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 30 

Fig. S1: Multi-ancestry study designs improve fine-mapping results compared to a single-31 
ancestry study design with fixed sample sizes. 32 

Three-ancestry study design outputs higher posterior inclusion probabilities (PIPs; A), smaller credible set 33 
size (B), and better calibration (C) than two-ancestry (P=5.46e-2, 1.95e-2, and 1.50e-4, respectively) and 34 
one-ancestry (P=3.27e-12, 4.62e-18, and 9.93e-17, respectively). The simulation assumes 2 causal cis-35 
molQTLs, cis-SNP heritability is 0.05, and the cis-molQTL effect size correlation across ancestries is 0.8. 36 
The error bar is a 95% confidence interval. 37 
 38 
 39 
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 40 

Fig. S2: SuShiE outputs higher PIP of cis-molQTLs when varying different simulation parameters 41 

SuShiE outputs higher posterior inclusion of probability (PIPs) when varying the number of cis-molQTLs 42 
(A), the cis-SNP heritability (B), and the cis-molQTL effect size correlation across ancestries (C) compared 43 
against SuShiE-Indep (P=3.10e-4), Meta-SuSiE (1.68e-45), and SuSiE (2.26e-80). The P value is computed 44 
across all simulations (see Methods). By default, the simulation assumes a per-ancestry sample size of 45 
400, 2 causal cis-molQTLs, cis-SNP heritability of 0.05, and the cis-molQTL effect size correlation across 46 
ancestries of 0.8. The error bar is a 95% confidence interval. 47 
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Fig. S3: SuShiE outputs smaller credible set sizes when varying different simulation parameters 49 

SuShiE outputs smaller credible set sizes when varying the number of cis-molQTLs (A), the cis-SNP 50 
heritability (B), and the cis-molQTL effect size correlation across ancestries (C) compared against SuShiE-51 
Indep (P=1.18e-1), Meta-SuSiE (5.20e-291), and SuSiE (2.94e-2). The P value is computed across all 52 
simulations (see Methods). By default, the simulation assumes a per-ancestry sample size of 400, 2 causal 53 
cis-molQTLs, cis-SNP heritability of 0.05, and the cis-molQTL effect size correlation across ancestries of 54 
0.8. The error bar is a 95% confidence interval.55 
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Fig. S4: SuShiE outputs better calibration when varying different simulation parameters 57 

SuShiE outputs higher frequency of cis-molQTLs in the credible set (calibration) when varying the number 58 
of cis-molQTLs (A), the cis-SNP heritability (B), and the cis-molQTL effect size correlation across ancestries 59 
(C) compared against SuShiE-Indep (P=1.51e-7), Meta-SuSiE (9.41e-70), and SuSiE (1.03e-131). The P value 60 
is computed across all simulations (see Methods). By default, the simulation assumes a per-ancestry 61 
sample size of 400, 2 causal cis-molQTLs, cis-SNP heritability of 0.05, and the cis-molQTL effect size 62 
correlation across ancestries of 0.8. The error bar is a 95% confidence interval. 63 
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Fig. S5: SuShiE outputs higher PIPs and better calibration when varying the sample size for one 65 
ancestry and fixing for the other 66 

SuShiE outputs higher posterior inclusion probability (PIPs; A) and higher frequency of cis-molQTLs in the 67 
credible sets (Calibration; C) compared against SuShiE-Indep (P=2.38e-2 and 4.45e-4), Meta-SuSiE 68 
(P=3.49e-9 and 6.88e-14), and SuSiE (P=1.81e-12 and 2.77e-21) when varying the sample size for one 69 
ancestry and fixing for the other. However, SuShiE’s performance is not consistent in credible set size 70 
compared against SuShiE-Indep (larger; P=7.23e-3; B), Meta-SuSiE (smaller; P=2.79e-144), and SuSiE 71 
(larger; P=3.61e-2). The P value is computed across all simulations (see Methods). By default, the 72 
simulation assumes the first ancestry’s sample size of 400, 2 causal cis-molQTLs, cis-SNP heritability of 73 
0.05, and the cis-molQTL effect size correlation across ancestries of 0.8. The error bar is a 95% confidence 74 
interval. 75 
 76 
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Fig. S6: SuShiE outputs higher PIPs, smaller credible set size, and better calibration when 78 
varying the cis-SNP heritability for one ancestry and fixing for the other 79 

