

1

Supplemental Note

Creating harmonized scoring files to facilitate easier PGS
calculation
PGS Scoring Files in the Catalog are currently provided in a consistent format with
standardized column names and data types, along with information about the genome build
given by authors (see https://www.pgscatalog.org/downloads/#dl_scoring_files for schema).
The variant-level information in these PGS is often heterogeneously described and may lack
chromosome/position information, contain a mix of positions and/or rsIDs, or be mapped to a
genome build different from target genotypes. To make make variant matching and PGS
calculation easier we developed software to harmonize scoring files into a new scoring file
for each commonly used genome build (currently, GRCh37/hg19 and GRCh38/hg38) by
ensuring variant information (chromosome name and base pair position) and variant
identifiers (updated rsID) are present.

The generation of these harmonized files is done by using the pgs-harmonizer tool
(https://github.com/PGScatalog/pgs-harmonizer) for each new or updated scoring file as part
of the PGS Catalog data release process. It is based on the Open Targets and GWAS
Catalog Summary Statistics harmonizer pipelines (https://github.com/EBISPOT/gwas-
sumstats-harmoniser). To harmonize the variant positions the pgs-harmonizer performs
the following tasks:

● Mapping rsIDs to chromosomal positions using Ensembl (VCF files and REST APIs)
on GRCh37 and GRCh38. Currently, the PGS Catalog maps data using Ensembl
version 105.

● Liftover - if only chromosomal positions are provided we map chromosomal positions
across builds using the UCSC liftover tools via the Python library pyliftover
(https://github.com/konstantint/pyliftover). This only occurs when generating a
Scoring file on a different genome build (the author-supplied positions are otherwise
reported).

The resultant files create new columns (see
https://www.pgscatalog.org/downloads/#hm_pos_columns for schema), indicating the source
of the variant annotation (hm_source), as well as consistently annotated chromosome
(hm_chr) / position (hm_pos), and rsID (hm_rsID) which can be used to match scoring file
variants in target genomes in combination with the alleles (effect_allele, and other_allele).

Development and implementation of the PGS Catalog
Calculator (pgsc_calc) within Nextflow and Python
Each process within the workflow is contained in a module that ideally contains a single
software tool, which are provided as Docker and Singularity containers via the GitHub
container registry. To support environments without containers, Anaconda environment files
are provided. The use of containers ensures reproducibility, and portability of the software -
this allows the pipeline to run at the location of the data, which is essential as human

2

genomes are sensitive data and many users will be unable to move their datasets to other
computing environments. Multiple modules are organized into a subworkflow that performs a
specific task, and the current pgsc_calc pipeline includes subworkflows for input checks,
data harmonization, variant matching/scorefile creation, PGS calculation, and optional
analyses involving reference panels and genetic ancestry.

The pipeline uses synthetic data for automated, continuous integration testing (in Docker
and Singularity environments), which is deployed using GitHub Actions. The datasets
include:

● a small subset variants from the CINECA synthetic European cohort for unit testing
(EGA accession: EGAD00001006673)

● the small HAPNEST1 dataset for end to end tests of ancestry estimation (BioStudies
accession: S-BSST936)

Our Nextflow implementation supports automatic parallelization of many steps of the
workflow, handling the most common scenario where the genotyping data is split by
chromosome. During development we made efforts to ensure each stage of the workflow
can scale to biobank sized data. For example, we regularly run the workflow using hundreds
of scores on the UK Biobank, which contains ~500,000 samples. These analyses typically
run on a HPC and require up to 64GB of RAM and 4 CPU. The runtime of the pipeline is
primarily determined by the number of unique variants being scored and the number of
samples - therefore it is most efficient to run the workflow once with multiple scores instead
of running the workflow many times with a single score.

The pgsc_calc pipeline uses plink2 internally for genotype data harmonization and PGS
calculation.2 plink2 is a standard genomics toolkit, and we reuse these features to avoid
duplicating existing work.2 However, we have developed independent software packages to
automate and improve many aspects of scoring genotypes with plink2 (see Supplementary
Table 1). pgscatalog_utils (https://github.com/PGScatalog/pygscatalog,
https://pypi.org/project/pgscatalog-utils/) is a python package that offers a set of tools for
working with the PGS Catalog API, polygenic scoring models, and calculated scores.
fraposa_pgsc (https://github.com/PGScatalog/fraposa_pgsc) is an improved fork of
FRAPOSA3, a python package which implements a more accurate method for projecting
new samples using existing genetic principle components that removes the effects of
shrinkage. We improved the original FRAPOSA software by adding extra checks to ensure
the genotype and allele orientation is correct between the reference and target samples. All
the component software packages within the workflow are open source and publicly
available, and can also be used as standalone tools in other settings (Supplementary Table
1).

