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Supplemental Note  

Creating harmonized scoring files to facilitate easier PGS 
calculation 
PGS Scoring Files in the Catalog are currently provided in a consistent format with 
standardized column names and data types, along with information about the genome build 
given by authors (see https://www.pgscatalog.org/downloads/#dl_scoring_files for schema). 
The variant-level information in these PGS is often heterogeneously described and may lack 
chromosome/position information, contain a mix of positions and/or rsIDs, or be mapped to a 
genome build different from target genotypes. To make make variant matching and PGS 
calculation easier we developed software to harmonize scoring files into a new scoring file 
for each commonly used genome build (currently, GRCh37/hg19 and GRCh38/hg38) by 
ensuring variant information (chromosome name and base pair position) and variant 
identifiers (updated rsID) are present. 
 
The generation of these harmonized files is done by using the pgs-harmonizer tool 
(https://github.com/PGScatalog/pgs-harmonizer) for each new or updated scoring file as part 
of the PGS Catalog data release process. It is based on the Open Targets and GWAS 
Catalog Summary Statistics harmonizer pipelines (https://github.com/EBISPOT/gwas-
sumstats-harmoniser). To harmonize the variant positions the pgs-harmonizer performs 
the following tasks: 

● Mapping rsIDs to chromosomal positions using Ensembl (VCF files and REST APIs) 
on GRCh37 and GRCh38. Currently, the PGS Catalog maps data using Ensembl 
version 105. 

● Liftover - if only chromosomal positions are provided we map chromosomal positions 
across builds using the UCSC liftover tools via the Python library pyliftover 
(https://github.com/konstantint/pyliftover). This only occurs when generating a 
Scoring file on a different genome build (the author-supplied positions are otherwise 
reported). 

The resultant files create new columns (see 
https://www.pgscatalog.org/downloads/#hm_pos_columns for schema), indicating the source 
of the variant annotation (hm_source), as well as consistently annotated chromosome 
(hm_chr) / position (hm_pos), and rsID (hm_rsID) which can be used to match scoring file 
variants in target genomes in combination with the alleles (effect_allele, and other_allele). 

Development and implementation of the PGS Catalog 
Calculator (pgsc_calc) within Nextflow and Python 
Each process within the workflow is contained in a module that ideally contains a single 
software tool, which are provided as Docker and Singularity containers via the GitHub 
container registry. To support environments without containers, Anaconda environment files 
are provided. The use of containers ensures reproducibility, and portability of the software - 
this allows the pipeline to run at the location of the data, which is essential as human 



 

 
2 

genomes are sensitive data and many users will be unable to move their datasets to other 
computing environments. Multiple modules are organized into a subworkflow that performs a 
specific task, and the current pgsc_calc pipeline includes subworkflows for input checks, 
data harmonization, variant matching/scorefile creation, PGS calculation, and optional 
analyses involving reference panels and genetic ancestry.  
 
The pipeline uses synthetic data for automated, continuous integration testing (in Docker 
and Singularity environments), which is deployed using GitHub Actions. The datasets 
include: 
 

● a small subset variants from the CINECA synthetic European cohort for unit testing 
(EGA accession: EGAD00001006673) 

● the small HAPNEST1 dataset for end to end tests of ancestry estimation (BioStudies 
accession: S-BSST936) 

  
Our Nextflow implementation supports automatic parallelization of many steps of the 
workflow, handling the most common scenario where the genotyping data is split by 
chromosome. During development we made efforts to ensure each stage of the workflow 
can scale to biobank sized data. For example, we regularly run the workflow using hundreds 
of scores on the UK Biobank, which contains ~500,000 samples. These analyses typically 
run on a HPC and require up to 64GB of RAM and 4 CPU. The runtime of the pipeline is 
primarily determined by the number of unique variants being scored and the number of 
samples - therefore it is most efficient to run the workflow once with multiple scores instead 
of running the workflow many times with a single score.  
 