SuShiE outputs higher posterior inclusion probability (PIPs; A), smaller credible set size (B), and higher 80 
frequency of cis-molQTLs in the credible sets (Calibration; C) compared against SuShiE-Indep (P=2.77e-2, 81 
1.83e-1, and 1.64e-4), Meta-SuSiE (P=8.46e-14, 1.92e-140, and 6.30e-21), and SuSiE (P=1.36e-24, 2.37e-82 
2, 1.65e-38) when varying the cis-SNP heritability for one ancestry and fixing for the other. The P value is 83 
computed across all simulations (see Methods). By default, the simulation assumes the first ancestry’s 84 
cis-SNP heritability of 0.05, 2 causal cis-molQTLs, the per-ancestry sample size of 400, and the cis-molQTL 85 
effect size correlation across ancestries of 0.8. The error bar is a 95% confidence interval. 86 
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Fig. S7: The effect-size correlation estimation over the second and all credible sets becomes 88 
more accurate as increasing the cis-molQTL sample size 89 

As we increase the per-ancestry sample size (from 400 to 2,400), the estimation using the primary 90 
effects (First credible sets) remains robust, and the performance by all and second credible sets gets 91 
closer to the true value (0.8). By default, the simulation assumes a per-ancestry sample size of 400, 2 92 
causal cis-molQTLs, cis-SNP heritability of 0.05, and the cis-molQTL effect size correlation across 93 
ancestries of 0.8. The error bar is a 95% confidence interval. 94 
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Fig. S8: SuShiE outputs higher PIPs, smaller credible set size, and better calibration when 96 
ancestry-specific cis-molQTLs are present 97 

SuShiE outputs higher posterior inclusion probability (PIPs; A), smaller credible set size (B), and higher 98 
frequency of cis-molQTLs in the credible set (Calibration; C) compared against SuShiE-Indep (P=8.38e-3, 99 
2.38e-1, and 1.95e-4), Meta-SuSiE (P=3.82e-18, 6.03e-74, and 2.22e-26), and SuSiE (P=1.97e-6, 8.17e-2, 100 
and 1.14e-8) when ancestry-specific cis-molQTLs are present. The P value is computed across all 101 
simulations (see Methods). By default, the simulation assumes the first ancestry’s cis-SNP heritability of 102 
0.05, 2 shared causal cis-molQTLs, the per-ancestry sample size of 400, and the cis-molQTL effect size 103 
correlation across ancestries of 0.8. The error bar is a 95% confidence interval. 104 

 105 
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Fig. S9: SuShiE’s out-performance remains when the number of inferred cis-molQTLs is greater 107 
than the generative cis-molQTLs 108 

SuShiE’s out-performance remains the same when the number of inferred cis-molQTLs exceeds the 109 
generative cis-molQTLs. SuShiE outputs higher posterior inclusion probability (PIPs; A), smaller credible 110 
set size (B), and higher frequency of cis-molQTLs in the credible set (Calibration; C) compared against 111 
SuShiE-Indep (P=4.51e-3, 2.23e-1, and 1.77e-3), Meta-SuSiE (P=4.55e-24, 1.18e-105, and 1.09e-26), and 112 
SuSiE (P=1.82e-14, 1.37e-1, and 3.26e-15). The P value is computed across all simulations (see Methods). 113 
By default, the simulation assumes the first ancestry’s cis-SNP heritability of 0.05, 2 shared causal cis-114 
molQTLs, the per-ancestry sample size of 400, and the cis-molQTL effect size correlation across ancestries 115 
of 0.8. The error bar is a 95% confidence interval. 116 
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Fig. S10: The ancestry-specific cis-molQTL effect sizes estimated by SuShiE output higher 118 
prediction accuracy, thus boosting TWAS power 119 

