Supplementary material

SUPPLEMENTARY TABLES
SUPPLEMENTARY TABLE 1. GENOTYPICALLY CONFIRMED <i>P. FALCIPARUM</i> SAMPLES BY YEAR AND PROVINCE. ERROR! BOOKMARI NOT DEFINED.
SUPPLEMENTARY TABLE 2. INCLUDED GENETIC MARKERS WITH ASSOCIATED ANTIMALARIAL
SUPPLEMENTARY TABLE 3. DISTRIBUTION OF <i>KELCH13</i> ALLELE VARIANTS BETWEEN 2017 AND 2022.
SUPPLEMENTARY TABLE 4. CHANGES IN PIPERAQUINE (PPQ)-R OF THREE LARGEST KEL1/PLA1 CLUSTERS (KLV-01, KLV-02 AND KLV-03).
SUPPLEMENTARY FIGURES6
Supplementary Figure 1. Collected and genotyped <i>P. falciparum</i> (<i>Pf</i>) samples6
SUPPLEMENTARY FIGURE 2. PROPORTION OF REGISTERED P. FALCIPARUM (PF) INFECTIONS BY THE WORLD HEALTH
ORGANIZATION (WHO) COMPARED TO THE NUMBER OF COLLECTED SAMPLES BY THE GENRE-MEKONG PROJECT
SUPPLEMENTARY FIGURE 3. PREDICTED REGIONAL ANTIMALARIAL RESISTANCE FROM 2017 TO 2022
SUPPLEMENTARY FIGURE 4. PREDICTED RESISTANCE TO MEFLOQUINE PER PROVINCE DIVIDED IN THREE PERIODS
SUPPLEMENTARY FIGURE 5. PREDICTED RESISTANCE TO CHLOROQUINE PER PROVINCE DIVIDED IN THREE PERIODS
SUPPLEMENTARY FIGURE 6. PREVALENCE OF KEL1/PLA1 BETWEEN 2017 AND 2022
SUPPLEMENTARY FIGURE 7. VISUALISATION OF NON-GMS SAMPLES USING THE PUBLIC PF7 DATA RELEASE OF MALARIAGEN
REFERENCES

Supplementary Tables

Supplementary Table 1. Included genetic markers with antimalarial resistance prediction.

P. falciparum gene	Resistance classification
kelch13 ^a	artemisinin
441L, 446I, 449A, 452E, 458Y, 469Y, 469F, 476I, 479I,	
481V, 493H, 515K, 522C, 527L, 537I, 537D, 538V, 539T,	
543T, 553L, 561H, 568G, 574L, 575K, 579I, 580Y, 584V,	
667T, 673I, 675V or 719N as homozygous call	
<i>plasmepsin2/3</i> (<i>pm23</i>) amplification ^b	piperaquine
WHO kelch13 mutant and multiple copies of pm23	dihydroartemisinin-piperaquine (DHA-PPQ)
crt	chloroquine
76T	
dhfr	
108N	pyrimethamine
51I and 59R and 108N, all homozygous	sulfadoxine-pyrimethamine
dhps	
437G	sulfadoxine
dhfr & dhps	
<i>dhfr</i> : 51I + 59R + 108N + <i>dhps</i> : 437G + 540E	sulfadoxine-pyrimethamine (IPTp ^c)
+ one of <i>dhfr</i> :164L, <i>dhps</i> :581G, <i>dhps</i> :613S or <i>dhps</i> :613T	
with all mutants homozygous	
mdr1 amplification ^b	mefloquine
WHO kelch13 mutant and multiple copies of mdr1	artesunate-mefloquine

https://ngs.sanger.ac.uk/production/malaria/Resource/29/20200705-GenRe-04a-SpotMalaria-0.39.pdf, pages 4-7, and phenotype prediction rules used in the GenRe-Mekong project:

https://ngs.sanger.ac.uk/production/malaria/Resource/29/20200705-GenRe-05-PhenotypeRules-0.39.pdf

^a The list of validated mutations in the BTB/POZ and the propeller domain was based on the WHO list: https://iris.who.int/handle/10665/274362

^b Confirmatory *plasmepsin2/3* and *mdr1* amplification testing was performed using qPCR.