The pgsc_calc pipeline uses plink2 internally for genotype data harmonization and PGS 
calculation.2 plink2 is a standard genomics toolkit, and we reuse these features to avoid 
duplicating existing work.2 However, we have developed independent software packages to 
automate and improve many aspects of scoring genotypes with plink2 (see Supplementary 
Table 1). pgscatalog_utils (https://github.com/PGScatalog/pygscatalog, 
https://pypi.org/project/pgscatalog-utils/) is a python package that offers a set of tools for 
working with the PGS Catalog API, polygenic scoring models, and calculated scores. 
fraposa_pgsc (https://github.com/PGScatalog/fraposa_pgsc) is an improved fork of 
FRAPOSA3, a python package which implements a more accurate method for projecting 
new samples using existing genetic principle components that removes the effects of 
shrinkage. We improved the original FRAPOSA software by adding extra checks to ensure 
the genotype and allele orientation is correct between the reference and target samples. All 
the component software packages within the workflow are open source and publicly 
available, and can also be used as standalone tools in other settings (Supplementary Table 
1).  
 
 
Supplementary Table 1. Workflow component dependencies.  

Workflow component plink2 pgscatalog_utils fraposa_pgsc 

PGS Catalog API integration to 
download polygenic score models 

 ✅  
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Genotype data harmonization ✅   

Merging PGS scoring files for 
matching  

 ✅  

Variant matching between scoring file 
and target genotypes 

 ✅  

PGS scoring ✅   

Calculating PGS by aggregating data 
split across chromosomes 

 ✅  

Derivation of genetic PCA space & 
projection of new samples  

  ✅ 

Ancestry similarly analysis and PGS 
adjustment 

 ✅  

Detailed description of pgsc_calc pipeline 
Here we describe step-by-step the methods used to calculate PGS within the PGS Catalog 
Calculator (pgsc_calc v2.0.0, see Figure 2 for a visual overview): 

Genotype data inputs & harmonization 
PGS Catalog Calculator takes an input of target genomes and build information for PGS 
calculation in most commonly-used genomics formats (variant call format [VCF], or PLINK 1 
or 2 format2) and assumes the data has been imputed using an reference panel to increase 
the likelihood that PGS variants are matched. The workflow begins by recoding genotypes 
into PLINK2 compressed binary format and relabelling variant identifiers in a consistent way 
to make variant matching easier. VCFs must be recoded into a triplet of files: a variant 
information file, a genotype data file, and a sample information file. PLINK1 files are 
backwards compatible with PLINK2, so only new variant information files are created when 
working with this type of data to reduce I/O operations. Sample information is not currently 
used by the workflow, but may be in the future (e.g. to enable sex checking). 

Scoring files: PGS Catalog integration & custom inputs 
We integrate with the PGS Catalog API (https://www.pgscatalog.org/rest/) to download 
polygenic scoring files using search terms like Polygenic Score ID (--pgs_id), Publication 
ID (--pgp_id), or Trait ontology ID (--trait_efo). Harmonized scoring files that contain 
genomic coordinates which match input genome build (GRCh37 or GRCh38) and complete 
allele information are fetched according to workflow parameters.  
 
Custom user defined scoring files are also supported with the –scorefile parameter. 
Custom files should be formatted in the PGS Catalog v2 specification 
(https://www.pgscatalog.org/downloads/#scoring_header) and minimally contain a header 
with the build information, and columns with a chromosomal position, effect allele, and effect 
weight - a non-effect allele is also recommended to improve matching accuracy. Scoring files 
with builds that do not match the target genotypes will automatically have positions lifted to 
the new build using the pyliftover (https://github.com/konstantint/pyliftover) tool. 
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All scoring files are merged into a common representation for input into the variant matching 
steps.  

Variant matching 
Variant matching is critical to faithfully reproduce scores deposited in the PGS Catalog. It’s 
difficult to unambiguously match a variant described in a scoring file against genotypes: 
variant identifiers (e.g. dbSNP rsID) are not stable or unique identifiers, genomic coordinates 
change across different genome builds, and matching effect alleles can be technically 
challenging because of allele flips and strand mismatches. The PGS Catalog scoring file 
standard and genome build-harmonized data uploads simplify this process by making 
structured data available that includes important information like effect allele and other allele. 
The variant matching procedure is as follows: 
 