Supplementary Table 1. Workflow component dependencies.

Workflow component plink2 pgscatalog_utils fraposa_pgsc

PGS Catalog API integration to
download polygenic score models

 ✅

3

Genotype data harmonization ✅

Merging PGS scoring files for
matching

 ✅

Variant matching between scoring file
and target genotypes

 ✅

PGS scoring ✅

Calculating PGS by aggregating data
split across chromosomes

 ✅

Derivation of genetic PCA space &
projection of new samples

 ✅

Ancestry similarly analysis and PGS
adjustment

 ✅

Detailed description of pgsc_calc pipeline
Here we describe step-by-step the methods used to calculate PGS within the PGS Catalog
Calculator (pgsc_calc v2.0.0, see Figure 2 for a visual overview):

Genotype data inputs & harmonization
PGS Catalog Calculator takes an input of target genomes and build information for PGS
calculation in most commonly-used genomics formats (variant call format [VCF], or PLINK 1
or 2 format2) and assumes the data has been imputed using an reference panel to increase
the likelihood that PGS variants are matched. The workflow begins by recoding genotypes
into PLINK2 compressed binary format and relabelling variant identifiers in a consistent way
to make variant matching easier. VCFs must be recoded into a triplet of files: a variant
information file, a genotype data file, and a sample information file. PLINK1 files are
backwards compatible with PLINK2, so only new variant information files are created when
working with this type of data to reduce I/O operations. Sample information is not currently
used by the workflow, but may be in the future (e.g. to enable sex checking).

Scoring files: PGS Catalog integration & custom inputs
We integrate with the PGS Catalog API (https://www.pgscatalog.org/rest/) to download
polygenic scoring files using search terms like Polygenic Score ID (--pgs_id), Publication
ID (--pgp_id), or Trait ontology ID (--trait_efo). Harmonized scoring files that contain
genomic coordinates which match input genome build (GRCh37 or GRCh38) and complete
allele information are fetched according to workflow parameters.

Custom user defined scoring files are also supported with the –scorefile parameter.
Custom files should be formatted in the PGS Catalog v2 specification
(https://www.pgscatalog.org/downloads/#scoring_header) and minimally contain a header
with the build information, and columns with a chromosomal position, effect allele, and effect
weight - a non-effect allele is also recommended to improve matching accuracy. Scoring files
with builds that do not match the target genotypes will automatically have positions lifted to
the new build using the pyliftover (https://github.com/konstantint/pyliftover) tool.

4

All scoring files are merged into a common representation for input into the variant matching
steps.

Variant matching
Variant matching is critical to faithfully reproduce scores deposited in the PGS Catalog. It’s
difficult to unambiguously match a variant described in a scoring file against genotypes:
variant identifiers (e.g. dbSNP rsID) are not stable or unique identifiers, genomic coordinates
change across different genome builds, and matching effect alleles can be technically
challenging because of allele flips and strand mismatches. The PGS Catalog scoring file
standard and genome build-harmonized data uploads simplify this process by making
structured data available that includes important information like effect allele and other allele.
The variant matching procedure is as follows:

1. Multiallelic variants in the target genomes are split so that all REF/ALT combinations
can be matched (optional and configurable by user)

2. Identify all potential matches where chromosome and position must match and:
a. [effect_allele, other_allele] in scoring file == [REF, ALT] in target genomes
b. [effect_allele, other_allele] in scoring file == [ALT, REF] in target genomes
c. Complemented [effect_allele, other_allele] in scoring file == [REF, ALT] in

target genomes (optional, configurable by user parameter)
d. Complemented [effect_allele, other_allele] in scoring file == [ALT, REF] in

target genomes (optional, configurable by user parameter)
e. If other allele information is missing, drop this data (and its corresponding

field in the target genome) from comparison
3. Label match candidates with flags to describe variants that are:

