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Rationale for allele-coding 

 Our biclustering-analysis is applied after encoding the genetic-data using allele-

combinations. Specifically, each SNP is associated with three values: homozygous-dominant 

(AA), heterozygous (Aa) and homozygous-recessive (aa). These possible values are encoded 

within three SNP-specific columns of our data-matrix. Thus, a particular participant who is 

homozygous-dominant for a particular SNP will have corresponding column-values of [1, 0, 0], a 

participant who is heterozygous for that SNP would have corresponding column-values of [0, 1, 

0], and a participant who is homozygous-recessive for that SNP would have column-values of 

[0, 0, 1]. This 'allele-coding' is an alternative to the more commonly used 'additive-coding', which 

records the number of rare-variants per SNP (i.e., 0, 1 or 2, also known as 'dosage-coding'). 

Allele-coded data contains the same information as additively-coded data: no information is lost, 

and one can easily transform one encoding-paradigm into the other. Nevertheless, allele-coding 

can be advantageous when searching for certain kinds of structure within genetic-data. As a first 

simple example, imagine a single disease-relevant SNP with the following (idealistic) 

distribution: 

 AA Aa aa 

population-1: 24% 52% 24% 

population-2: 26% 48% 26% 

 

When additively-coded, this SNP has the same mean but different variances across the two 

populations. Assuming that population-1 corresponds to controls and population-2 to cases, 

identifying such an additively-coded SNP as disease-relevant would require looking for 'second-

order' effects (i.e., higher-order moments of the data such as the variance). By contrast, when 

allele-coded, this SNP can be identified as disease-relevant using only first-order statistics (such 

as population-averages). The above example only considers a single SNP and assumes 



homogeneity across the population. In the presence of multiple SNPs and/or heterogeneity, the 

differences between additive- and allele-coding can be even more stark. 

As a second example, consider two SNPs, A and B, distributed as follows: 

 

pop0 AA Aa aa 

BB 2.48% 9.21% 8.56% 

Bb 6.06% 22.52% 20.91% 

bb 3.71% 13.76% 12.78% 

  

pop1 AA Aa aa 

BB 2.35% 5.61% 12.29% 

Bb 9.90% 22.59% 17.01% 

bb 0.00% 17.30% 12.95% 

 

pop2 AA Aa aa 

BB 1.03% 14.02% 5.20% 

Bb 11.22% 8.40% 29.88% 

bb 0.00% 23.08% 7.17% 

 

pop3 AA Aa aa 

BB 0.00% 12.00% 8.25% 

Bb 8.68% 21.63% 19.19% 

bb 3.57% 11.87% 14.82% 

 

In each of these tables the rows correspond to the allele-combinations AA, Aa and aa, 

while the columns correspond to the allele-combinations BB, Bb and bb. Each cell indicates the 

joint-probability of observing a participant with the corresponding pair of allele-combinations. 

These joint-distributions illustrate one idealized example of the following phenomenon. For each 

population: 

1. the percentages add up to 100% 

2. SNP-A has an (arbitrary) fixed minor-allele-frequency (maf) of 0.35 = 35% 

3. SNP-A has an additively-coded variance of  2 ⋅ 𝑚𝑎𝑓஺ ⋅ (1 − 𝑚𝑎𝑓஺) = 0.455  

4. SNP-B also has a fixed arbitrary maf, in this scenario 0.45. 



5. SNP-B has an additively-coded variance of 0.495. 

6. the correlation between SNP-A and SNP-B is 0 (under additive-coding). 

Thus, the 9 numbers associated with each of the joint-distributions above are subject to 6 

constraints, yielding a (9-6)=3 dimensional landscape of `freedom' in which the joint-distributions 

can vary without affecting these constraints. Within this landscape one might imagine disease-

specific heterogeneity: Population-0 might represent the control-population (i.e., participants that 

do not exhibit the disease), while the remaining populations could describe the cases (i.e., those 

exhibiting the disease). In this scenario, populations 1, 2 and 3 correspond to different subsets 

of the case-population exhibiting different genetic structure (i.e., disease-specific LD between 

snps A and B). One goal of a biclustering algorithm would be to expose this heterogeneity by 

identifying populations 1, 2 and 3 from within the overall case-population. With this goal in mind, 