1. Multiallelic variants in the target genomes are split so that all REF/ALT combinations 
can be matched (optional and configurable by user) 

2. Identify all potential matches where chromosome and position must match and: 
a. [effect_allele, other_allele] in scoring file == [REF, ALT] in target genomes 
b. [effect_allele, other_allele] in scoring file == [ALT, REF] in target genomes 
c. Complemented [effect_allele, other_allele] in scoring file == [REF, ALT] in 

target genomes (optional, configurable by user parameter) 
d. Complemented [effect_allele, other_allele] in scoring file == [ALT, REF] in 

target genomes  (optional, configurable by user parameter) 
e. If other allele information is missing, drop this data (and its corresponding 

field in the target genome) from comparison 
3. Label match candidates with flags to describe variants that are:  

a. Strand ambiguous,e.g. A/T, C/G SNPs 
b. Multiallelic variants 
c. Duplicated, same scoring file variant matches multiple variants 
d. Flipped strand, the complement of the variant is present in target genomes  
e. Present in an external list of variants eligible for matching (optional, used 

during ancestry adjustment to calculate scores on a consistent set of variants) 
4. For each variant in the original scoring file, select the best possible match after: 

a. Ranking match candidates in order of matching strategies 2.a-d (a is 
preferred) 

b. Excluding match candidates according to user parameters, defaults: 
i. No multiallelic variant matches (can be altered using -–

keep_multiallelic) 
ii. No ambiguous variant matches (can be altered using -–

keep_ambiguous) 
5. Comparing the best match candidates to the original scoring file, calculate the 

percentage of variants that are matched and remain after exclusions. 
a. If the overlap for a score is below 75% (user configurable with --

min_overlap), drop the score from step 7 but continue 
b. If all unique scores are below 75%, stop matching and raise an error 

6. From the union of match candidates and missing matches, create an auditable log 
with one variant per row that includes: 

a. Scoring file variant information 
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b. Target genome variant information 
c. Match metadata including labels 

7. Pivot best match candidates to wide format, so that variant IDs with multiple matched 
effect weights are transformed to have multiple columns for parallel score calculation 

a. Missing effect weights generated by pivoting are filled with 0  
b. Write this data to a compressed text file in plink2 scoring file format 

 
A default minimum threshold is set - at least 75% of variants in a scoring file must be 
successfully matched to genotyped sites in the target file before calculation can proceed - to 
reduce the chance of polygenic score misapplication (--min_overlap parameter can be 
adjusted). After matching, new intermediate scoring files are written to enable efficient 
polygenic score calculation in parallel, and an auditable log is written for the union of variants 
across all scoring files. 

PGS calculation 
PGS are calculated as linear sums of the effects of m variants, based on the the effect 
weight in the scoring file (𝛽):  

𝑃𝐺𝑆! =&⬚
"

#

𝑥!#𝛽# 		 

where 𝑥!# is the genotype for the 𝑖th individual and 𝑗th SNP (usually encoded as 0, 1 or 2 for 
the effect allele dosage). Scoring files produced by the variant matching process are applied 
to genotypes using plink2 —-score. Duplicate variants with different effect alleles are 
automatically split into separate files to overcome plink limitations. Scoring is automatically 
parallelized across chromosomes if the input genomes are split. If the reference panel is 
used, then allelic frequencies are automatically calculated from the reference panel and 
loaded to impute missing genotypes. This is particularly useful when applying PGS to low 
sample sizes (fewer than 50) where in-sample imputation is more likely to be unreliable (see 
plink documentation). Computing multiple scores in parallel adds very little computational 
resources (the pipeline computation time scales with the number of variants in the scoring 
files, not the number of scores). It’s far more efficient to run the workflow once with multiple 
scores than to run the workflow once for each score (see below). Calculated scores are 
automatically aggregated once scoring has finished to simplify downstream applications of 
PGS. 