a. Strand ambiguous,e.g. A/T, C/G SNPs
b. Multiallelic variants
c. Duplicated, same scoring file variant matches multiple variants
d. Flipped strand, the complement of the variant is present in target genomes
e. Present in an external list of variants eligible for matching (optional, used

during ancestry adjustment to calculate scores on a consistent set of variants)
4. For each variant in the original scoring file, select the best possible match after:

a. Ranking match candidates in order of matching strategies 2.a-d (a is
preferred)

b. Excluding match candidates according to user parameters, defaults:
i. No multiallelic variant matches (can be altered using -–

keep_multiallelic)
ii. No ambiguous variant matches (can be altered using -–

keep_ambiguous)
5. Comparing the best match candidates to the original scoring file, calculate the

percentage of variants that are matched and remain after exclusions.
a. If the overlap for a score is below 75% (user configurable with --

min_overlap), drop the score from step 7 but continue
b. If all unique scores are below 75%, stop matching and raise an error

6. From the union of match candidates and missing matches, create an auditable log
with one variant per row that includes:

a. Scoring file variant information

5

b. Target genome variant information
c. Match metadata including labels

7. Pivot best match candidates to wide format, so that variant IDs with multiple matched
effect weights are transformed to have multiple columns for parallel score calculation

a. Missing effect weights generated by pivoting are filled with 0
b. Write this data to a compressed text file in plink2 scoring file format

A default minimum threshold is set - at least 75% of variants in a scoring file must be
successfully matched to genotyped sites in the target file before calculation can proceed - to
reduce the chance of polygenic score misapplication (--min_overlap parameter can be
adjusted). After matching, new intermediate scoring files are written to enable efficient
polygenic score calculation in parallel, and an auditable log is written for the union of variants
across all scoring files.

PGS calculation
PGS are calculated as linear sums of the effects of m variants, based on the the effect
weight in the scoring file (𝛽):

𝑃𝐺𝑆! =&⬚
"

#

𝑥!#𝛽# 		

where 𝑥!# is the genotype for the 𝑖th individual and 𝑗th SNP (usually encoded as 0, 1 or 2 for
the effect allele dosage). Scoring files produced by the variant matching process are applied
to genotypes using plink2 —-score. Duplicate variants with different effect alleles are
automatically split into separate files to overcome plink limitations. Scoring is automatically
parallelized across chromosomes if the input genomes are split. If the reference panel is
used, then allelic frequencies are automatically calculated from the reference panel and
loaded to impute missing genotypes. This is particularly useful when applying PGS to low
sample sizes (fewer than 50) where in-sample imputation is more likely to be unreliable (see
plink documentation). Computing multiple scores in parallel adds very little computational
resources (the pipeline computation time scales with the number of variants in the scoring
files, not the number of scores). It’s far more efficient to run the workflow once with multiple
scores than to run the workflow once for each score (see below). Calculated scores are
automatically aggregated once scoring has finished to simplify downstream applications of
PGS.

Ancestry adjustment (optional)

Derivation of population reference panels for use in PGS Catalog Calculator
To facilitate the analysis of PGS in the context of ancestry, the pgsc_calc pipeline
distributes and can create reference panels of individuals with population descriptors (e.g.
genetic ancestry groups). The pipeline by default uses a merged variant callset of the 1kGP
and Human Genome Diversity project (HGDP) samples for build GRCh38 release in
gnomAD (v3.1.2), adding additional diversity to the 1kGP data, specifically Middle Eastern
and Oceanian ancestry individuals.4 To prepare the HGDP+1kGP data for use in the
pgsc_calc pipeline we filtered the data to all high-quality individuals and variants passing
gnomAD QC filters, additionally filtering to variants with a minor allele count greater than 10,
and converting plink2 pgen format. To provide a version of the new panel in GRCh37 we

6

applied the same filters and used the GATK5 liftoverVCF tool, again converting the data to
plink2 pgen format. The pgsc_calc pipeline can then be run in combination with these
reference panels to calculate PGS as a relative risk measure similar to individuals of a
similar genetic ancestry.

Description of ancestry workflow
Variants in the reference panel are first intersected with the target genomes. This
intersection is used to match against scoring files so that both the target genomes and
reference panels use the same set of variants to calculate PGS for consistency. Allelic
frequencies are calculated in the reference panel and loaded while scoring target genomes
to impute missing genotypes.