A) Extension of the main figure 2E. SuShiE outputs higher ancestry-specific prediction accuracy compared 120 
to SuShiE-Indep, Meta-SuSiE, SuSiE, LASSO, Elastic Net, and gBLUP (P=4e-1, 3.42e-17, 1.56e-7, 5.32e-10, 121 
1.69e-72, and 5.24e-222) with the fixed sample size.  122 
B) SuShiE outputs higher ancestry-specific prediction accuracy compared to Meta-SuSiE, SuSiE, LASSO, 123 
Elastic Net, and gBLUP (P=4.77e-6, 2.79e-38, 1.21e-42, 1.45e-115, and <1.45e-115) with the fixed sample 124 
size. SuShiE outputs similar prediction accuracy compared to SuShiE-Indep with the fixed sample size 125 
(P=4.21).  126 
C) Extension of the main figure 2F. SuShiE induces higher TWAS power compared to SuShiE-Indep, Meta-127 
SuSiE, SuSiE, LASSO, Elastic Net, and gBLUP (P=1.93e-1, 6.93e-38, 1.19e13, 8.89e-18, 6.40e-161, and 128 
<6.40e-161) with the fixed sample size.  129 
D) SuShiE induces higher TWAS power compared to SuShiE-Indep, Meta-SuSiE, SuSiE, LASSO, Elastic Net, 130 
and gBLUP (P=1.25e-1, 6.51e-56, 1.06e19, 1.46e-25, 2.01e-226, and <2.01e-226) with the fixed sample 131 
size.  132 
 133 
The plots are aggregation across two ancestries. The per-ancestry training sample size is 400, and the 134 
testing sample size is 200. The simulation assumes 2 causal cis-molQTLs, the default cis-SNP heritability is 135 
0.05, the cis-molQTL effect size correlation is 0.8 across ancestries, and the default proportion of cis-SNP 136 
heritability of complex trait explained by gene expression is 1.5e-14. The error bar is a 95% confidence 137 
interval. 138 
  139 
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Fig. S11: SuShiE inferred-PIPs of cis-molQTLs are enriched in different cell-type/tissue-specific 141 
cCREs by sn/scATAC-seq 142 

Across all three studies, cis-molQTLs’ PIPs inferred by SuShiE are enriched in all 10 cell-type/tissue-specific 143 
cCREs by sn/sc ATAC-seq. Specifically, the mRNA expression of TOPMed-MESA and GENOA showed 144 
significant enrichment but non-significance for the protein expression of TOPMed-MESA because of the 145 
low number of genes identified with pQTLs (n=573). PBMC is measured with scATAC-seq in Satpathy et 146 
al.1, while the rest cCREs are measured with snATAC-seq in Chiou et al.2 The error bar is a 95% confidence 147 
interval.148 
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 149 

Fig. S12: The relationship between the posterior probability inferred by SuShiE for shared effect 150 
from L1 to L6 and their distance to TSS of each gene  151 

The posterior probabilities (𝛼!) of cis-molQTLs inferred by SuShiE from L1 to L3 are mainly enriched around 152 
the TSS region of genes, consistent with the findings that most genes exhibited 1-3 cis-molQTLs. We also 153 
observed relatively smaller enrichment all over the gene window when expanding to L4, L5, and L6. We 154 
grouped SNPs into 500-bp-long bins and computed the average of posterior probability. There are 2,000 155 
bins to cover a one-million-bp-long genomic window around the gene.  156 
  157 
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 158 

Fig. S13: The functional enrichment decreased as the proportion of cis-molQTLs explained by 159 
each shared effect decreased  160 

The first three effects are enriched in all regulatory annotations with higher enrichment scores compared 161 
to using the PIPs (Fig. 3C, 3D). The enrichment decreased from L1 to L6 because the proportion of cis-162 
molQTLs explained by each shared effect decreased. The mRNA expression of TOPMed-MESA and GENOA 163 
showed significant enrichment in most annotations but non-significance for the protein expression of 164 
TOPMed-MESA because of the low number of genes identified. The promoter, proximal enhancer, CTCF, 165 
distal enhancer, and DNase-H3K4me3 are measured in ENCODE; PBMC is measured with scATAC-seq in 166 
Satpathy et al., and the rest cCREs are measured with snATAC-seq in Chiou et al. The error bar is a 95% 167 
confidence interval. 168 
  169 
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 170 

