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1 Introduction

For this study, we rely upon Nonparametric Failure Time Bayesian Additive Regression
Trees (NFT BART) methodology (Sparapani et al., 2023). NFT BART is a nonparametric
ensemble of trees survival analysis approach that does not rely on precarious restrictive as-
sumptions such as proportionality, linearity nor homoskedasticity. These features are partic-
ularly pertinent for our study examining predictors for mortality risk in patients undergoing
hematopoietic stem cell transplant (HSCT) for blood-borne cancer, where heteroskedasticity
and non-proportional hazards are likely to be present.

Here, we give a general summary of NFT BART and its most relevant aspects for this
study. For more details on NFT BART, see Sparapani et al. (2023) and the corresponding
Web Supplement. In Section 2, we review the BART and Heteroskedastic BART (HBART)
priors. Section 3 introduces the NFT BART model. Section 4 provides the default settings
for the Low Information Omnibus Dirichlet Process Mixtures (LIO DPM) hierarchical prior.
In Section 5, we provide DPM density, distribution, hazard and survival function estimates
for NFT BART. In Section 6, we show how the restricted mean survival time (RMST) can
be calculated for an NFT BART model. In Section 7, we demonstrate how to summarize an
NFT BART model with marginal effects by Friedman’s partial dependence (FPD) function.
In Section 8, we provide a brief description of the nftbart R package. You will find addi-
tional details about model variables in Section 9.1 and their relationship of with OS/EFS in
Section 9.2.

2 BART and Heteroskedastic BART

2.1 The BART prior

BART (Chipman et al., 2010) is a sum of binary trees nonparametric machine learning
regression model where the relationship between the outcome, yi, and the covariates, xi, is
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learned from the data itself. We restrict our attention to a continuous outcomes for now.
Let yi be a continuous outcome with i = 1, . . . , N indexing subjects and xi is a vector of
covariates. The BART model has the following form:

yi = µ(xi) + εi µ
prior∼ BART(a, b,H, κ, µ̃) µ(xi) ≡ µ̃+

H∑
h=1

g(xi; Th,Lh)

εi|σ2 iid∼ N
(
0, w2

i σ
2
)

σ2 prior∼ λνχ−2 (ν) (1)

where µ̃ is a constant that centers the data (a default choice is µ̃ = y). The binary tree
regression function is g(x; T ,L) with T denoting the nodes of the tree (as well as whether
they are branch decision rules or leaves) and L denoting its leaf values. The variance mul-
tiples, w2

i , are known constants dictated by the problem of interest; when unneeded, simply
let wi ≡ 1. Prior argument default settings are employed that often provide adequate fits.
For example, the number of trees, H, is large with typical settings of 50, 100 or 200 where
50 is a default with reasonable performance (Bleich et al., 2014).

2.2 The Heteroskedastic BART (HBART) prior

Heteroskedastic BART (Pratola et al., 2020) is an extension to BART where we fit both a
mean function, µ, and a variance function, σ2, for a flexible nonparametric function of x.
This model can be written as follows:

yi = µ(xi) + εi µ
prior∼ BART(a, b,H, κ, µ̃) µ(xi) ≡ µ̃+

H∑
h=1

g(xi; Th,Lh)

εi|σ2 ind∼ N
(
0, w2

i σ
2(xi)

)
σ2 prior∼ HBART(ã, b̃, H̃, λ̃, ν̃) σ2(xi) ≡

H̃∏
h=1

g(xi; T̃h, L̃h) (2)

where the covariates of µ(.) and σ2(.) do not need to be the same, but we denote them
by xi merely for notational convenience throughout. Recommended prior default argument
settings often provide adequate fitting: κ = 5 and µ̃ = y for µ; λ̃ = s2y and ν̃ = 10 for σ2;

with a = ã = 0.95 and b = b̃ = 2 for both.

2.3 Binary tree regression models

Here we present a brief overview of binary tree regression models as well as delving into the
details for the BART and HBART priors. [θ] is the generic bracket notation of Gelfand and
Smith (1990) denoting the distribution of θ, e.g., the prior for θ is [θ], the likelihood [y|θ]
and the posterior [θ|y]. For the BART prior, it is assumed that the trees are independent

and the leaves are conditionally independent given the trees as [T ,L]
prior∝

∏
h [Th] [Lh|Th]

where Th represents a tree and Lh the leaves of that tree (the HBART prior is analogous:[
T̃ , L̃

]
).
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2.4 The variance prior for BART

The prior variance is independent of the trees and leaves. It is weakly informed by the data
via the construction of σ̂2 that defaults to either the variance of y itself or the variance of
the random error from a linear regression. A default value of ν = 3 is assumed and λ is

chosen given the distribution, σ2 prior∼ λνχ−2 (ν), such that P[σ2 < σ̂2] = q where the default
for q = 0.9. For more details of the variance prior see Chipman et al. (2010).