we see a clear difference between additive- and allele-coding. The correlation between the 

additively-coded columns for population-1 (i.e., one of the case-biclusters) is essentially 0, just 

like the correlation between the same columns for populations 2 and 3 (i.e., the other case-

biclusters). Meanwhile, if we use allele-coding, the correlation between the aa- and Bb-columns 

for population-1 is strongly negative (about -0.17), while the correlation between the same 

columns in population-2 is strongly positive (about 0.37) and the analogous correlation for 

population-3 is closer to zero (about -0.06). Several other column-pairs exhibit a similar 

phenomenon, and the collection of allele-coded correlations differs substantially across the 

populations.  

In sum, for this example, a correlation-based biclustering algorithm won't typically be 

able to distinguish these populations within the additively-coded data, but will easily be able to 

distinguish the populations (and correctly identify the heterogeneity) within the allele-coded 

data. This example is rather idealized, with the joint-probabilities specifically chosen so that they 

are quite far away from the control-distribution (while remaining on the admissible landscape 

described above). Nevertheless, one can imagine less extreme scenarios exhibiting similar 

phenomena: there are many kinds of disease-specific heterogeneity (involving subtle 

correlations between allele-combinations) which could be more easily accessed via allele-

coding than by additive-coding.  

Reasoning along the lines above has informed our methodology. In general, there are 

many kinds of data-encoding one might consider, ranging from simple to very complicated, and 

different encoding-paradigms may render certain kinds of information more easily accessible to 

certain kinds of analysis. Ultimately, we are interested in searching for biclusters defined in 

terms of shared genetic structure. Due to computational-limitations, the analytical tools we have 



access to are essentially limited to measuring conditional averages and correlations (i.e., 

estimating low-order moments of the unknown joint-distributions). Because of these limitations, 

we prefer allele-coding to additive-coding, as the former allows certain kinds of biclusters to be 

detected using the low-order moments we can access.  

Searching for disease-specific biclusters 

 To search for biclusters we use the half-loop method described in Rangan et al. [1]. This 

strategy involves an iterative process which starts with all the participants (in this case, all 

participants in a given constellation) and SNPs, and then sequentially removes AD cases and 

allele-combinations from consideration. Briefly, we can take an 𝑀஽ × 𝑁 matrix of cases 𝐷 and 

an 𝑀௑ × 𝑁 matrix of controls 𝑋. The entry 𝐷௝,௞ records the presence or absence of the 𝑘-th 

allele-combination for the 𝑗th case, and the entry 𝑋௝,௞ records the presence or absence of the 𝑘th 

allele-combination for the 𝑗th control. For each case 𝑗 we can measure the fraction of cases (i.e., 

restricted to matrix 𝐷) that share the allele-combination 𝑘 and call this [𝐷 ↔ 𝐷]௝,௞. Similarly, we 

can calculate the fraction of controls that share the allele-combination 𝑘 and call this [𝐷 ↔ 𝑋]௝,௞  

(i.e., extending into matrix 𝑋). We can then calculate 𝑍௝,௞ = [𝐷 ↔ 𝐷]௝,௞ − [𝐷 ↔ 𝑋]௝,௞, which 

represents the difference in fraction of shared allele-combinations between the 𝑗th case and 

other remaining cases compared to the fraction shared with controls for the 𝑘th allele-

combination. Averaging over the remaining allele-combinations will give us 𝑍௝, referred to as 

row-scores in our algorithm. Finally, averaging over the remaining cases will leave us with 𝑍, or 

the row trace, which indicates the disease-related signal strength for the remaining subset of AD 

cases and allele-combinations. At each iteration the cases and allele-combinations with the 

smallest contributions to 𝑍 are removed and the row trace is recalculated as described above.  

This process is conducted while controlling for the first two genetic principal-

components. Covariate correction is also described in detail in Rangan et al. [1], but essentially 

weights the contributions of cases and allele-combinations such that the row score and row 

trace (as well as analogous column-scores and column trace) will be shrunk if drawn from an 

imbalanced distribution of the covariate space. That is, the biclustering algorithm will tend to 

ignore these structures in favor of structures that are more evenly distributed in covariate space.   