^cIntermittent preventive treatment in pregnancy

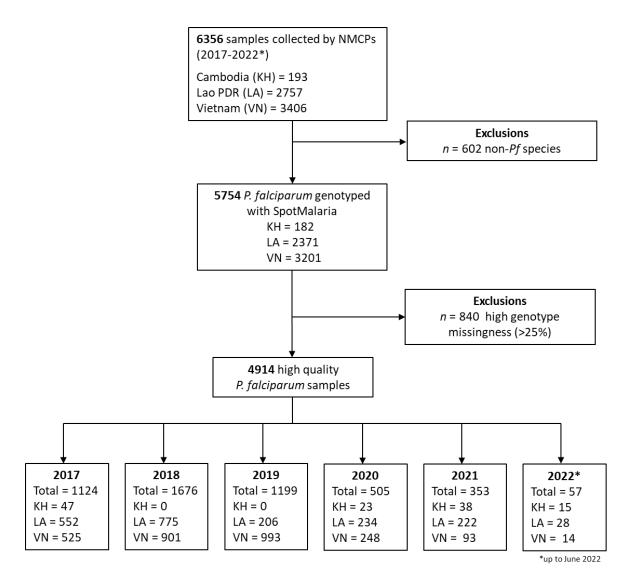
Supplementary Table 2. Genotypically confirmed *P. falciparum* samples by year and province.

In 2017, a pilot study (1207-PF-KH-CNM-GENRE) was conducted with the National Center for Parasitology, Entomology and Malaria Control (CNM) during which 48 samples were collected and genotyped. Subsequently, from July 2020 onwards routine genetic surveillance was conducted.

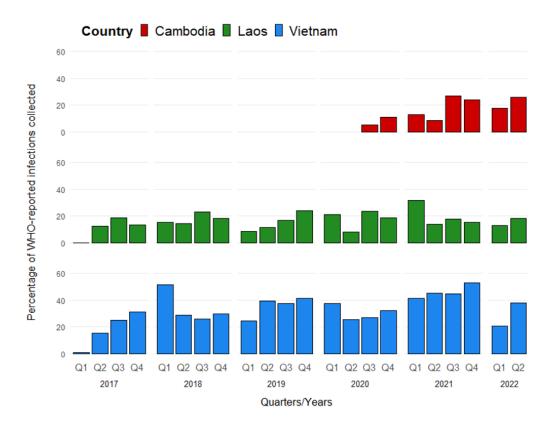
*From January up to June 2022.

Country	Province	2017	2018	2019	2020	2021	2022*
Cambodia	Kampong Speu				20	38	6
	Mondulkiri				4	7	2
	Pursat				6	19	31
	Ratanakiri	26					
	Stung Treng	23					
	Attapeu	101	208	48	210	122	34
	Champasak	94	147	28	2	11	
Laos	Salavan	103	99	27	15		2
	Savannakhet	284	387	212	70	116	4
	Sekong	13	9	12	9	4	
	Binh Phuoc	51	324	24	3	4	
	Binh Thuan				7	1	
	Dak Lak	167	125	298	46		
	Dak Nong	60	70	48	7		
	Gia Lai	272	446	523	151	73	16
Vietnam	Khanh Hoa	26	48	7	1		
	Kon Tum			3			
	Ninh Thuan	43	12	13	1		
	Phu Yen			197	55	17	4
	Quang Binh						1
	Quang Tri	28	19	7	1	1	1

Supplementary Table 3. Distribution of *kelch13* allele variants between 2017 and 2022.

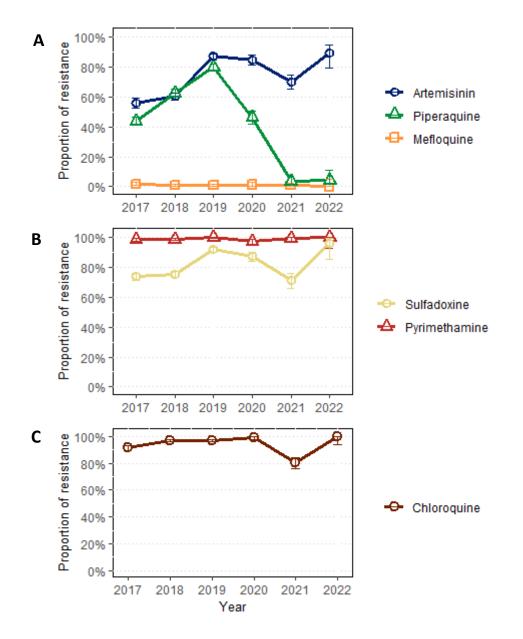

Proportion of samples with *kelch13* variant in each country in each year are shown as percentages. All detected variants were listed. WT-wild type indicates no mutation in *kelch13*. Heterozygous includes parasites that carried more than one *kelch13* mutations. Missing indicates the proportion of parasites with missing *kelch13* genotype. Classification resistant status was determined from the validated allele associated with delayed clearance as published by WHO [4]. Full details about methods of classification is given in the SpotMalaria Technical Notes at https://www.malariagen.net/resource/29.