2.5 The tree prior for BART and HBART

To develop the tree prior, we need to introduce some notation: [T h] = [βh1, . . . , βhCh ] where
n = 1, . . . , Ch is the index for nodes. For each node, the depth of the tree can be deduced
from the node index itself: d(n) = blog2 nc. Furthermore, at tier d(n) = d, the potential
nodes are numbered as n = 2d, . . . , 2d+1 − 1 from left to right where a parent’s children are
2n and 2n + 1 at depth d + 1 (but of course they need not all exist except n = 1). Rather
than a tier’s height, it is tier depth to be considered since binary trees are typically drawn
growing downward (as opposed to upward like wooden trees); see the schematic diagram:
Supplement Table 1.

Tier Node
0 1
1 2 3
2 4 5 6 7
...
d 2d . . . 2d+1−1

Supplement Table 1: Schematic diagram of a binary tree.

Trees with many branches will likely over-fit to the training data at the expense of
predictive performance on unseen validation data without a regularization penalty. There-
fore, the BART and HBART priors have a branching penalty where the regularity increases
with the depth. If we assume a success is a branch decision rule and a failure is a termi-

nal leaf value, then we have independent Bernoulli random variables βhn
prior∼ B(p(d(n)))

where p(d) = a(1 + d)−b and q(d) = 1 − p(d). The prior argument defaults are a = 0.95
and b = 2 (for a discussion of this penalty, see Chipman et al. (1998, 2010); Ročková and
Saha (2019)). So the expected number of branches (leaves), in prior probability, is 1 (2)
with probability P[βh1 = 1, βh2 = βh3 = 0] = p(0)q(1)2 ≈ 0.55 and 2 (3) with probability
2P[βh1 = βh2 = 1, βh3 = βh4 = βh5 = 0] = 2p(0)p(1)q(1)q(2)2 ≈ 0.27 (doubled due to sym-
metry), i.e., trees with only 1 or 2 branches (2 or 3 leaves) would predominate in prior
probability of roughly 0.82.
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2.6 The leaf prior

2.6.1 BART

A priori, each of the leaf values are independent: [Lh|Th] =
∏

lh
[µhlh|Th] where Lh = [µhlh ] is a

vector of leaf values for tree h and lh ∈ {n : βhn = 0} is the index for the leaves. Suppose that
y ∈ [ymin, ymax] and denote µ̃h as the leaf output values from each tree corresponding to the

vector of covariates, x. If µ̃h|Th
iid∼ N

(
0, σ2

µ

)
, then the model estimate is ŷ = E [y] = µ̃+

∑
h µ̃h

where ŷ∼N
(
µ̃, Hσ2

µ

)
. We choose a value for σµ which is the solution to the equations

ymin = µ̃ − κ
√
Hσµ and ymax = µ̃ + κ

√
Hσµ, i.e., σµ = ymax−ymin

2κ
√
H

. Therefore, we arrive at

µhlh |Th
prior∼ N

(
0, τ2

4κ2H

)
where τ = ymax − ymin. So, the default value, κ = 2, corresponds to

ŷ falling within the extrema with approximately 0.95 probability. The values ymin and ymax

can be elicited from expert opinion as the 2.5 and 97.5 percentiles respectively to set τ . By
default, τ is set to the extrema from the observed data.

2.6.2 HBART

The BART leaf prior is as above except that the default is now κ = 5. Here, we discuss
the prior for L̃h|T̃h. For a more detailed discussion of the HBART prior specification, please

see Pratola et al. (2020). A priori, each of the leaf values are independent:
[
L̃h|T̃h

]
=∏

lh

[
σ2
hlh
|T̃h
]

where L̃h =
[
σ2
hlh

]
is a vector of leaf values for tree h and lh ∈ {n : β̃hn = 0}

is the index for the leaves. The prior for the leaves is σ2
hlh

prior∼ λνχ−2 (ν) so we need to
determine the defaults for λ and ν. Suppose that we consider a homoskedastic BART

model: E [σ2] = λ̃ν̃
ν̃−2 with defaults λ̃ = σ̂2 and ν̃ = 10. Compare that with the corresponding

HBART setting: E [σ2(x)] =
∏

h E [σ̃2
h] = λH̃

[
ν
ν−2

]H̃
(where σ̃2

h represents the leaf from

tree h corresponding to x). Since λ̃ν̃
ν̃−2 ≡ λH̃

[
ν
ν−2

]H̃
, we use the values λ = λ̃1/H̃ and

ν = 2
[
1−

(
1− 2

ν̃

)1/H̃]−1
.