A PCA is derived using fraposa-pgsc on the reference panel, filtered to unrelated samples
with low genotype missingness (<10%) with standard filters for variant-level QC (SNPs in
Hardy–Weinberg equilibrium [p > 1e-04] that are bi-allelic and non-ambiguous, with low
missingness [<10%], and minor allele frequency [MAF > 5%]). LD-pruning is then applied to
the variants and sample passing these checks (r2 threshold = 0.05), excluding complex
regions with high LD (e.g. MHC).6 The LD-pruned variants of the unrelated samples passing
QC are then used to define the PCA space of the reference panel (default: 10 PCs) using
FRAPOSA.3 The PCA of the reference panel (variant-PC loadings, and reference sample
projections) are then used to determine the placement of the target samples in the PCA
space using projection. Naive projection (using loadings) is prone to shrinkage which biases
the projection of individuals towards the null of an existing space, which would introduce
errors into PCA-loading based adjustments of PGS. For a less biased projection of
individuals into the reference panel PCA space we use the online augmentation,
decomposition and Procrustes (OADP) method of the FRAPOSA package.3 We chose to
implement PCA-based projection over derivation of the PCA space on a merged target and
reference dataset to ensure that the composition of the target doesn’t impact the structure of
the PCA. This is implemented in the FRAPOSA_OADP module. We note that the quality of
the PCA and projection should be visually assessed in the report - further optimizations and
QC steps will be added to avoid manual inspection in the future.

The calculated PGS (SUM), reference panel PCA, and target sample projection into the PCA
space are supplied to a script that performs the analyses needed to adjust the PGS for
genetic ancestry. This functionality is implemented within our pgscatalog_utils package, and
is comprised of two steps: genetic similarity analysis and PGS adjustment (see
Supplementary Figure 1 for overview of methods).

Performing empirical PGS adjustments requires comparing an individual’s PGS to a
distribution of scores in a reference population. To determine a suitable reference population
we perform a genetic similarity analysis using the PCA projections to determine the most
similar population for each sample. By default this is done by fitting a RandomForest
classifier to predict reference panel population assignments using the PCA-loadings (default:
10 PCs) and then applying the classifier to the target samples to identify the most genetically
similar population in the reference panel (e.g. highest-probability).4,7 Alternatively, the
Mahalanobis distance between each individual and each reference population can be
calculated and used to identify the most similar reference population (minimum distance).8

7

The probability of membership for each reference population and most similar population
assignments are recorded and output for all methods, heuristic p-value thresholds are used
to determine low-confidence similarity labels (0.5 for RandomForest, and 1e-10 to determine
outliers via a Mahalanobis converted into a p-value using the Chi-squared distribution).

The empirical PGS adjustments (percentile_MostSimilarPop, Z_MostSimilarPop)
are then performed by combining the results of the genetic similarity analysis. The relative
PGS for each individual is calculated by comparing the calculated PGS to the distribution of
PGS in the most similar population in the reference panel and reporting it as a percentile
(output column: percentile_MostSimilarPop) or as a Z-score (output column:
Z_MostSimilarPop).

To perform the PCA-based adjustments (Z_norm1, Z_norm2) only the PGS and PCA-
loadings are used using regression to correct for mean, or mean and variance shifts that are
correlated with genetic ancestry. By default these methods use the first 4 components of
genetic ancestry, but this setting can be changed in the pipeline interface. The first method
(originally proposed by Khera et al.9) to adjust for differences in the means of PGS
distributions across ancestries by fitting a linear regression of PGS values based on PCA-
loadings using unrelated individuals of the reference panel:

𝑃𝐺𝑆	~	𝑃𝐶$%& (Eq. 1)
and the observed standard deviation of the PGS in the reference panel (𝜎'()(*(+,(-.+(/). The
regression is then used to calculate the ancestry-predicted PGS (𝑃𝐺𝑆-*(0) based on the
target sample’s PCA projections and the normalized PGS is calculated as:

𝑃𝐺𝑆1+2*"$ =	 (𝑃𝐺𝑆345 	− 	𝑃𝐺𝑆-*(0)/𝜎'()(*(+,(-.+(/
This achieves PGS distributions that are approximately centered at 0 for each genetic
ancestry group (output column: Z_norm1), while not relying on any population labels during
model fitting. The first method (Z_norm1) has the result of normalizing the first moment of
the PGS distribution (mean); however, the second moment of the PGS distribution (variance)
can also differ between ancestry groups.10 A second regression of the PCA-loadings on the
squared residuals (difference of the PGS and the predicted PGS)