Country	Classification	kelch13 allele	2017	2018	2019	2020	2021	2022
	Sensitive	WT	10.2%			10.0%	1.6%	2.6%
	Resistant	C580Y	83.7%			30.0%	54.7%	12.8%
		P553L	4.1%					
Cambodia		Y493H				36.7%	29.7%	46.2%
	Undetermined	missing	2.0%			23.3%	4.7%	10.3%
		heterozygous					9.4%	28.2%
	Sensitive	WT	43.2%	64.4%	30.0%	24.2%	42.7%	15.0%
	Resistant	C580Y	12.9%	22.5%	15.6%	12.7%	17.4%	60.0%
		P574L	0.8%					
		R539T	0.2%	1.2%	3.4%	45.4%	27.3%	10.0%
Laos		Y493H	1.5%	0.1%		0.3%		
	Undetermined	G357S	-				0.4%	-
		G544R					0.4%	
		missing	40.5%	10.0%	44.6%	16.0%	7.9%	15.0%
		heterozygous	0.8%	1.9%	6.4%	1.3%	4.0%	
	Sensitive	WT	20.2%	11.8%	5.0%	0.7%	2.1%	4.5%
Vietnam	Resistant	C469F	0.5%	0.1%				
		C580Y	54.4%	77.3%	86.0%	89.3%	95.8%	63.6%
		P553L	1.5%	0.3%				
		R539T	0.2%					
	Undetermined	missing	20.6%	8.6%	8.0%	9.6%	2.1%	31.8%
		heterozygous	2.6%	1.9%	1.0%	0.4%		

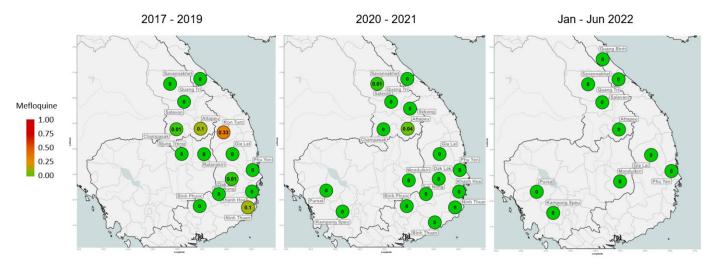

Supplementary Table 4. Changes in piperaquine (PPQ)-R of three largest KEL1/PLA1 clusters (KLV-01, KLV-02 and KLV-03). Proportion of samples predicted resistant to PPQ are shown. Data is aggregated by quarter Q1: January – March; Q2: April – June; Q3: July – September; Q4: October – December. NA means there are no samples from the cluster, whilst 0% means none of the samples were predicted resistant to PPQ.

		PPQ-R					
		KLV-01	KLV-02	KLV-03			
2017	Q1	100%	NA	NA			
	Q2	100%	NA	NA			
	Q3	86%	100%	NA			
	Q4	88%	100%	NA			
2018	Q1	94%	100%	NA			
	Q2	94%	100%	NA			
	Q3	100%	98%	100%			
	Q4	96%	100%	100%			
2019	Q1	92%	100%	100%			
	Q2	96%	98%	90%			
	Q3	99%	91%	91%			
	Q4	96%	98%	87%			
2020	Q1	94%	95%	93%			
	Q2	82%	100%	85%			
	Q3	20%	100%	67%			
	Q4	17%	NA	30%			
2021	Q1	0%	NA	25%			
	Q2	0%	NA	8%			
	Q3	NA	NA	0%			
	Q4	NA	NA	0%			
2022	Q1	NA	NA	0%			
	Q2	NA	NA	0%			