3 NFT BART

NFT BART is a largely assumption free survival analysis model having a nonparametric
distribution for the random error while allowing the covariates to explain both a location
shift and a scale change. Here we present a brief introduction; for more details see Sparapani
et al. (2023). For notational convenience, we move fluidly between a parameterization based
on the precision, τi, to the variance, σ2

i = τ−1i , since it is generally arbitrary. The NFT
BART model is as follows (let the unknown parameters be denoted θ):{

yi = µ(xi) + εi µ
prior∼ BART(a, b,H, κ, µ̃)

εi|θ
ind∼ N(µi, σ

2
i σ

2(xi)) σ2 prior∼ HBART(ã, b̃, H̃, λ̃, ν̃)

}
(3)
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subject to the constraints N−1
∑

i µi = 0 and N−1
∑

i σ
2
i = 1 for identifiability (we defer the

description of priors for µi and τi until the next Section 4). Right-censoring is handled by
data augmentation as follows:

yi

{
∼ N(µi + µ(xi), σ

2
i σ

2(xi)) I(log ti,∞) if δi = 0, right-censoring

= log ti if δi = 1, an event time
(4)

and, conveniently, left-censoring can be handled similarly, but that is not shown for simplicity.
As noted, both µi and σi are constrained. Posterior inference can reliably be performed

in the unconstrained setting; however, convergence diagnostics are more challenging without
constraints. Furthermore, in the unconstrained setting, our experience has been that MCMC
mixing is inefficient making convergence diagnostics even more important at the same time
that they are more difficult to ascertain. Therefore, we recommend constrained DPM for
NFT BART (Yang et al., 2010).

4 The LIO DPM prior hierarchy

Like BART and HBART, the LIO DPM prior hierarchy has robust default arguments that
should be sufficient in most circumstances. Due to the identifiability constraints on (µi, τi),
the defaults fall into what is known as the standardized setting (Shi et al., 2019). The DPM
LIO prior hierarchy employed by NFT BART is as follows:

G|α prior∼ DP
(
α, F(µ0,τ0|k0,b0)

)
(µi, τi)|G

prior∼ G (5)

α
prior∼ Gamma (1, 0.1) τ0|b0

prior∼
F

Gamma (1.5, b0) b0
prior∼ Gamma (2, 1)

µ0|(τ0, k0)
prior∼
F

N
(
0, τ−10 k−10

)
k0

prior∼ Gamma (3, 7.5)

where the joint base distribution [µ0, τ0|k0, b0] is drawn by the conditionals [τ0|b0][µ0|τ0, k0].

5 Posterior inference for NFT BART

Notationally, let θ = (µ, σ2,µ, τ , α) represent the unknown parameters where θm is the mth
posterior draw. Our primary interest with respect to statistical inference here is the impact
of the covariates on the time to an event. In particular, the survival function, S(t|x) =
1 − F (t|x), plays a central role along with the hazard function, h(t|x) = f(t|x)/S(t|x).
The nonparametric estimation of survival and hazard is arrived at by aggregating over the
DPM clusters (Escobar and West, 1995) to create estimates of the distribution, F (t|x), and
density, f(t|x). For NFT BART, we arrive at the following (conditioning on θm suppressed
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for notational convenience):

Fm(t|x) =

∫
Φ
{

log t− µ∗ − µm(x)

σ∗σm(x)

}
Gm(dµ∗, dσ∗) (6)

=
∞∑
j=1

ωjΦ
{

log t− µ∗j − µm(x)

σ∗jσm(x)

}
≈

Km∑
j=1

ωjmΦ
{

log t− µ∗jm − µm(x)

σ∗jmσm(x)

}

fm(t|x) =

∫ φ
{

log t−µ∗−µm(x)
σ∗σm(x)

}
tσ∗σm(x)

Gm(dµ∗, dσ∗) (7)

=
∞∑
j=1

ωjφ
{

log t−µ∗j−µm(x)

σ∗
j σm(x)

}
tσ∗jσm(x)

≈
Km∑
j=1

ωjmφ
{

log t−µ∗jm−µm(x)

σ∗
jmσm(x)

}
tσ∗jmσm(x)

where Φ(.) and φ(.) are the standard Normal distribution and density functions, respectively,
while m = 1, . . . ,M indexes draws from the posterior. In equations (6) and (7), we adopt
the notation (µ∗, σ∗) for constrained posterior predictive draws from Gm and (µ∗j , σ

∗
j ) for

those values that are shared by the jth atomic cluster. But, drawing from a constrained Gm

requires unconstrained draws needing centering/scaling. Therefore, we propose a reasonable
compromise for computational convenience by substituting constrained (µ∗jm, σ

∗
jm) draws

from the posterior for (µ∗j , σ
∗
j ) that provides fairly effective estimation performance.