(𝑃𝐺𝑆345 	− 	𝑃𝐺𝑆-*(0)6	~	𝑃𝐶$%& (Eq. 2)
can be fit using a Gamma regression in the same unrelated individuals of the reference
panel to estimate a predicted standard deviation (𝜎-*(0) based on genetic ancestry, as was
proposed by Khan et al. and implemented within the eMERGE GIRA.10,11 The intercepts and
coefficients from equations 1 and 2 are used and initializations to full likelihood model
(originally implemented by Linder et al. in R https://github.com/broadinstitute/palantir-
workflows/blob/v0.10/ImputationPipeline/ScoringTasks.wdl and re-implemented in Python
within pgscatalog_utils)11:

𝑃𝐺𝑆1+2*"6 =	 (𝑃𝐺𝑆345 	− 	𝑃𝐺𝑆-*(0)/𝜎-*(0
This yields a new estimate of relative risk (output column: Z_norm2) where the variance of
the PGS distribution is more equal across ancestry groups and approximately 1.

8

Supplementary Figure 1. Schematic figure detailing empirical and PCA-based methods
for contextualizing or adjusting PGS with genetic ancestry. Data is for the normalization
of PGS000018 (metaGRSCAD) when applying pgsc_calc --run_ancestry to HGDP
genotypes using 1kGP as a reference panel.

Description of pgsc_calc outputs
The outputs of pgsc_calc are described in our online documentation (https://pgsc-
calc.readthedocs.io/en/latest/explanation/output.html), and we provide a brief overview here.

Aggregated PGS file
Calculated scores are stored in a gzipped-text space-delimited text file called
[sampleset]_pgs.txt.gz. The data is presented in long form where each PGS for an
individual is presented on a separate row (length = n_samples*n_pgs), and there will be at
least four columns with the following headers (sampleset, IID, PGS, SUM). If the pipeline
was run using ancestry information (--run_ancesty) the columns describing the ancestry
adjustments that were calculated will also be present (percentile_MostSimilarPop,
Z_MostSimilarPop, Z_norm1, Z_norm2). The aggregated file can be easily read into
any analysis software (e.g. R/python) and linked to other datasets based on the identifiers in
the genotyping data for downstream analysis.

Report
A summary report is provided for each successful run of the pipeline (report.html). The
report can be opened in any web browser and contains useful information about the PGS
that were applied, how well the variants in your target dataset match with the reference
panel and scoring files, a summary of the computed genetic ancestry data, and some simple
graphs displaying the distribution of scores in your dataset(s) as a density plot
(Supplementary Figures 2-3 and 5). Some of the sections are only displayed when the
ancestry analyses have been performed (Supplementary Figure 4).

9

Supplemental Figure 2. Example of pgsc_calc header. First section of the report
reproduces the nextflow command, and scoring file metadata (imported from the PGS
Catalog for each PGS ID) describing the scoring files that were applied to the sampleset(s)

10

Supplemental Figure 3. Example of variant matching summaries in the pgsc_calc
report. The first table describes the number of variants in the target dataset that overlap with
the reference panel (only present with --run_ancestry). The second table provides a
summary of the number and percentage of variants within each score that have been matched,

11

and whether that score passed the --min_overlap threshold (Passed Matching column) for
calculation. The third table provides a more detailed summary of variant matches broken down
by types of variants (e.g., strand ambiguous, multiallelic, duplicates) for matched, excluded,
and unmatched variants.

Supplemental Figure 4. Visualization of genetic ancestry analysis within the report. A
a snippet of the [sampleset]_popsimilarity.txt.gz is followed by PCA plots for the
first 6 PCs, where the target samples are colored according to the population that they are
most similar to in the reference panel.

12

Supplemental Figure 5. Example of the [sampleset]_pgs.txt.gz table and plots of
PGS distributions. A snippet of the PGS results file is displayed along with a visual display
of the PGS distribution for a set of example score(s) for each method of PGS adjustment.

13

Population similarity summary
A second gzipped-text space-delimited text file called
[sampleset]_popsimilarity.txt.gz will also be output, describing the analysis of the
target samples in relation to the reference panel and ancestry labels. The file contains
information about the PCA projection, genetic similarity analysis (probabilities of being from
each reference panel population), and information about the reference panel samples
(relatedness, population label). These data can be useful for stratifying analyses by most
similar ancestry group, assessing PGS adjustments, or as a source of PCs for use in
phenotype-PGS modeling.