As a null-hypothesis, we assume that the disease-label (i.e., case vs control) is not 

associated with the genetic profile of each participant. We can draw samples from this null-

hypothesis by randomly permuting the case- and control-labels across participants with similar 

genome-wide principal components (see Rangan et al. [1] for details). Here, we use 500 



permutations. By comparing the original trace with the distribution of traces drawn from the null-

hypothesis, we can assign a p-value to the observed trace 𝑍 at each iteration. In this case, we 

only assess iterations that include >5% of the cases (i.e., the final iterations with very few cases 

and/or variants are ignored). To determine whether we have found a statistically significant 

bicluster within the original data (termed the ‘dominant’ bicluster), we can examine the p-value 

of the highest peak (pmax) and the average p-value across iterations (pavg). Depending on the 

structure of the bicluster, the various p-values may be quite different, but each may be a useful 

metric for identifying significant biclusters. For example, if the original trace has one or more 

clear peaks (as shown in Fig. 3A), then there are statistically robust ‘cutpoints’ which can be 

used to delineate bicluster membership and pmax is likely to be very small. On the other hand, if 

the original trace has a very broad peak or a long plateau (as shown in Fig. 3B), then the 

bicluster is quite ‘fuzzy’, corresponding to a continuum of membership. In this case, we might 

expect pavg to be small, but pmax may be relatively large. Moreover, we can use the peak of the 

original trace to delineate the membership of the dominant bicluster (i.e., which AD cases and 

allellic-combinations contribute to the disease-specific signal). We identify the peak by finding 

the internal maximum, ignoring the initial and final iterations that include >95% or <5% of AD 

cases.  

If the dominant bicluster within a data-set is statistically significant, we can extract it and 

then search for a secondary bicluster. This is done by scrambling the entries of the submatrix 

associated with the bicluster (i.e., entries corresponding to the participants and allele-

combinations that were retained in the bicluster) and running the search algorithm again [1, 2].  

Replication of disease-relevant constellations in ADNI 

We assessed the extent to which the two levels of structure found in the UKB data were 

also present in the ADNI data. The first level of the hierarchical structure observed in the UKB 

data involved the constellations shown in Fig. 1. To assess the replication of these structures 

within the ADNI data, we determined the subset of SNPs which lie in the intersection of the UKB 

and ADNI datasets, and then further restricted this subset of SNPs to include only those SNPs 

which had Kunkle p-values of <0.05, denoting this restricted subset by 𝑆∩. Mirroring the original 

analysis, we then re-calculated the dominant 2 principal-components for the UKB data across 𝑆∩ 

to obtain loadings 𝑢ଵ
௎௄஻ and 𝑢ଶ

௎௄஻ or each participant, and loadings 𝑣1 and 𝑣2 for each SNP. 

Next, we use 𝑣1 and 𝑣2  to calculate projections 𝑢ଵ
஺஽ேூ and 𝑢ଶ

஺஽ேூ for each ADNI participant. We 

can then compare the distribution of 𝑢ଵ
௎௄஻ and 𝑢ଶ

௎௄஻ with the distribution of 𝑢ଵ
஺஽ேூ and 𝑢ଶ

஺஽ேூ to 



assess overlap between datasets. ADNI participants were assigned to the nearest constellation 

based on participant loadings on the first principal component.    

Replication of disease-specific biclusters in ADNI 

 After participants were classified into constellations, we assessed replication of the 

dominant bicluster separately in the two constellations in which they were found. First, we 

restrict the subset of SNPs delineating the bicluster to those that overlap with the ADNI data, 

referring to that (restricted) subset as 𝒦, which is itself a subset of 𝑆∩. We can organize the data 

into a |𝒥| × |𝒦| array 𝐴௎௄஻, where 𝒥 represents only UKB participants from a given 

constellation. Likewise, the ADNI data can be organized into a |𝒥′| × |𝒦| array where 𝒥′ 

represents the ADNI participants that have been assigned to the constellation of interest. The 

bicluster itself, denoted by 𝐵, is a |𝒥஻| × |𝒦| submatrix of 𝐴௎௄஻. We then calculate the dominant 

SNP-wise principal components 𝑣ଵ and 𝑣ଶ of 𝐵 across 𝒦. We use SNP loadings 𝑣ଵ and 𝑣ଶ to 

calculate projections for each of the 𝒥 UKB participants in the constellation and defined 𝑢ଵ
௎௄஻ 

and 𝑢ଶ
௎௄஻ as the first two columns (i.e., participant-wise principal components). Similarly, we can 

calculate 𝑢ଵ
஺஽ேூ and 𝑢ଶ

஺஽ேூ for each of the 𝒥′ ADNI participants belonging to the constellation.  