Now we can calculate our survival function estimate by the mean with respect to the
posterior as Ŝ(t|x) = M−1∑

m Sm(t|x) (and the hazard function is estimated similarly).
Further, we can create 1 − 2π level credible intervals via the π and 1 − π quantiles of the
posterior, (Ŝπ(t|x), Ŝ1−π(t|x)), such that Ŝp(t|x) = Smp(t|x) where mp is the posterior draw
corresponding to the p = π, or p = 1− π, quantile respectively.

6 Restricted mean survival time (RMST)

The restricted mean survival time (RMST) is an alternative measure that is fairly inter-
pretable (Royston and Parmar, 2013; Pak et al., 2017; Kloecker et al., 2020). The mean
survival time requires an infinite integral:

∫∞
0
S(s|x)ds. However, this is impractical, i.e., an

observation period can’t be lengthened until every patient passes away. Therefore, RMST
limits the observation period up until time τ : RMST(τ) =

∫ τ
0
S(s|x)ds.

To calculate RMST from an NFT BART model, consider a log-Normal time-to-event, ez,
where z∼N(µ, σ2). This leads to the following intermediate result (a completing the square
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calculation reminiscent of the Moment Generating Function identity).

E [ez|z < log(τ)] = (σ
√

2π)−1
∫ log(τ)

−∞
ez−

(z−µ)2

2σ2 dz

= eµ+σ
2/2(σ

√
2π)−1

∫ log(τ)

−∞
e−

(z−(µ+σ2))2

2σ2 dz

= eµ+σ
2/2Φ

(
log(τ)− (µ+ σ2)

σ

)
For NFT BART, we have a DP mixture of log-Normals: log(t) = z∗ where z∗∼

∑
j ωj [zj]

and [zj] is N
(
µj, σ

2
j

)
. Now, we need the probability, p, that z∗ falls within the observation

period.

p = P[z∗ < log(τ)] =
∑
j

ωj

∫ log(τ)

−∞
[zj] dzj =

∑
j

ωjpj where pj = Φ

[
log(τ)− µj

σj

]
We derive this next key result by recognizing that the RMST is simply the expectation of
the following random variable: s = min(t, τ).

RMST(τ) = E [s]

=

∫ log(τ)

−∞
ez

∗
[z∗] dz∗ + τ

∫ ∞
log(τ)

[z∗] dz∗

= E
[
ez

∗|z∗ < log(τ)
]

+ qτ where q = 1− p

This result can be decomposed into its atoms step-by-step.

E
[
ez

∗|z∗ < log(τ)
]

=
∑
j

ωjE [ezj |zj < log(τ)]

E [ezj |zj < log(τ)] = πje
µj+σ

2
j /2 where πj = Φ

(
log(τ)− (µj + σ2

j )

σj

)
E
[
ez

∗|z∗ < log(τ)
]

=
∑
j

ωjπje
µj+σ

2
j /2

So, finally, arriving at the result of interest: RMST(τ) = E [s] = qτ +
∑

j ωjπje
µj+σ

2
j /2.

7 Marginal effects

Friedman’s partial dependence function (FPD) is a common choice for estimating marginal
effects via nonparametric regression and/or machine learning applications (Friedman, 2001).
We divide the covariates into a subset of interest, A, and their complement, B, where all
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covariates are A ∪ B. The covariates of interest are fixed at settings of interest: a single
setting denoted xA. The complement take on the observed values found in the training data
set, denoted xiB for subject i, with the corresponding setting for all covariates denoted as
(xA,xiB).

Notationally, let the unknown parameters be θ = (µ, σ2,µ, τ , α) where θm is for the
mth posterior draw; and, similarly, let θi = (µ, σ2, µi, τi, α) with corresponding θim. For-
mally, we have an interest in the marginal expectation ŷA = E [y|xA]. So, consider the
draws of ŷAm =

∫
E [y|xA,xB,θm] [xB|xA] dxB. Full evaluation of this conditional expec-

tation can be challenging in practice due to the need for characterizing the conditional
distribution [xB|xA]. The FPD function approximates this quantity under an assumption
of independence by averaging over the observed marginal covariate distribution of xB to
get ŷAm ≈ N−1

∑
i E [y|xA,xiB,θm] for the mth posterior draw. We conceptually extend

the FPD technique to an NFT BART marginal expectation by the following simple adapta-
tion: ŷAm ≈ N−1

∑
i E [yi|xA,xiB,θim] = N−1

∑
i (µim + µm(xA,xiB)) leading to the result

ŷA = M−1∑
m ŷAm. Similarly, FPD can be employed for more complex functions of the pos-

terior such as the survival. We arrive at the survival marginal effect for setting xA for NFT
BART, in two steps, as follows (conditioning on θ suppressed for notational convenience).{

FAm(t|xA) = N−1
∑

i Φ
(

log t−µim−µm(xA,xiB)
σimσm(xA,xiB)

)
ŜA(t|xA) = 1−M−1∑

m FAm(t|xA)

}
And, finally, credible intervals for the marginal effects are provided by the posterior quantiles
as shown above.