Application of pgsc_calc to HGDP and UK Biobank data:
scalability and performance

The PGS Catalog Calculator has supported biobank scale target genomes since v1.3.0
(https://doi.org/10.5281/zenodo.7342886). Each process in the workflow was profiled with a
range of input data to gather statistics about CPU and memory usage. From these statistics
we determined the main factor that influences scaling is the number of variants in the union
of all scoring files and the variant density of the target genomes (see Supplementary
Figure 6). Native support for parallelized score calculation means that running the workflow
iteratively for each score is very inefficient compared to a single multi-score calculation. The
number of distinct PGS being calculated has minimal impact on workflow runtime and
resource usage compared with the total number of variants in the scoring file union.

The Nextflow dataflow model supports implicit parallelization. Tasks are automatically
distributed to workers for each chromosome during the calculation process. Scoring jobs for
each chromosome are also parallelised when required, such as when processing variants
with recessive or dominant effect types. Workers can be submitted as tasks to schedulers
like SLURM, LSF, or Google Cloud Batch. This means that the wall (real-world) time
increases at a much slower rate than CPU time. Splitting target genomes by chromosome is
optional but offers significant performance improvements. For example, splitting UKB data
by chromosome means that each worker processes 4.2 million target variants on average,
versus 93 million target variants in the combined target genomes. Splitting by chromosome
also enables horizontal scaling (i.e., adding additional workers), which is typically more
desirable than vertical scaling (i.e., allocating more RAM / CPU to a worker).

To test the scalability of calculations using pgsc_calc we applied the Calculator to two
datasets: 929 samples (78,097,677 variants) from the HGDP12, and 487,396 samples
(93,095,623 variants) from UK Biobank (UKB) imputed using the HRC reference panel.13 To
evaluate the influence of ancestry adjustment on computational resources the the --
run_ancestry command was run for HGDP using the 1kGP reference panel, and for UKB
the HGDP+1kGP reference panel was used. These benchmarks run on multiple sets of
scoring files from the May 8, 2024 PGS Catalog data release corresponding to metaGRSCAD
(PGS000018) and body mass index (EFO_0004340; 102 scores). To illustrate the effects of
PGS adjustment we plot the distributions of PGS000018 (metaGRSCAD) in the datasets, after
grouping the data on the Most Similar Population assignments.

14

The impact of genetic ancestry estimation and normalization on performance is largest for
small jobs. Most of this work only needs to be done once for each set of target genomes.
Recently we have made significant caching improvements to further improve performance
and make PGS calculation faster and more environmentally sustainable when calculating
new scores on previously processed samples.14 Work which is stable across multiple
calculations, such as preparing target genomes or estimating genetic ancestry, is skipped to
save resources (see Supplementary Figure 6 for marginal resource usage). Previously
cached work which has changed - such as applying new scoring files to target genomes - is
automatically invalidated by Nextflow without any user input, which causes new processes to
be launched.

Supplementary Figure 6. The number of variants in PGS is the main factor that
influences scaling. CPU-time of PGS calculation of PGS000018 and body mass index
(EFO_0004340; 102 scores) for 929 HGDP or 487,396 UKB individuals. CPU benchmarks
exclude run times for initial data harmonization and ancestry calculation steps and display only
the marginal CPU time for new runs of pgsc_calc on the same samples. CPU benchmarking
was run on a shared cluster using Intel Xeon Scalable Processors (Platinum 8368Q).

Comparison of pgsc_calc with other tools
We provide a summary of the key features of the PGS Catalog calculator (pgsc_calc) in
comparison to other tools (plink22, pgs-calc15, PRScalc16) that are are capable of PGS
calculation (Supplementary Table 2). In contrast to other tools such as pgs-calc15 and
PRScalc16, the PGS Catalog Calculator is the only PGS calculation tool wholly implemented
within a workflow manager and provides additional features to normalize PGS using genetic
ancestry. Another pipeline describing the implementation of scoring, PCA, and ancestry
adjustment has also been described (eMERGE GIRA;
https://github.com/broadinstitute/palantir-
workflows/blob/v0.10/ImputationPipeline/ScoringTasks.wdl)11 in WDL; however, there is little
documentation limiting its usability by external users. Our pgsc_calc tool also adopts the
nf-core community framework to implement best practice such as continuous integration
tests, code guidelines, and code templates.17 Our main justification for using a workflow