 After projecting UKB and ADNI participants onto the dominant principal components of 

𝒦 we must first align the distributions of 𝑢ଵ
஺஽ேூ and 𝑢ଶ

஺஽ேூ with 𝑢ଵ
௎௄஻ and 𝑢ଶ

௎௄஻. To do so, we use 

a point-set registration algorithm described in the section “Affine point-set registration” to 

calculate an affine transform that can be applied to perform this alignment.  

 Following alignment of the two distributions, we use the methods described in the 

section “Calculating label similarity” to calculate case-control label similarity of participants in the 

ADNI dataset to nearby participants in the UKB dataset, 𝜎෤(𝑓; ൛𝑦௝ൟ, ൛𝑙௝ൟ, ൛𝑦′௝ᇱൟ, ൛𝑙ᇱ
௝ᇲൟ). In this 

expression, 𝑦௝ and 𝑙௝ refer to the projected data (𝑢ଵ
௎௄஻ , 𝑢ଶ

௎௄஻) and case-control label for UKB 

participant 𝑗, respectively. The terms 𝑦′௝ᇱ and 𝑙′௝ᇱ refer to the projected and aligned data 

൫𝑢ଵ
஺஽ேூ , 𝑢ଶ

஺஽ேூ൯ and case-control label for ADNI participant 𝑗′, respectively.  The value 𝑓 

represents the fraction of individuals from the training set (i.e., UKB data) one should use as 

nearest neighbors when averaging to approximate the true label of a point in the testing set 

(e.g., ADNI data). 

We can assess the statistical significance of the similarity measure 

𝜎෤ ቀ𝑓; ൛𝑦௝ൟ, ൛𝑙௝ൟ, ቄ𝑦ᇱ
௝ᇲቅ , ൛𝑙ᇱ

௝ᇲൟቁ with a permutation test. The null-hypothesis is that the labels are 

independent from the position of each point in projected space. Thus, we can draw a sample 

from the null-hypothesis by (i) randomly permuting the labels 𝑙௝ within the UKB data, (ii) 



randomly permuting the labels 𝑙ᇱ
௝ᇲ  within the ADNI data, and then (iii) recalculating the above 

steps for this label-shuffled data, including the affine point-set registration. Here, we ran 500 

permutations. After accumulating a distribution of values for 𝜎෤(𝑓) under the null-hypothesis, we 

can compare the original 𝜎෤(𝑓) to this distribution.  To estimate this empirical p-value, we first 

calculate the average 𝑧-score across a range of 𝑓 in (𝑓௟௢, 𝑓௛௜). For 𝑓௟௢ we choose the lower end 

of the 95% confidence-interval for affine-point-matching, determined using different random 

initializations applied to random projections of the data, and for 𝑓௛௜ we choose 50%. This 

average 𝑧-score is calculated using a normalizing factor to correct for heteroskedasticity [3]. The 

variance determining the normalizing factor is calculated from the analogous 𝑧-scores obtained 

after alignment of the projections onto principal-components calculated from randomly selected 

biclusters (i.e., subsets of cases and allele-combinations) of the same size as the bicluster of 

interest. We can calculate a global empirical p-value by comparing the average 𝑧-score of the 

observed data across the range of parameter choices 𝑓 in (𝑓௟௢, 𝑓௛௜) to the null distribution across 

the same range. The empirical p-values reported in the main-text are robust to changes in 𝑓௟௢ 

and 𝑓௛௜ (e.g., we get essentially the same p-values if 𝑓௟௢ is varied within the range [1%, 10%]). 

Given that a particular bicluster is globally significant, values of 𝑓 corresponding to high 𝑧-scores 

(or ranking relative to the null distribution) indicate reasonable values of 𝑓 to use when labelling 

new data. This use-case is further described in the main-text.  