8 Software Implementation

The software necessary to implement the methodology explored in this article is not trivial
to implement. We relied upon the nftbart R package that is publicly available online hosted
on the Comprehensive R Archive Network (CRAN) (Sparapani et al., 2023). The nftbart
package relied on several key computational methods some of which were explored in this ar-
ticle. The next section demonstrates an example discussing missing data imputation and the
marginal effects methodology employed here. Furthermore, the Gibbs conditionals necessary
for NFT BART are shown in the previous section. Other computational methods employed,
besides BART (Chipman et al., 2010) and HBART (Pratola et al., 2020), include efficient
BART/HBART posterior sampling (Pratola, 2016), efficient DPM sampling (Neal, 2000),
constrained DPM (Yang et al., 2010), DPM LIO (Shi et al., 2019) and data augmentation
for left-/right-censoring (Henderson et al., 2020).

With the nftbart R package, we present a real data example of an advanced lung cancer
study (Loprinzi et al., 1994). Two-hundred and twenty-eight subjects with lung cancer were
followed by the North Central Cancer Treatment Group for a median of roughly one year.
Several covariates of interest were collected including age, sex, daily activity performance
scores, diet and weight-loss information. All of these variables were largely non-missing with
the exception of the calories consumed at meals for which missingness was 20.6%.
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For this limited amount of missing data, we utilized record-level cold-decking imputation
that is biased towards the null. The name reflects its similarity to hot-decking (de Waal
et al., 2011) except that no attempt is made to locate a nearby/hot neighbor based on the
outcome nor any other covariate criteria, i.e., cold-decking is a simple random sampling of a
non-missing subject’s record to replace the missing values with. For subject’s with multiple
missing values, the joint relationships between covariates are maintained by replacing all of
the missing values from the non-missing subject randomly chosen. This simple missing data
imputation method is sufficient for data sets with relatively few missing values; for more
prevalent missingness we recommend the sequential BART algorithm (Xu et al., 2016).

For this example, sex was determined to be the most important covariate by Thompson
Sampling Variable Selection (TSVS) (Liu and Ročková, 2023; Sparapani et al., 2023) with
138 male and 90 female participants. To demonstrate a common computation with nftbart,
we will compare the survival experience of males vs. females by their marginal effects with
Friedman’s partial dependence function (Friedman, 2001) (as described in 7). As we can see
in Supplement Figure 1, females generally have longer survival; however, for advanced lung
cancer the prognosis is dire in the era of the collected data since the survival probability
declines precipitously for both sexes. This demonstration is included with the nftbart
package. You can install the nftbart R package and run this example as follows (use a
nearby CRAN mirror for best results; see http://cran.r-project.org/mirrors.html).

> options(repos=c(CRAN="http://cran.r-project.org"))

> install.packages("nftbart", dependencies=TRUE)

> ## system.file() returns the location where lung.R is installed

> system.file("demo/lung.R", package="nftbart")

> source(system.file("demo/lung.R", package="nftbart"))

> ## demo("lung", package="nftbart") ## via the demo() facility
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Supplement Figure 1: Advanced lung cancer study example: males vs. females. Two-hundred
and twenty-eight subjects with lung cancer were followed by the North Central Cancer
Treatment Group for a median of roughly one year: 138 male and 90 female participants. For
this data set, statistical inference was performed with NFT BART for the collected covariates
including age, sex, daily activity performance scores, diet and weight-loss information. The
solid lines summarize the survival marginal effect for males (blue) and females (red) where
the dashed lines are 95% credible intervals.
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9 Additional details

9.1 Model variables

First, we provide tabulations for the additional covariates in the model, 41 in total: Supple-
mentary Tables 2, 3, 4, and 5. Furthermore, we have a comparison of the actual matched
donor from the search archive along with two potential matches: the youngest female and
the youngest male: Supplementary Tables 6.

This is a good point to elaborate on when cold-decking missing imputation was employed
(as described in the previous section). For a global variable with missigness such as “Re-
cipient CMV+”, cold-decking was performed. And the same imputation per recipient was
used for both OS and EFS calculations. However, for a disease-specific covariate like “ALL
immunotype”, this wouldn’t work well. In this case, cold-decking would very likely just draw
another missing value since only 13% of the recipients were transplanted due to ALL: we
could keep drawing, but for a large data set (as we have here) that is time-consuming. So,
for disease-specific variables such as these, we employed a missing value category rather than
imputation.