15

manager is portability: we aim to make sure that it’s possible to bring our code to the users
data, because access to human genetic data is strictly controlled and often cannot leave
specific storage or compute environments. Workflow managers also bring other benefits:
they make it simple to share our versioned code, and help to ensure calculated results
reliably reproduce regardless of the underlying compute environment.18 In contrast, pgs-
calc15 is embedded as a process inside an imputation server, so data must be transferred to
a central location before results can be calculated. PRScalc offers a privacy-preserving
approach by keeping data client side and calculating PGS using local system resources;
however, this approach is less compatible with offline TREs and would not scale to biobank
size data.

A limitation of the calculator is that it only implements a command-line interface compared
with the graphical user interfaces provided by pgs-calc15 (via the Michigan Imputation
Server11 website) and PRScalc16. However, our schema provides native support for the
Seqera Platform (formerly Nextflow Tower) - users that prefer a web interface are able to
launch the workflow using the Seqera Platform by linking their HPC or cloud credentials to
the platform. Additionally, we provide extensive user-friendly documentation including a
getting started tutorial, how-to guides, explanations of PGS, and API reference materials
(https://pgsc-calc.readthedocs.io/, https://pygscatalog.readthedocs.io/). An active community
discussion forum is also available for users to ask questions about PGS calculation or to
report problems they experience (https://github.com/PGScatalog/pgsc_calc/discussions).

It’s possible to calculate PGS using other methods, such as using plink22 directly, or
software libraries like LDpred2.19 However, these approaches don’t provide an end to end
solution to PGS calculation and require significant manual work or specialist domain
knowledge to operate effectively (e.g. querying the PGS Catalog API, data harmonization).
In contrast, the PGS Catalog Calculator requires minimal user input to calculate PGS
reliably, and will provide users with clear errors when problems occur during PGS
calculation, such as an insufficient match rate between scoring file variants and target
genomes.

Supplementary Table 2. Comparison of pgsc_calc to other PGS calculation tools.

Feature PGS Catalog
Calculator
(pgsc_calc)

plink2 -
-score2

pgs-calc15 PRScalc16

Target genome input format

VCF ✅ ✅ ✅ ❌

PLINK1 binary file format (bed / bim / fam) ✅ ✅ ❌ ❌

PLINK2 binary file format (pgen / pvar / psam) ✅ ✅ ❌ ❌

23andMe format ❌ ✅ ❌ ✅

Polygenic score models

16

Feature PGS Catalog
Calculator
(pgsc_calc)

plink2 -
-score2

pgs-calc15 PRScalc16

Integration with PGS Catalog API to select
scores by trait, publication, or PGS ID (in correct
genome build)

✅ ❌ ✅

Support PGS Catalog scoring file format v2 to
report score metadata including citations and
license

✅ ❌ ✅ ❌

Automatic variant matching between polygenic
score model and target genomes to correctly
identify effect alleles despite allele flips,
ambiguous alleles, and strand problems

✅ ❌ ✅ ❌

Auditable log of matched variants and minimum
overlap thresholds to minimize user error and
misapplication of models

✅ ❌ ✅ ❌

Automatic liftover of custom polygenic score
models between GRCh37 and GRCh38

✅ ❌ Not within the
tool

❌

Custom polygenic score model input ✅ ✅ ❌ ❌

Polygenic score calculation

Automatically combine multiple models to support
parallel calculation

✅ ❌ ✅ ❌

Imputed allele dosages for missing genotypes
from reference data

✅ ❌ ❌ ❌

Polygenic score calculation ✅ ✅ ✅ ✅

Automatic chromosome parallelization and score
aggregation

✅ ❌ Within pipeline ❌

Genetic ancestry

Predicted most similar population with robust
PCA using a reference panel

✅ ❌ ✅ ❌

Custom reference panel support ✅ ❌ ❌ ❌

Adjustment of PGS using genetic ancestry
information

✅ ❌ ❌ ❌

Outputs & Interface

Format text-file text-file text-file json

Interface Command line Command
line

Primarily web-
based server
(https://imputatio
nserver.sph.umi
ch.edu/),
command line
tool also
available