Ancestry adjustment (optional) 

Derivation of population reference panels for use in PGS Catalog Calculator  
To facilitate the analysis of PGS in the context of ancestry, the pgsc_calc pipeline 
distributes and can create reference panels of individuals with population descriptors (e.g. 
genetic ancestry groups). The pipeline by default uses a merged variant callset of the 1kGP 
and Human Genome Diversity project (HGDP) samples for build GRCh38 release in 
gnomAD (v3.1.2), adding additional diversity to the 1kGP data, specifically Middle Eastern 
and Oceanian ancestry individuals.4 To prepare the HGDP+1kGP data for use in the 
pgsc_calc pipeline we filtered the data to all high-quality individuals and variants passing 
gnomAD QC filters, additionally filtering to variants with a minor allele count greater than 10, 
and converting plink2 pgen format. To provide a version of the new panel in GRCh37 we 
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applied the same filters and used the GATK5 liftoverVCF tool, again converting the data to 
plink2 pgen format. The pgsc_calc pipeline can then be run in combination with these 
reference panels to calculate PGS as a relative risk measure similar to individuals of a 
similar genetic ancestry. 

Description of ancestry workflow 
Variants in the reference panel are first intersected with the target genomes. This 
intersection is used to match against scoring files so that both the target genomes and 
reference panels use the same set of variants to calculate PGS for consistency. Allelic 
frequencies are calculated in the reference panel and loaded while scoring target genomes 
to impute missing genotypes.  
 
A PCA is derived using fraposa-pgsc on the reference panel, filtered to unrelated samples 
with low genotype missingness (<10%) with standard filters for variant-level QC (SNPs in 
Hardy–Weinberg equilibrium [p > 1e-04] that are bi-allelic and non-ambiguous, with low 
missingness [<10%], and minor allele frequency [MAF > 5%]). LD-pruning is then applied to 
the variants and sample passing these checks (r2 threshold = 0.05), excluding complex 
regions with high LD (e.g. MHC).6 The LD-pruned variants of the unrelated samples passing 
QC are then used to define the PCA space of the reference panel (default: 10 PCs) using 
FRAPOSA.3 The PCA of the reference panel (variant-PC loadings, and reference sample 
projections) are then used to determine the placement of the target samples in the PCA 
space using projection. Naive projection (using loadings) is prone to shrinkage which biases 
the projection of individuals towards the null of an existing space, which would introduce 
errors into PCA-loading based adjustments of PGS. For a less biased projection of 
individuals into the reference panel PCA space we use the online augmentation, 
decomposition and Procrustes (OADP) method of the FRAPOSA package.3 We chose to 
implement PCA-based projection over derivation of the PCA space on a merged target and 
reference dataset to ensure that the composition of the target doesn’t impact the structure of 
the PCA. This is implemented in the FRAPOSA_OADP module. We note that the quality of 
the PCA and projection should be visually assessed in the report - further optimizations and 
QC steps will be added to avoid manual inspection in the future.  
 
The calculated PGS (SUM), reference panel PCA, and target sample projection into the PCA 
space are supplied to a script that performs the analyses needed to adjust the PGS for 
genetic ancestry. This functionality is implemented within our pgscatalog_utils package, and 
is comprised of two steps: genetic similarity analysis and PGS adjustment (see 
Supplementary Figure 1 for overview of methods).  
 
Performing empirical PGS adjustments requires comparing an individual’s PGS to a 
distribution of scores in a reference population. To determine a suitable reference population 
we perform a genetic similarity analysis using the PCA projections to determine the most 
similar population for each sample. By default this is done by fitting a RandomForest 
classifier to predict reference panel population assignments using the PCA-loadings (default: 
10 PCs) and then applying the classifier to the target samples to identify the most genetically 
similar population in the reference panel (e.g. highest-probability).4,7 Alternatively, the 
Mahalanobis distance between each individual and each reference population can be 
calculated and used to identify the most similar reference population (minimum distance).8 
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The probability of membership for each reference population and most similar population 
assignments are recorded and output for all methods, heuristic p-value thresholds are used 
to determine low-confidence similarity labels (0.5 for RandomForest, and 1e-10 to determine 
outliers via a Mahalanobis converted into a p-value using the Chi-squared distribution). 
 
The empirical PGS adjustments (percentile_MostSimilarPop, Z_MostSimilarPop) 
are then performed by combining the results of the genetic similarity analysis. The relative 
PGS for each individual is calculated by comparing the calculated PGS to the distribution of 
PGS in the most similar population in the reference panel and reporting it as a percentile 
(output column: percentile_MostSimilarPop) or as a Z-score (output column: 
Z_MostSimilarPop). 
 