Affine point-set registration 

 Prior to calculating label similarity between datasets, we perform affine point set 

registration. In the scenario where the dimension of the data (i.e., number of SNPs) is much 

larger than the number of samples, the principal components may be overfit to the training 

dataset. That is, the principal components are calculated to maximize the variance in the 

training set but not the test set. When projecting the test set data onto the principal components 

of the training set, the participant data from the test set will almost certainly have a smaller 

amplitude than the participant data in the training set. Technical artifacts, such as might be 

introduced by different genotyping chips across studies, may also lead to shifts or distortions in 

the data distributions. Given two collections of points, say in ℝଶ, we would therefore like to 

construct a transformation 𝑇 ∶  ℝଶ → ℝଶ which attempts to align one set of points to the other. 

The strategy we employ (described below) is designed to be part of our bicluster replication 

pipeline. Thus, we restrict ourselves to affine linear transformations, with the goal of registering 

the projected values of one dataset to the projected values of another, while controlling for 

possible differences in the number of cases and controls between these two datasets. While our 



algorithm may not be ‘optimal’, it has certain advantages. Specifically, our algorithm is 

‘automatic’, and there are no free parameters which need to be tuned. 

To describe our algorithm, we first introduce some notation. Consider a collection of 𝐽 

vectors ൛𝑢ଵ, … , 𝑢௃ൟ, each in ℝଶ. These 𝑢௝ are each endowed with a label 𝑙௝ ∈ {1, … , 𝐿} , indicating 

which category they are in – cases or controls. Also consider a second collection of 𝐽ᇱ vectors 

{𝑢ଵ
ᇱ , … , 𝑢௃ᇲ

ᇱ }, also in ℝଶ. The 𝑢௝ᇲ
ᇱ  are also endowed with labels 𝑙′௝ ∈ {1, … , 𝐿}. Given this notation, 

our goal will be to define an affine transformation 𝑇 ∶  ℝଶ → ℝଶ which aligns the {u୨ᇲ
ᇱ } to the ൛𝑢௃ൟ 

while correcting for the labels {𝑙௝ᇲ
ᇱ } and {𝑙௝}. This reduces the influence that the proportion of 

cases and controls can have on the transformation.  

To begin, we'll first define the k-element vector d൫k; {y୨}, yᇱ൯ ∈ ℝ୩, defined for a generic 

set {y୨} and vector yᇱ as follows. We first find the k nearest neighbors of yᇱ in the set {y୨}. Then 

we measure the distance between yᇱ and each of these 𝑘 nearest neighbors. Finally, we define 

d൫k; {y୨}, yᇱ൯ to be the 𝑘-element vector of these distances. 

Using d we can define the following symmetric error 𝐸 as follows: 

E ቀk; {y୨}, {y୨ᇲ
ᇱ }ቁ =

1

kห{y୨ᇲ}ห
෍ ቛd ቀk; {y୨}, y୨ᇲ

ᇱ ቁቛ
ଶ

୨ᇲ

+
1

kห{y୨}ห
෍ ቛd ቀk; {y୨ᇲ

ᇱ }, y୨ቁቛ
ଶ

,
୨

 

where |{⋅}| refers to the size of set {⋅}, and each ‖d(k)‖ଶ is the sum of squares of the 𝑘 entries 

in that d(k) (i.e., the squared frobenius-norm of d(k)). 

Using 𝐸 and the labels {l୨} and {l୨ᇲ
ᇱ }, we can define a 𝑇-dependent error 𝐹 as follows: 

F ቀT, k; {x୨}, {l୨}, {x୨ᇲ
ᇱ }, {l୨ᇲ}ቁ =

1

L
෍ E ቀk; {x୨ ቚl୨ = l}, {T ∘ 𝑥୨ᇲ

ᇱ ቚ l୨ᇲ = l}ቁ

୪

 

Because the sets {x୨}, {l୨}, {x୨ᇲ
ᇱ } and {l୨ᇲ} are fixed, we'll refer to 𝐹 below simply as F(T, k). 

Using this notion of error, we can define 𝑇 as follows: 

Initialize: Set 𝑇 to be the identity transformation and set 𝑘 to be equal to max(J, Jᇱ). 

