
 

 

Appendix B — Significant Characteristics of Latent Space in TOMMF 
 
In this appendix, we discuss the theoretical foundation of two significant characteristics of latent 
space in the TOMMF framework: 1) data driven dimensionality, and 2) pseudo-exclusive 
compositions. We also elaborate how these properties are uniquely endowed by the L0-
regularization with theoretical analyses and experimental results. 
 
Data Driven Dimensionality — Make Adequate Contribution, or Be Nullified 
 
One of the significant characteristics of the TOMMF is the data driven dimensionality of latent 
features. To elaborate this property, let us first revisit the loss function of TOMMF framework: 
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In this analysis, we examine each dimension 𝒢𝑗  in the latent space  𝒢 , where 𝒢 =
[𝒢0, . . . , 𝒢., . . . , 𝒢1] and 𝒢𝑗’s are column vectors. The predictive weights 𝛽 can also be denoted 

as 𝛽 = [𝛽0, . . . , 𝛽. , . . . , 𝛽1]7, where 𝛽! is the weight of 𝒢𝑗. We note that for a latent dimension 

𝒢𝑗 that exhibits zero correlation with the target 𝑌, 𝛽𝑗 = 0 is the solution to the loss function. As a 
result, 𝑊𝛬,𝑗  would also converge to the zero vector to minimize L0-norm penalty. Notably, 
although we describe the process in a sequential manner, the shrinkage of 𝛽! and 𝑊𝛬,𝑗 actually 
happens simultaneously. Hence, we have showed that 𝒢𝑗 would be automatically set to zero if it 
does not provide contribution to the prediction task. In reality, a non-zero latent dimension 𝒢𝑗 
needs to make adequate contribution to the prediction task (the decrease in 𝐾𝑝𝑟𝑒𝑑 ∥ 𝑌 − 𝒢𝛽 ∥2

2) 
to outweigh the penalty it introduces. In this way, the TOMMF framework achieves a data-driven 
way to determine the dimensionality of latent features — a new dimension would be included if it 
benefits the prediction task, and no additional dimensions would be added if the gain in 
performance is too marginal to outweigh the penalty (Extended Data Figure 1a). Compared to the 
hard-thresholding, TOMMF does not require an empirical percentage to determine how many 
features can be incorporated in the model, thus preventing potential issue of over-inclusion and 
over-exclusion. The sparsity parameters 𝜆𝑓𝑢𝑠𝑖𝑜𝑛 and 𝜆"#$% in the TOMMF framework only serve 
as parameters controlling the model complexity — the framework itself judges whether a feature 
is informative or not.  
 
Pseudo-exclusive Composition — Dimensions Compete for Features 
 
Another significant characteristic of the TOMMF framework is the pseudo-exclusive composition 
of latent features. Compared with its L1-regularization counterpart, the framework imposes extra 
penalty on the occurrence of one feature in multiple dimensions. Specifically, L1-regularization 
does not impose additional penalty on the loss function as long as the summation of weights 
across dimensions for a particular feature remains same, while L0-regularization penalizes each 
occurrence of feature in the latent dimensions. When tuning the sparsity parameter for L0- and 
L1-regularization, we can observe a significantly different behaviors of these two penalty types— 
the L0-regularized framework gradually achieves a high level of orthogonality across latent 
features (Extended Data Figure 1a), whereas the L1-regularized framework gradually aggregate 
the latent space into one major dimension with a few auxiliary dimensions (Extended Data Figure 



 

 

1b). The behavior of L1-regularized latent space also aligns with its mathematical foundation — 
putting everything into one would minimize the penalty on 𝛽 . Again, for the L0-regularized 
framework, the penalty on 𝛽  is also for the non-zero occurrence of its elements, not their 
amplitudes. As the L1-regularized framework may introduce a few auxiliary dimensions to improve 
the prediction performance while keeping the penalty low, the L0-regularized framework needs to 
make every dimension counts. Actually, the L0-regularization enables each feature to make 
optimal contribution to the dimension it constitutes, and each dimension to make optimal 
contribution to the prediction target. In this way, the framework offers a data-driven way for 
decomposing significant dimensions in the overall predictive pattern, allowing us to dissect the 
intricate psychopharmacology of MDD.  