To perform the PCA-based adjustments (Z_norm1, Z_norm2) only the PGS and PCA-
loadings are used using regression to correct for mean, or mean and variance shifts that are 
correlated with genetic ancestry. By default these methods use the first 4 components of 
genetic ancestry, but this setting can be changed in the pipeline interface. The first method 
(originally proposed by Khera et al.9) to adjust for differences in the means of PGS 
distributions across ancestries by fitting a linear regression of PGS values based on PCA-
loadings using unrelated individuals of the reference panel: 

𝑃𝐺𝑆	~	𝑃𝐶$%& (Eq. 1) 
and the observed standard deviation of the PGS in the reference panel (𝜎'()(*(+,(-.+(/). The 
regression is then used to calculate the ancestry-predicted PGS (𝑃𝐺𝑆-*(0) based on the 
target sample’s PCA projections and the normalized PGS is calculated as: 

𝑃𝐺𝑆1+2*"$ =	 (𝑃𝐺𝑆345 	− 	𝑃𝐺𝑆-*(0)/𝜎'()(*(+,(-.+(/ 
This achieves PGS distributions that are approximately centered at 0 for each genetic 
ancestry group (output column: Z_norm1), while not relying on any population labels during 
model fitting. The first method (Z_norm1) has the result of normalizing the first moment of 
the PGS distribution (mean); however, the second moment of the PGS distribution (variance) 
can also differ between ancestry groups.10 A second regression of the PCA-loadings on the 
squared residuals (difference of the PGS and the predicted PGS) 

(𝑃𝐺𝑆345 	− 	𝑃𝐺𝑆-*(0)6	~	𝑃𝐶$%& (Eq. 2) 
can be fit using a Gamma regression in the same unrelated individuals of the reference 
panel to estimate a predicted standard deviation (𝜎-*(0) based on genetic ancestry, as was 
proposed by Khan et al. and implemented within the eMERGE GIRA.10,11 The intercepts and 
coefficients from equations 1 and 2 are used and initializations to full likelihood model 
(originally implemented by Linder et al. in R https://github.com/broadinstitute/palantir-
workflows/blob/v0.10/ImputationPipeline/ScoringTasks.wdl and re-implemented in Python 
within pgscatalog_utils)11: 
 

𝑃𝐺𝑆1+2*"6 =	 (𝑃𝐺𝑆345 	− 	𝑃𝐺𝑆-*(0)/𝜎-*(0 
This yields a new estimate of relative risk (output column: Z_norm2) where the variance of 
the PGS distribution is more equal across ancestry groups and approximately 1. 
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Supplementary Figure 1. Schematic figure detailing empirical and PCA-based methods 
for contextualizing or adjusting PGS with genetic ancestry. Data is for the normalization 
of PGS000018 (metaGRSCAD) when applying pgsc_calc --run_ancestry to HGDP 
genotypes using 1kGP as a reference panel. 
 

Description of pgsc_calc outputs 
The outputs of pgsc_calc are described in our online documentation (https://pgsc-
calc.readthedocs.io/en/latest/explanation/output.html), and we provide a brief overview here. 

Aggregated PGS file 
Calculated scores are stored in a gzipped-text space-delimited text file called 
[sampleset]_pgs.txt.gz. The data is presented in long form where each PGS for an 
individual is presented on a separate row (length = n_samples*n_pgs), and there will be at 
least four columns with the following headers (sampleset, IID, PGS, SUM). If the pipeline 
was run using ancestry information (--run_ancesty) the columns describing the ancestry 
adjustments that were calculated will also be present (percentile_MostSimilarPop, 
Z_MostSimilarPop,  Z_norm1, Z_norm2). The aggregated file can be easily read into 
any analysis software (e.g. R/python) and linked to other datasets based on the identifiers in 
the genotyping data for downstream analysis.  