Minimize: Starting with the current estimate for 𝑇, use Nelder-Meade optimization to 

update 𝑇 by minimizing F(T, k). 

Iterate: Now reduce 𝑘 by one and return to the previous step. 

Terminate: Stop when k = 1. 

In practice we often observe that the final transformation 𝑇 is unchanged if the initial 𝑘 is 

sufficiently large. Here, we set 𝑘 = 32. Similarly, the final transformation 𝑇 is often unchanged if 

𝑘 is reduced by more than 1 each iteration. 



Calculating label similarity 

To determine label similarity, we can take a particular point 𝑦′௝ᇱ (i.e., an ADNI participant) 

with case-control label 𝑙′௝ᇱ, and compare it to the 𝑘 nearest neighbors in the set ൛𝑦௝ൟ (i.e., UKB 

participants’ data). The number of nearest neighbors with a matching label is denoted as 𝑛(𝑗, 𝑘). 

Then, we define 𝑝(𝑗, 𝑘) = 𝑛(𝑗, 𝑘)/𝑘 to represent the fraction of nearest neighbors with a 

matching label. Then, we can define 𝜎(𝑘; ൛𝑦௝ൟ, ൛𝑙௝ൟ, ൛𝑦′௝ᇱൟ, ൛𝑙ᇱ
௝ᇲൟ) as the average of 𝑝(𝑗, 𝑘) over 𝑗. 

That is, the average fraction of the 𝑘-nearest neighbors with the same label. We use linear 

interpolation to extend this to a continuous function in the interval ൣ0, ห൛𝑦௝ൟห൧. Analogously, we 

can determine the similarity of UKB labels to ADNI labels, 𝜎(𝑘′; ൛𝑦′௝ᇱൟ, ൛𝑙ᇱ
௝ᇲൟ, ൛𝑦௝ൟ, ൛𝑙௝ൟ). Note that 

𝜎(𝑘′; ൛𝑦′௝ᇱൟ, ൛𝑙ᇱ
௝ᇲൟ, ൛𝑦௝ൟ, ൛𝑙௝ൟ) is defined for all 𝑘ᇱ in the interval ൣ0, ห൛𝑦′௝ᇱൟห൧. Finally, for all 𝑓 ∈ [0,1], 

define we define the symmetric similarity as follows: 

𝜎෤൫𝑓; ൛𝑦௝ൟ, ൛𝑙௝ൟ, ൛𝑦′௝ᇱൟ, ൛𝑙ᇱ
௝ᇲൟ൯ =

1

2
𝜎൫𝑓ห൛𝑦௝ൟห; ൛𝑦௝ൟ, ൛𝑙௝ൟ, ൛𝑦′௝ᇱൟ, ൛𝑙ᇱ

௝ᇲൟ൯ +
1

2
𝜎൫𝑓ห൛𝑦′௝ൟห; ൛𝑦′௝ᇱൟ, ൛𝑙ᇱ

௝ᇲൟ, ൛𝑦௝ൟ, ൛𝑙௝ൟ൯ 

 

 

  



Supplementary Tables 

Supplementary Table 1. Descriptive statistics of UK Biobank participants stratified by 

constellation and bicluster membership.  

 Constellation 1  Constellation 2  Constellation 3 

 
Bicluster 1 

cases 
Non-

bicluster 
 Bicluster 2 

cases 
Non-

bicluster 
 Bicluster 

cases 
Non-

bicluster 
n 570 4423  190 2617  - 417 
Sex, n male (%) 276 (48.4) 2128 (48.1)  92 (48.4) 1297 (49.6)  - 200 (48.0) 

Age, years (SD) 
64.72 (4.32) 64.75 (4.23) 

 
64.33 (4.65) 64.75 (4.08) 

 
- 

64.68 
(4.46) 

Education, years (SD) 
11.64 (4.85) 11.94 (4.95) 

 
11.56 (4.78) 12.09 (4.99) 

 
- 

11.71 
(5.02) 

AD dementia, n (%) 570 (100.0) 1120 (25.3)  190 (100.0) 733 (28.0)  - 126 (30.2) 
APOE-e4 alleles,  
n (%)  

 
  

 
  

0 212 (37.2) 2852 (64.5)  79 (41.6) 1676 (64.0)  - 263 (63.1) 
1 284 (49.8) 1353 (30.6)  78 (41.1) 799 (30.5)  - 133 (31.9) 
2 74 (13.0) 218 (4.9)  33 (17.4) 142 (5.4)  - 21 (5.0) 

 

  



Supplementary Table 2. Genotypes of MAPT haplotype H1/H2-tagging SNP rs8070723 

across constellations. The SNP rs8070723 may be used to determine haplotype carriership, 

with the A allele associated with haplotype H1 and the G allele associated with haplotype H2. 