Supplement Table 2: Recipient demographic characteristics. Training and validation sets are
mutually exclusive while search archive is a subset of validation.

Training set Validation set Search archive Overall total

Recipient CMV+ 9968 1787 691 11755
Yes 6021 60.4% 1078 60.3% 420 60.8% 7099 60.4%
Missing 48 15 8 63

Ventilation history 10012 1801 699 11813
Yes 367 3.7% 67 3.7% 23 3.3% 434 3.7%
Missing 4 1 0 5

Invasive fungal history 10009 1801 699 11810
Yes 421 4.2% 83 4.6% 40 5.7% 504 4.3%
Missing 7 1 0 8

CMV: cytomegalovirus
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Supplement Table 3: Disease and transplant characteristics: part 1. Training and validation sets
are mutually exclusive while search archive is a subset of validation.

Training set Validation set Search archive Overall total

Disease 10016 1802 699 11818
ALL 1290 12.9% 251 13.9% 102 14.6% 1541 13.0%
AML 3956 39.5% 746 41.4% 290 41.5% 4702 39.8%
CLL 139 1.4% 26 1.4% 10 1.4% 165 1.4%
CML 269 2.7% 47 2.6% 22 3.1% 316 2.7%
MDS 1988 19.8% 362 20.1% 139 19.9% 2350 19.9%
MM 128 1.3% 26 1.4% 10 1.4% 154 1.3%
NHL 617 6.2% 94 5.2% 37 5.3% 711 6.0%
Other 1629 16.3% 250 13.9% 89 12.7% 1879 15.9%

From diagnosis to transplant 9995 1796 695 11791
0:6 months 4311 43.1% 754 42.0% 285 41.0% 5065 43.0%
>6:12 months 2511 25.1% 475 26.4% 186 26.8% 2986 25.3%
>12:18 months 785 7.9% 151 8.4% 59 8.5% 936 7.9%
>18:24 months 457 4.6% 89 5.0% 40 5.8% 546 4.6%
>24 months 1931 19.3% 327 18.2% 125 18.0% 2258 19.2%
Missing 21 6 4 27

Prior autologous 10016 1802 699 11818
Yes 480 4.8% 87 4.8% 44 6.3% 567 4.8%

ATG/Campath 10016 1802 699 11818
Yes 3855 38.5% 696 38.6% 296 42.3% 4551 38.5%

ALL/AML cycles to CR1 5246 997 392 6243
1 3607 68.8% 674 67.6% 274 69.9% 4281 68.6%
2 1044 19.9% 225 22.6% 86 21.9% 1269 20.3%
3+ 595 11.3% 98 9.8% 32 8.2% 693 11.1%

ALL Ph chromosome 1290 251 102 1541
Yes 423 32.8% 80 31.9% 35 34.3% 503 32.6%

ALL immunotype 1279 250 101 1529
T-cell 181 14.2% 37 14.8% 16 15.8% 218 14.3%
B-cell 1098 85.8% 213 85.2% 85 84.2% 1311 85.7%
Missing 11 1 1 12

ALL cytogene 1290 251 102 1541
Normal 238 18.4% 59 23.5% 26 25.5% 297 19.3%
Poor 787 61.0% 136 54.2% 47 46.1% 923 59.9%
Other 265 20.5% 56 22.3% 29 28.4% 321 20.8%

ALL BCR/ABL marker 1290 251 102 1541
Yes 207 16.0% 44 17.5% 21 20.6% 251 16.3%

ABL: Abelson interactor 1 gene, ALL: acute lymphoblastic leukemia,
AML: acute myelogenous leukemia, ATG: anti-thymocyte globulin,
BCR: breakpoint cluster region gene, CLL: chronic lymphocytic leukemia,
CML: chronic myelogenous leukemia, CR1: first complete remission,
MDS: myelodysplastic syndrome, MM: multiple myeloma, NHL: non-Hodgkin’s lymphoma.
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Supplement Table 4: Disease and transplant characteristics: part 2. Training and validation sets
are mutually exclusive while search archive is a subset of validation.