Report 
A summary report is provided for each successful run of the pipeline (report.html). The 
report can be opened in any web browser and contains useful information about the PGS 
that were applied, how well the variants in your target dataset match with the reference 
panel and scoring files, a summary of the computed genetic ancestry data, and some simple 
graphs displaying the distribution of scores in your dataset(s) as a density plot 
(Supplementary Figures 2-3 and 5). Some of the sections are only displayed when the 
ancestry analyses have been performed (Supplementary Figure 4). 
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Supplemental Figure 2. Example of pgsc_calc header. First section of the report 
reproduces the nextflow command, and scoring file metadata (imported from the PGS 
Catalog for each PGS ID) describing the scoring files that were applied to the sampleset(s) 
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Supplemental Figure 3. Example of variant matching summaries in the pgsc_calc 
report. The first table describes the number of variants in the target dataset that overlap with 
the reference panel (only present with --run_ancestry). The second table provides a 
summary of the number and percentage of variants within each score that have been matched, 
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and whether that score passed the --min_overlap threshold (Passed Matching column) for 
calculation. The third table provides a more detailed summary of variant matches broken down 
by types of variants (e.g., strand ambiguous, multiallelic, duplicates) for matched, excluded, 
and unmatched variants. 
 
 
 

 
Supplemental Figure 4.  Visualization of genetic ancestry analysis within the report. A 
a snippet of the [sampleset]_popsimilarity.txt.gz is followed by PCA plots for the 
first 6 PCs, where the target samples are colored according to the population that they are 
most similar to in the reference panel.  
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Supplemental Figure 5. Example of the [sampleset]_pgs.txt.gz table and plots of 
PGS distributions. A snippet of the PGS results file is displayed along with a visual display 
of the PGS distribution for a set of example score(s) for each method of PGS adjustment.  
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Population similarity summary 
A second gzipped-text space-delimited text file called 
[sampleset]_popsimilarity.txt.gz will also be output, describing the analysis of the 
target samples in relation to the reference panel and ancestry labels. The file contains 
information about the PCA projection, genetic similarity analysis (probabilities of being from 
each reference panel population), and information about the reference panel samples 
(relatedness, population label). These data can be useful for stratifying analyses by most 
similar ancestry group, assessing PGS adjustments, or as a source of PCs for use in 
phenotype-PGS modeling.  

Application of pgsc_calc to HGDP and UK Biobank data: 
scalability and performance  
 
The PGS Catalog Calculator has supported biobank scale target genomes since v1.3.0 
(https://doi.org/10.5281/zenodo.7342886). Each process in the workflow was profiled with a 
range of input data to gather statistics about CPU and memory usage. From these statistics 
we determined the main factor that influences scaling is the number of variants in the union 
of all scoring files and the variant density of the target genomes (see Supplementary 
Figure 6). Native support for parallelized score calculation means that running the workflow 
iteratively for each score is very inefficient compared to a single multi-score calculation. The 
number of distinct PGS being calculated has minimal impact on workflow runtime and 
resource usage compared with the total number of variants in the scoring file union.  
 
The Nextflow dataflow model supports implicit parallelization. Tasks are automatically 
distributed to workers for each chromosome during the calculation process. Scoring jobs for 
each chromosome are also parallelised when required, such as when processing variants 
with recessive or dominant effect types. Workers can be submitted as tasks to schedulers 
like SLURM, LSF, or Google Cloud Batch. This means that the wall (real-world) time 
increases at a much slower rate than CPU time. Splitting target genomes by chromosome is 
optional but offers significant performance improvements. For example, splitting UKB data 
by chromosome means that each worker processes 4.2 million target variants on average, 
versus 93 million target variants in the combined target genomes.  Splitting by chromosome 
also enables horizontal scaling (i.e., adding additional workers), which is typically more 
desirable than vertical scaling (i.e., allocating more RAM / CPU to a worker). 
 