Web

17

Feature PGS Catalog
Calculator
(pgsc_calc)

plink2 -
-score2

pgs-calc15 PRScalc16

User-friendly documentation Extensive for
both command
line interface,
results, and
interpretation:
https://pgsc-
calc.readthedo
cs.io/en/latest/i
ndex.html

Limited:
https://ww
w.cog-
genomics.
org/plink/2.
0/score

Only for web
interface:
https://imputatio
nserver.readthe
docs.io/en/latest/
pgs/getting-
started/

Limited,
only for
interface:
https://epis
phere.githu
b.io/prs/

Portability

Natively deploy with Docker containers ✅ ❌* ❌ NA

Natively deploy with Singularity containers ✅ ❌* ❌ NA

Natively deploy with Anaconda environments ✅ ❌* ❌ NA

Native support for HPC deployment (e.g.
SLURM, LSF)

✅ ❌ ❌ NA

Native support for cloud deployment (e.g. Google
Cloud Batch)

✅ ❌ ❌ NA

Supports offline / airlocked environments (e.g.
Trusted Research Environments)

✅ ✅ ✅ ❌

*available via the biocontainers20 project

Supplementary references
1. Wharrie, S. et al. HAPNEST: efficient, large-scale generation and evaluation of synthetic

datasets for genotypes and phenotypes. Bioinformatics 39, btad535 (2023).

2. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer

datasets. GigaScience 4, 7 (2015).

3. Zhang, D., Dey, R. & Lee, S. Fast and robust ancestry prediction using principal

component analysis. Bioinformatics 36, 3439–3446 (2020).

4. Koenig, Z. et al. A harmonized public resource of deeply sequenced diverse human

genomes. BioRxiv Prepr. Serv. Biol. 2023.01.23.525248 (2024)

doi:10.1101/2023.01.23.525248.

5. Auwera, G. van der & O’Connor, B. D. Genomics in the Cloud: Using Docker, GATK, and

WDL in Terra. (O’Reilly Media, Sebastopol, CA, 2020).

18

6. Hannah V. Meyer. meyer-lab-cshl/plinkQC: plinkQC version 0.3.4.

https://doi.org/10.5281/ZENODO.3373797 (2021).

7. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in

141,456 humans. Nature 581, 434–443 (2020).

8. Privé, F., Luu, K., Blum, M. G. B., McGrath, J. J. & Vilhjálmsson, B. J. Efficient toolkit

implementing best practices for principal component analysis of population genetic data.

Bioinformatics 36, 4449–4457 (2020).

9. Khera, A. V. et al. Whole-Genome Sequencing to Characterize Monogenic and Polygenic

Contributions in Patients Hospitalized With Early-Onset Myocardial Infarction. Circulation

139, 1593–1602 (2019).

10. Khan, A. et al. Genome-wide polygenic score to predict chronic kidney disease

across ancestries. Nat. Med. 28, 1412–1420 (2022).

11. Linder, J. E. et al. Returning integrated genomic risk and clinical recommendations:

The eMERGE study. Genet. Med. 25, 100006 (2023).

12. Bergström, A. et al. Insights into human genetic variation and population history from

929 diverse genomes. Science 367, eaay5012 (2020).

13. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data.

Nature 562, 203–209 (2018).

14. Lannelongue, L. et al. GREENER principles for environmentally sustainable

computational science. Nat. Comput. Sci. 3, 514–521 (2023).

15. Forer, L. et al. Imputation Server PGS: an automated approach to calculate polygenic

risk scores on imputation servers. Nucleic Acids Res. gkae331 (2024)

doi:10.1093/nar/gkae331.

16. Sandoval, L. et al. PRScalc, a privacy-preserving calculation of raw polygenic risk

scores from direct-to-consumer genomics data. Bioinforma. Adv. 3, vbad145 (2023).

17. Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics

pipelines. Nat. Biotechnol. 38, 276–278 (2020).

18. Wratten, L., Wilm, A. & Göke, J. Reproducible, scalable, and shareable analysis

19

pipelines with bioinformatics workflow managers. Nat. Methods 18, 1161–1168 (2021).

19. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger.

Bioinformatics 36, 5424–5431 (2021).

20. Da Veiga Leprevost, F. et al. BioContainers: an open-source and community-driven

framework for software standardization. Bioinformatics 33, 2580–2582 (2017).