Training set Validation set Search archive Overall total

AML cytogene 3956 746 290 4702
Normal 259 6.5% 60 8.0% 31 10.7% 319 6.8%
Favorable 789 19.9% 133 17.8% 47 16.2% 922 19.6%
Intermediate 1249 31.6% 254 34.0% 102 35.2% 1503 32.0%
Poor 1641 41.5% 293 39.3% 107 36.9% 1934 41.1%
APL 18 0.5% 6 0.8% 3 1.0% 24 0.5%

AML progression from MDS 3956 746 290 4702
Yes 550 13.9% 101 13.5% 43 14.8% 651 13.8%

AML therapy-related 3956 746 290 4702
Yes 306 7.7% 66 8.8% 20 6.9% 372 7.9%

MDS predisposed 1988 362 139 2350
Yes 99 5.0% 11 3.0% 6 4.3% 110 4.7%

MDS therapy-related 1988 362 139 2350
Yes 385 19.4% 57 15.7% 23 16.5% 442 18.8%

AML: acute myelogenous leukemia, APL: acute promyelocytic leukemia,
MDS: myelodysplastic syndrome.
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Supplement Table 5: Disease and transplant characteristics: part 3. Training and validation sets
are mutually exclusive while search archive is a subset of validation.

Training set Validation set Search archive Overall total

CLL status 139 26 10 165
Complete remission 66 47.5% 12 46.2% 4 40.0% 78 47.3%
Partial remission 45 32.4% 11 42.3% 5 50.0% 56 33.9%
Stable 28 20.1% 3 11.5% 1 10.0% 31 18.8%

CLL 17p 139 26 10 165
Yes 50 36.0% 11 42.3% 4 40.0% 61 37.0%

CML status 269 47 22 316
Hematologic CR 99 36.8% 17 36.2% 7 31.8% 116 36.7%
Chronic phase 124 46.1% 27 57.4% 13 59.1% 151 47.8%
Accelerated phase 46 17.1% 3 6.4% 2 9.1% 49 15.5%

MM ISS/DS stage 128 26 10 154
I/II 45 35.2% 11 42.3% 6 60.0% 56 36.4%
III 83 64.8% 15 57.7% 4 40.0% 98 63.6%

MM cytorisk 103 20 7 123
Normal 7 6.8% 3 15.0% 0 0.0% 10 8.1%
High 70 68.0% 8 40.0% 5 71.4% 78 63.4%
Standard 26 25.2% 9 45.0% 2 28.6% 35 28.5%
Missing 25 6 3 31

MM status 128 26 10 154
SCR/CR 13 10.2% 7 26.9% 3 30.0% 20 13.0%
VGPR 63 49.2% 11 42.3% 4 40.0% 74 48.1%
Partial response 34 26.6% 4 15.4% 0 0.0% 38 24.7%
Stable 8 6.3% 2 7.7% 2 20.0% 10 6.5%
Progressive/relapse 10 7.8% 2 7.7% 1 10.0% 12 7.8%

NHL subtype 617 94 37 711
Folicular 80 13.0% 7 7.4% 2 5.4% 87 12.2%
DLBCL 188 30.5% 42 44.7% 17 45.9% 230 32.3%
MCL 95 15.4% 11 11.7% 3 8.1% 106 14.9%
Other B-cell 7 1.1% 0 0.0% 0 0.0% 7 1.0%
T-cell 247 40.0% 34 36.2% 15 40.5% 281 39.5%

CLL: chronic lymphocytic leukemia, CML: chronic myelogenous leukemia,
CR: complete response, DLBCL: diffuse large B-cell lymphoma,
ISS/DS: International Staging System/Durie-Salmon, (Hari et al., 2009)
MCL: mantle cell lymphoma, MM: multiple myeloma, NHL: non-Hodgkin’s lymphoma,
SCR: stringent complete response, VGPR: very good partial response.
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Supplement Table 6: Donor matching characteristics. Search archive comparison between the
actual matched donor vs. potential matches: the youngest female, the youngest male and the
youngest between the two.

Actual donor Youngest F Youngest M Youngest

Donor age 698 699 699 699
17:29 479 68.6% 640 91.6% 602 86.1% 671 96.0%
30:39 146 20.9% 36 5.2% 51 7.3% 22 3.1%
40:49 52 7.4% 16 2.3% 23 3.3% 5 0.7%
50:62 21 3.0% 7 1.0% 23 3.3% 1 0.1%
Missing 1 0 0

Donor sex 698 699 699 699
male 524 75.1% 0 0.0% 699 100.0% 347 49.6%
Missing 1 0 0 0
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9.2 Relationships with respect to OS/EFS

Here we provide a table that cross-references each relationship with their corresponding data
display(s).