To test the scalability of calculations using pgsc_calc we applied the Calculator to two 
datasets: 929 samples (78,097,677 variants) from the HGDP12, and 487,396 samples 
(93,095,623 variants) from UK Biobank (UKB) imputed using the HRC reference panel.13 To 
evaluate the influence of ancestry adjustment on computational resources the the --
run_ancestry command was run for HGDP using the 1kGP reference panel, and for UKB 
the HGDP+1kGP reference panel was used. These benchmarks run on multiple sets of 
scoring files from the May 8, 2024 PGS Catalog data release corresponding to metaGRSCAD 
(PGS000018) and body mass index (EFO_0004340; 102 scores). To illustrate the effects of 
PGS adjustment we plot the distributions of PGS000018 (metaGRSCAD) in the datasets, after 
grouping the data on the Most Similar Population assignments.   



 

 
14 

 
The impact of genetic ancestry estimation and normalization on performance is largest for 
small jobs. Most of this work only needs to be done once for each set of target genomes. 
Recently we have made significant caching improvements to further improve performance 
and make PGS calculation faster and more environmentally sustainable when calculating 
new scores on previously processed samples.14 Work which is stable across multiple 
calculations, such as preparing target genomes or estimating genetic ancestry, is skipped to 
save resources (see Supplementary Figure 6 for marginal resource usage). Previously 
cached work which has changed - such as applying new scoring files to target genomes - is 
automatically invalidated by Nextflow without any user input, which causes new processes to 
be launched.  
 
 

 
Supplementary Figure 6. The number of variants in PGS is the main factor that 
influences scaling. CPU-time of PGS calculation of PGS000018 and body mass index 
(EFO_0004340; 102 scores) for 929 HGDP or 487,396 UKB individuals. CPU benchmarks 
exclude run times for initial data harmonization and ancestry calculation steps and display only 
the marginal CPU time for new runs of pgsc_calc on the same samples. CPU benchmarking 
was run on a shared cluster using Intel Xeon Scalable Processors (Platinum 8368Q). 
 
 

Comparison of pgsc_calc with other tools 
We provide a summary of the key features of the PGS Catalog calculator (pgsc_calc) in 
comparison to other tools (plink22, pgs-calc15, PRScalc16) that are are capable of PGS 
calculation (Supplementary Table 2). In contrast to other tools such as pgs-calc15 and 
PRScalc16, the PGS Catalog Calculator is the only PGS calculation tool wholly implemented 
within a workflow manager and provides additional features to normalize PGS using genetic 
ancestry. Another pipeline describing the implementation of scoring, PCA, and ancestry 
adjustment has also been described (eMERGE GIRA; 
https://github.com/broadinstitute/palantir-
workflows/blob/v0.10/ImputationPipeline/ScoringTasks.wdl)11 in WDL; however, there is little 
documentation limiting its usability by external users. Our pgsc_calc tool also adopts the 
nf-core community framework to implement best practice such as continuous integration 
tests, code guidelines, and code templates.17 Our main justification for using a workflow 
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manager is portability: we aim to make sure that it’s possible to bring our code to the users 
data, because access to human genetic data is strictly controlled and often cannot leave 
specific storage or compute environments. Workflow managers also bring other benefits: 
they make it simple to share our versioned code, and help to ensure calculated results 
reliably reproduce regardless of the underlying compute environment.18 In contrast, pgs-
calc15 is embedded as a process inside an imputation server, so data must be transferred to 
a central location before results can be calculated. PRScalc offers a privacy-preserving 
approach by keeping data client side and calculating PGS using local system resources; 
however, this approach is less compatible with offline TREs and would not scale to biobank 
size data.  
 
A limitation of the calculator is that it only implements a command-line interface compared 
with the graphical user interfaces provided by pgs-calc15 (via the Michigan Imputation 
Server11 website) and PRScalc16. However, our schema provides native support for the 
Seqera Platform (formerly Nextflow Tower) - users that prefer a web interface are able to 
launch the workflow using the Seqera Platform by linking their HPC or cloud credentials to 
the platform. Additionally, we provide extensive user-friendly documentation including a  
getting started tutorial, how-to guides, explanations of PGS, and API reference materials 
(https://pgsc-calc.readthedocs.io/, https://pygscatalog.readthedocs.io/). An active community 
discussion forum is also available for users to ask questions about PGS calculation or to 
report problems they experience (https://github.com/PGScatalog/pgsc_calc/discussions).  
 