Fig. S14: The expected distance between cis-molQTLs and TSS increased as the proportion of 171 
cis-molQTLs explained by each shared effect decreased  172 

We computed the expected distance between cis-molQTLs and TSS (see Methods) within each cis-molQTL 173 
index (L index). For example, we computed the average expected distance of the SNPs to the TSS, who are 174 
included in the first credible set (L=1). The x-axis is the corresponding cis-molQTL index, suggesting the 175 
proportion of cis-molQTLs explained from highest to lowest. The error bar is a 95% confidence interval.176 
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Fig. S15: The average cis-SNP heritability estimates of molecular traits are significantly non-178 
zero for each ancestry and each study. 179 

We used limix to compute the cis-SNP heritability for each ancestry of each e/pGene (h2g; see Codes 180 
Availability). We observed that for each ancestry of each study, the average h2g is statistically non-zero 181 
(P<1e-200 for all cases). 182 

   183 
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 184 

Fig. S16: The cis-SNP heritability estimates of molecular traits are highly correlated across 185 
ancestries. 186 

We used limix to compute the cis-SNP heritability for each ancestry of each e/pGene (h2g; see Codes 187 
Availability). We observed that for each pair of ancestry, the heritabilities’ correlations are highly 188 
correlated (P<1e-200 for all cases compared to 0). 189 
 190 
 191 
  192 
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 193 

Fig. S17: SuShiE estimated ancestry-specific effect sizes are highly correlated when focusing on 194 
genes that are significantly heritable in all ancestries 195 

By focusing on the primary shared effect (L1) of all genes, SuShiE estimated cis-molQTL average 196 
correlations of 0.81, 0.86, and 0.87 for EUR-AFR, EUR-HIS, and AFR-HIS, respectively. When reducing the 197 
genes that exhibited significant heritable genes in at least one ancestry, we observed average correlations 198 
increased to 0.85, 0.91, and 0.92, and then further increased to 0.94, 0.98, and 0.99 when focusing on 199 
genes whose heritabilities are significant in all ancestries. The error bar is a 95% confidence interval. 200 
 201 
 202 
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 203 

Fig. S18: The ancestry-specific effect sizes inferred by SuShiE are highly correlated across 204 
ancestries 205 

We randomly picked 100 genes that are significantly heritable in all ancestries and plotted the scatter for 206 
their ancestry-specific effect sizes. The red line is the identical line (𝑦 = 𝑥). 207 
 208 
  209 
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 210 

Fig. S19: The cis-molQTL effect size correlations across ancestries estimated by SuShiE can be 211 
less than one 212 

The density plot of the cis-molQTL effect size correlations estimated by SuShiE for EUR-AFR, EUR-HIS, and 213 
AFR-HIS pairs from TOPMed-MESA mRNA, TOPMed-MESA Protein, and GENOA mRNA datasets. The 214 
figures show the first six single shared effects (from L1 to L6). These figures suggest that some molecules 215 
can exhibit ancestry-specific effect sizes (i.e., cis-molQTL effect size heterogeneity across ancestries). 216 
  217 
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218 
Fig. S20: Gene constraint scores are negatively associated with their number of cis-molQTLs 219 

The 2d density plot between the number of cis-molQTLs (x-axis) and pLI, LOEUF, shet, RVIS, and EDS as 220 
measures of loss-of-function intolerance (y-axis) across all three studies  (see Methods). The blue line is 221 
the linear regression estimate. A higher value of pLI, shet, and, EDS is taken to indicate stronger constraint, 222 
while a lower value of LOEUF and RVIS is suggestive of more constraint. The beta is calculated after 223 
adjusting for study (i.e., TOPMed MESA mRNA, TOPMed MESA proteins, and GENOA mRNA). The p-value 224 
is calculated using bootstrap and after adjusting for Fst.  225 
  226 
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227 
Fig. S21: Gene constraint scores are positively associated with the expected distance between 228 
their cis-molQTLs and TSS 229 

