
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Fig. S39 Mendelian randomization (MR) results with exposure being hypertension and outcome
being snoring.

We illustrate results of MR of five methods with exposure being hypertension and outcome being
snoring, with different GWAS summary statistics (showed in the title of each panel). Colors
represent if the pair is significant with the method specified on the left-hand side.
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Fig. S40 Mediation effects of diseases on the associations of imaging and sleep traits.

We illustrate marginal genetic correlations between imaging and sleep traits (y axis) and genetic
correlations between imaging and sleep traits mediated by disease (x axis). Different sleep traits
are represented by different shapes, while each disease category (left panel) and imaging
category (right panel) is denoted by a unique color. Only associations with consistent directions

of marginal and conditional genetic correlations are plotted.
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Fig. S41 Mediation effects of psychiatric disorders on specific associations between brain

imaging and sleep traits.

We illustrate both the marginal genetic correlations between brain imaging and sleep traits, and
the genetic correlations between brain imaging and sleep traits mediated by psychiatric
disorders. These correlations are distinguished by different colors. The pairs of brain imaging and
sleep traits are listed on the left-hand side, while the density of color denotes the different

psychiatric disorder.
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Fig. S42 Mediation effects of diseases on associations between abdominal MRI and sleep traits.

We illustrate the percentage reduction in genetic correlation between abdominal MRI and sleep
traits, both with and without mediation by diseases. This percentage reduction is calculated as
the difference between the marginal genetic correlation and the conditional genetic correlation,
divided by the marginal genetic correlation. Each disease category is represented by a distinct
color. Only associations with consistent directions of marginal and conditional genetic
correlations are plotted.
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Legends for Tables S1 to S13 (All tables can be found in a zip file).

Table S1. The ID of imaging traits used in phenotypic and genetic association analyses.

Table S2. Phenotypic associations between imaging traits and sleep traits.

Table S3. Sleep GWAS summary statistics used in the genetic correlation analysis.

Table S4. Genetic correlations between imaging traits and sleep traits.

Table S5. Independent significant variants and their correlated variants for imaging traits that
have previously been identified at P-value < 9e-6 in GWAS of sleep-related traits and disorders
listed in the GWAS catalog (version r2022-07-09, www.ebi.ac.uk/gwas/). See the method

section for details on how independent significant variants were defined for each imaging
modality.

Table S6. Summary of the shared genetic effects between multi-organ imaging traits and sleep
traits.

Table S6. Validating significant CMR associations in independent UKB datasets.

Table S7. GWAS summary statistics of multi-organ-related disorders/traits used in the genetic
correlation analysis.

Table S8. Genetic correlations between sleep and multi-organ-related disorders/traits.

Table S9. GWAS summary statistics multi-organ-related disorders/traits used in the cross-
population correlation analysis.

Table S10. Cross-ancestry genetic correlations between sleep and multi-organ-related
diseases/traits.

Table S11. GWAS summary statistics of multi-organ-related disorders/traits used in the
Mendelian randomization analysis.

Table S12. Causal genetic relationships detected by Mendelian randomization. Significant pairs,
determined via inverse variance weighted method after FDR correction (P < 2.93x 1073), were
documented in both Disease_to_sleep_MR_FDR and Sleep_to_disease_MR_FDR sheets, with all
five methods listed. Pairs with P values below 0.05 were emphasized in bold.

Table S13. The mediation effect of disease on the associations between imaging and sleep
traits.
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