Supplement Table 7: List of figures by assessed relationship.
OS EFS

Characteristics Marginal Effects Waterfall Plot Marginal Effects Waterfall Plot

RMST value function
Figure 2

Donor
Age Figure 3 Figure 4
Sex/parity Figure 5 Figure 6

Recipient female Figure 7 Figure 8
Recipient male Figure 9 Figure 10

CMV Figure 11 Figure 12 Figure 13 Figure 14
DPB1 Figure 15 Figure 16 Figure 17 Figure 18
DQB1 Figure 19 Figure 20 Figure 21 Figure 22

Recipient
Age Figure 23 Figure 24
Race Figure 25 Figure 26
Median income (ZCTA) Figure 27 Figure 28
HCT-CI Figure 29 Figure 30

Disease/transplant
ALL status Figure 31 Figure 32
AML status Figure 33 Figure 34
MDS status Figure 35 Figure 36
Year of transplant Figure 37 Figure 38

ALL: acute lymphoblastic leukemia, AML: acute myelogenous leukemia, CMV: cytomegalovirus,
HCT-CI: hematopoietic cell transplant comorbidity index (Sorror et al., 2015),
MDS: myelodysplastic syndrome, ZCTA: ZIP code tabulation area.
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Supplement Figure 2: Population level value function for RMST. Return to cross-reference
9.2.
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9.2.1 Figures for donor characteristics
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Supplement Figure 3: Marginal effect of donor age for OS: training cohort. Return to cross-
reference 9.2.
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Supplement Figure 4: Marginal effect of donor age for EFS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 5: Marginal effect of sex match for OS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 6: Marginal effect of sex match for EFS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 7: Waterfall plot of recipient females and donor sex/parity for OS: vali-
dation cohort. Return to cross-reference 9.2.
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Supplement Figure 8: Waterfall plot of recipient female and donor sex/parity for EFS:
validation cohort. Return to cross-reference 9.2.
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Supplement Figure 9: Waterfall plot of recipient males and donor sex/parity for OS: valida-
tion cohort. Return to cross-reference 9.2.
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Supplement Figure 10: Waterfall plot of recipient male and donor sex/parity for EFS: vali-
dation cohort. Return to cross-reference 9.2.
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Supplement Figure 11: Marginal effect of CMV match for OS: training cohort. Return to
cross-reference 9.2. .
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Supplement Figure 12: Waterfall plot of CMV match for OS: validation cohort. Return to
cross-reference 9.2.
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Supplement Figure 13: Marginal effect of CMV match for EFS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 14: Waterfall plot of CMV match for EFS: validation cohort. Return to
cross-reference 9.2.
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Supplement Figure 15: Marginal effect of DPB1 match/permissive mismatch for OS: training
cohort. Return to cross-reference 9.2.
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Supplement Figure 16: Waterfall plot of DPB1 match/permissive mismatch for OS: valida-
tion cohort. Return to cross-reference 9.2.
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Supplement Figure 17: Marginal effect of DPB1 match/permissive mismatch for EFS: train-
ing cohort. Return to cross-reference 9.2.
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Supplement Figure 18: Waterfall plot of DPB1 match/permissive mismatch for EFS: vali-
dation cohort. Return to cross-reference 9.2.
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Supplement Figure 19: Marginal effect of DQB1 match for OS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 20: Waterfall plot of DQB1 match for OS: validation cohort. Return to
cross-reference 9.2.
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Supplement Figure 21: Marginal effect of DQB1 match for EFS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 22: Waterfall plot of DQB1 match for EFS: validation cohort. Return
to cross-reference 9.2.
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9.2.2 Figures for recipient characteristics
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Supplement Figure 23: Marginal effect of recipient age for OS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 24: Marginal effect of recipient age for EFS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 25: Marginal effect of race for OS: training cohort. Return to cross-
reference 9.2.
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Supplement Figure 26: Marginal effect of race for EFS: training cohort. Return to cross-
reference 9.2.
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Supplement Figure 27: Marginal effect of ZIP median income for OS: training cohort. Return
to cross-reference 9.2.

42



0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EFS
t (days)

S
(t

|x
)

median_income
$25K
$50K
$75K
$125K

Supplement Figure 28: Marginal effect of ZIP median income for EFS: training cohort.
Return to cross-reference 9.2.
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Supplement Figure 29: Marginal effect of HCT-CI for OS: training cohort. Return to cross-
reference 9.2.
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Supplement Figure 30: Marginal effect of HCT-CI for EFS: training cohort. Return to
cross-reference 9.2.
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9.2.3 Figures for disease/transplant characteristics
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Supplement Figure 31: Marginal effect of ALL status for OS: training cohort. Return to
cross-reference 9.2.

46



0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EFS
t (days)

S
(t

|x
)

ALL
CR1
CR2
PIF
CR3+
Relapse

Supplement Figure 32: Marginal effect of ALL status for EFS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 33: Marginal effect of AML status for OS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 34: Marginal effect of AML status for EFS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 35: Marginal effect of MDS status for OS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 36: Marginal effect of MDS status for EFS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 37: Marginal effect of transplant year for OS: training cohort. Return to
cross-reference 9.2.
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Supplement Figure 38: Marginal effect of transplant year for EFS: training cohort. Return
to cross-reference 9.2.
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