The 2d density plot between cis-molQTLs distance to the gene TSS (x-axis) and pLI, LOEUF, shet, RVIS, and 230 
EDS as measures of loss-of-function intolerance (y-axis) across all three studies  (see Methods). The blue 231 
line is the linear regression estimate. A higher value of pLI, shet, and, EDS is taken to indicate stronger 232 
constraint, while a lower value of LOEUF and RVIS is suggestive of more constraint. The beta is calculated 233 
after adjusting for study (i.e., TOPMed MESA mRNA, TOPMed MESA proteins, and GENOA mRNA). The p-234 
value is calculated using bootstrap and after adjusting for Fst. 235 
  236 
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237 
Fig. S22: Gene constraint scores are associated with their cis-molQTL functional enrichment 238 

The 2d density plot between functional enrichment estimates calculated using their cis-molQTL PIPs (x-239 
axis) and pLI, LOEUF, shet, RVIS, and EDS as measures of loss-of-function intolerance (y-axis) across all three 240 
studies  (see Methods). Each column is the promoter (PLS), proximal enhancer (pELS), and distal enhancer 241 
(dELS) annotation measured from from ENCODE3. The blue line is the linear regression estimate. A higher 242 
value of pLI, shet, and, EDS is taken to indicate stronger constraint, while a lower value of LOEUF and RVIS 243 
is suggestive of more constraint. The beta is calculated after adjusting for study (i.e., TOPMed MESA 244 
mRNA, TOPMed MESA proteins, and GENOA mRNA). The p-value is calculated using bootstrap and after 245 
adjusting for Fst. The PLS and pELS enrichments are negatively associated with their gene constraint scores. 246 
The dELS enrichment is negatively associated with their gene constraint scores. 247 
 248 
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249 
Fig. S23: SuShiE outputs better or comparable prediction accuracy compared to alternative 250 
methods 251 

Point estimates for the cross-validation coefficient of determination (cv-𝑟2). Across all the e/pGenes (A), 252 
SuShiE output higher cv-𝑟2 compared to SuShiE-Indep, Meta-SuSiE, SuSiE, Elastic Net, and gBLUP 253 
(P=3.45e-2, 2.67e-9, 1.23e-1, 2.56e-1, and 2.81e-25). SuShiE output comparable cv-𝑟2 relative to LASSO 254 
(P=6.43e-1). When focusing on e/pGenes exhibited estimated cis-molQTL effect size correlation < 0.9 (B), 255 
SuShiE output higher cv-𝑟2 compared to all methods: SuShiE-Indep, Meta-SuSiE, SuSiE, LASSO, Elastic Net, 256 
and gBLUP (P=3.48e-1, 1.28e-2, 7.01e-4, 3.08e-2, 1.58e-1, and 1.23e-7). The reported P value is one-sided. 257 
The error bar is a 95% confidence interval. 258 
  259 
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Fig. S24: Ancestry-matched prediction accuracy is higher than cross-ancestry prediction 261 
accuracy 262 

Point estimates for the cross-validation coefficient of determination (cv-𝑟2). Across all the e/pGenes, we 263 
performed cross-ancestry prediction (e.g., predicting mRNA expression of AFR using EUR weights; see 264 
Methods) using SuShiE-based prediction weights. The ancestry-matched weights (SuShiE-based) produces 265 
higher prediction accuracy compared to cross-ancestry prediction (1.71e-53). The reported P value is one-266 
sided. The error bar is a 95% confidence interval.  267 
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Fig. S25: The QQ plot of P value for SuShiE and SuSiE-based T/PWAS 269 

The P value is negative log-transformed and then drawn based on exponential distribution.  270 
  271 



 27 

Reference 272 

1. Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell 273 
development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019). 274 

2. Chiou, J. et al. Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature 275 
594, 398–402 (2021). 276 

3. ENCODE Project Consortium et al. Expanded encyclopaedias of DNA elements in the human and 277 
mouse genomes. Nature 583, 699–710 (2020). 278 

 279 