It’s possible to calculate PGS using other methods, such as using plink22 directly, or 
software libraries like LDpred2.19 However, these approaches don’t provide an end to end 
solution to PGS calculation and require significant manual work or specialist domain 
knowledge to operate effectively (e.g. querying the PGS Catalog API, data harmonization). 
In contrast, the PGS Catalog Calculator requires minimal user input to calculate PGS 
reliably, and will provide users with clear errors when problems occur during PGS 
calculation, such as an insufficient match rate between scoring file variants and target 
genomes. 
 
Supplementary Table 2. Comparison of pgsc_calc to other PGS calculation tools.  
 

Feature PGS Catalog 
Calculator 
(pgsc_calc) 

plink2 -
-score2 

pgs-calc15 PRScalc16 
 

Target genome input format 

VCF  ✅ ✅ ✅ ❌ 

PLINK1 binary file format (bed / bim / fam) ✅ ✅ ❌ ❌ 

PLINK2 binary file format (pgen / pvar / psam)  ✅ ✅ ❌ ❌ 

23andMe format ❌ ✅ ❌ ✅ 

Polygenic score models 
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Feature PGS Catalog 
Calculator 
(pgsc_calc) 

plink2 -
-score2 

pgs-calc15 PRScalc16 
 

Integration with PGS Catalog API to select 
scores by trait, publication, or PGS ID (in correct 
genome build) 

✅ ❌  ✅ 

Support PGS Catalog scoring file format v2 to 
report score metadata including citations and 
license 

✅ ❌ ✅ ❌ 

Automatic variant matching between polygenic 
score model and target genomes to correctly 
identify effect alleles despite allele flips, 
ambiguous alleles, and strand problems 

✅ ❌ ✅ ❌ 

Auditable log of matched variants and minimum 
overlap thresholds to minimize user error and 
misapplication of models 

✅ ❌ ✅ ❌ 

Automatic liftover of custom polygenic score 
models between GRCh37 and GRCh38  

✅ ❌ Not within the 
tool 

❌ 

Custom polygenic score model input ✅ ✅ ❌ ❌ 

Polygenic score calculation 

Automatically combine multiple models to support 
parallel calculation  

✅ ❌ ✅ ❌ 

Imputed allele dosages for missing genotypes 
from reference data 

✅ ❌ ❌ ❌ 

Polygenic score calculation ✅ ✅ ✅ ✅ 

Automatic chromosome parallelization and score 
aggregation 

✅ ❌ Within pipeline ❌ 

Genetic ancestry 

Predicted most similar population with robust 
PCA using a reference panel 

✅ ❌ ✅ ❌ 

Custom reference panel support ✅ ❌ ❌ ❌ 

Adjustment of PGS using genetic ancestry 
information 

✅ ❌ ❌ ❌ 

Outputs & Interface 

Format text-file text-file text-file json 

Interface Command line Command 
line 

Primarily web-
based server 
(https://imputatio
nserver.sph.umi
ch.edu/), 
command line 
tool also 
available 

Web 
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Feature PGS Catalog 
Calculator 
(pgsc_calc) 

plink2 -
-score2 

pgs-calc15 PRScalc16 
 

User-friendly documentation Extensive for 
both command 
line interface, 
results, and 
interpretation: 
https://pgsc-
calc.readthedo
cs.io/en/latest/i
ndex.html  

Limited: 
https://ww
w.cog-
genomics.
org/plink/2.
0/score  

Only for web 
interface:  
https://imputatio
nserver.readthe
docs.io/en/latest/
pgs/getting-
started/  

Limited, 
only for 
interface: 
https://epis
phere.githu
b.io/prs/  

Portability 

Natively deploy with Docker containers ✅ ❌* ❌ NA 

Natively deploy with Singularity containers ✅ ❌* ❌ NA 

Natively deploy with Anaconda environments ✅ ❌* ❌ NA 

Native support for HPC deployment (e.g. 
SLURM, LSF) 

✅ ❌ ❌ NA 

Native support for cloud deployment (e.g. Google 
Cloud Batch) 

✅ ❌ ❌ NA 

Supports offline / airlocked environments (e.g. 
Trusted Research Environments) 

✅ ✅ ✅ ❌ 

*available via the biocontainers20 project  
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