There was a strong, but not perfect, correspondence between genotype and constellation. 

 
Constellation 
1 

Constellation 
2 

Constellation 
3 

AA 4985 1 2 

AG 8 2802 6 

GG 0 4 409 
 

 
   



Supplementary Figures 

 

 

Supplementary Figure 1. Principal components analysis of a random subset of variants. 
Principal components analysis (PCA) was applied to allele combinations of UK Biobank cases 
and controls from a random selection of variants. The number of variants was identical to the 
number included in the analysis of Alzheimer’s-associated variants (i.e., p<0.05 in the Kunkle et 
al. (2019) Alzheimer’s GWAS). The scatter plots display participant loadings on the first two 
principal components (PC1 and PC2) and colored by constellation labels defined from the 
analysis of at the p<0.05 threshold. Participants from all three constellations are highly mixed 
and mirrors the structure found in the analysis that included all (i.e., p<1.0) variants. This 
indicates that the constellation structure is not simply a function of the number of variants 
included in the analysis but emerges among disease-relevant variants. 
 



 

Supplementary Figure 2. Principal components analysis of additively-coded data. 
Principal component analysis was applied to additively-coded (i.e. dosage-coded) data from UK 
Biobank cases and controls restricted to variants with a p-value<0.05 in the Kunkle et al. 
Alzheimer’s GWAS [79]. The scatter plot displays participant loading on the first two principal 
components (PC1 and PC2) and are colored by constellation groups defined by the PCA of 
allele-coded data used in the primary analysis and shown in Figures 1 and 5 in the main text. 
Comparison of these plots indicates that the distinct clustering is not a by-product of the 
encoding scheme used.  
 

  



 

Supplementary Figure 3. Traces of search for primary and secondary biclusters. The 

disease-related signal-strength associated with the remaining UKB Alzheimer’s cases relative to 

controls is plotted on the y-axis for A) bicluster 1 (founding in constellation 1) and B) bicluster 2 

(found in constellation 2). At each iteration, allele combinations and cases that contribute least 

to this difference are removed. The proportion of remaining cases is shown on the x-axis. The 

red trace represents the original data and black traces represent label-shuffled data, 

corresponding to a null distribution. After identifying the primary bicluster, it is removed by 

scrambling the entries of the submatrix associated with bicluster (i.e., entries corresponding to 

the participants and allele-combinations that were retained in the bicluster) and the search 

algorithm is run again. The green trace represents this partially scrambled data. Constellation 3 

is not shown because no significant primary bicluster was found.  

  



 

Supplementary Figure 4. Principal components analysis of UKB cases and controls 

colored by bicluster membership. Principal component analysis was applied to allele 

combinations of UK Biobank cases and controls restricted to variants with a p-value<0.05 in the 

Kunkle et al. Alzheimer’s GWAS (12). The first two PCs are plotted as in Figure 1 from the main 

text, but individuals are now colored according to membership in a bicluster. 

  



 

 
Supplementary Figure 5. Overlap in gene sets, genes, and SNPs between biclusters. 
Panels A-C show the number of unique and shared elements between disease-specific 
biclusters. Separate GWAS compared bicluster cases to controls in the same constellation (e.g., 
bicluster 1 cases versus controls also belonging to constellation 1). A) Overlap in SNPs 
associated with each constellation or bicluster. B) Overlap in the corresponding genes to which 
SNPs associated with each bicluster were able to be mapped. C) Overlap in gene sets 
significantly enriched in each bicluster based on over-representation analysis of gene lists. In 
general, the amount of overlap was greater at higher levels of aggregation (e.g., there was more 
overlap of gene sets than genes or SNPs). 
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