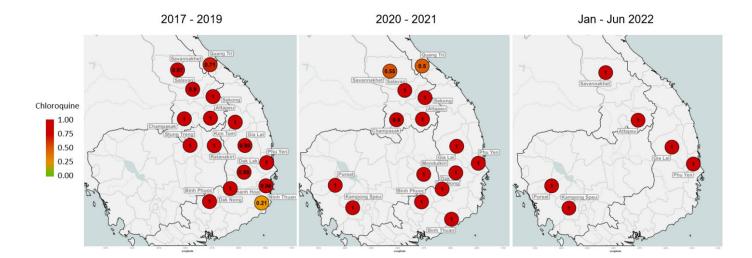
Supplementary Figures

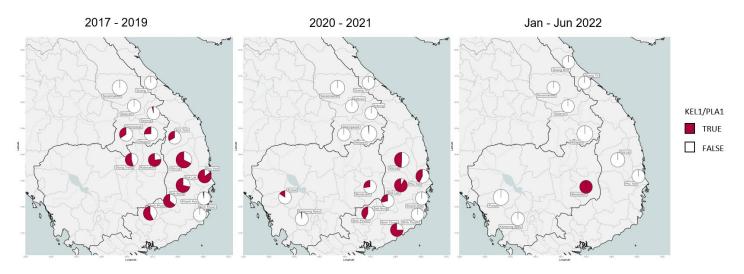


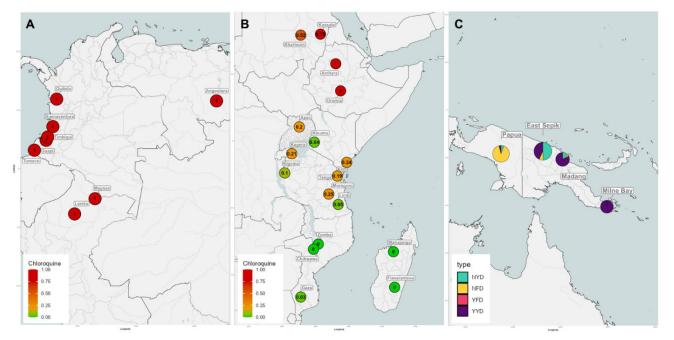
Supplementary Figure 1. Collected and genotyped *P. falciparum (Pf)* **samples.** The diagram shows how the analysed sample set was derived from *Pf* samples collected by National Malaria Control Programmes (NMCPs), and the composition of this sample set by country and year.



Supplementary Figure 2. Percentage of WHO-registered *P. falciparum* infections that were sampled by the **GenRe-Mekong project.** Between January 2017 to April 2022, 32.6% and 16.1% *Pf* infections in Vietnam and Laos were sampled by the GenRe-Mekong project, respectively. While, for Cambodia, between 2020 and 2022 14.3% of the registered *P. falciparum* infections by the WHO were represented by the GenRe-Mekong project [1-3].


.


Supplementary Figure 3. Predicted regional antimalarial resistance from 2017 to 2022 of A) artemisinin, piperaquine and mefloquine, B) sulfadoxine and pyrimethamine, C) chloroquine. Error bars indicate 95% confidence intervals.


Supplementary Figure 4. Predicted resistance to mefloquine per province divided in three periods. Left: 2017-2019, middle: 2020-2021, right: January – June 2022. Colour reflects resistance prevalence ranging from 0 to 1, where 0 means no parasites show resistance and 1 means 100% of the parasites in the province carried the resistance markers thus predicted to be resistant to the drug. A marker appears when there are at least 2 samples from the province.

Supplementary Figure 5. Predicted resistance to chloroquine per province divided in three periods. Left: 2017-2019, middle: 2020-2021, right: January – June 2022. Colour reflects resistance prevalence ranging from 0 to 1, where 0 means no parasites show resistance and 1 means 100% of the parasites in the province carried the resistance markers thus predicted to be resistant to the drug. A marker appears when there are at least 2 samples from the province.

Supplementary Figure 6. Prevalence of KEL1/PLA1 between 2017 and 2022. Pie chart showing proportion of samples classified as KEL1/PLA1, having both C580Y *kelch13* mutation and *plasmepsin 2/3* amplification (KEL1/PLA1 = TRUE). Size of pie chart corresponds to the sample number in the province.

Supplementary Figure 7. Visualisation of non-GMS samples using the public Pf7 data release of MalariaGEN. A) shows predicted chloroquine resistance in 177 samples from Colombia, Peru, and Venezuela collected between 2009 and 2017. **B)** shows predicted chloroquine resistance in 1,386 samples from East-Africa collected between 2010 and 2018. **C)** shows detected *mdr1* haplotypes (NYD: wild-type) for 386 samples from Indonesia and Papua New Guinea collected between 2008 and 2017.

References

1 WHO. Artemisinin resistance and artemisinin-based combination therapy efficacy: status report. Geneva: World Health Organization, 2018.

2. WHO. Mekong malaria elimination: epidemiology summary, volume 4, October-December 2018. Geneva: World Health Organization, 2018. WHO reference number: WHO/CDS/GMP/MME/2018.05.

3. WHO. Mekong malaria elimination: epidemiology summary, volume 12, October–December 2020. Geneva: World Health Organization, 2020. WHO reference number: WHO/UCN/GMP/MME/2020.06.

4. WHO. Mekong Malaria Elimination: epidemiology summary, volume 16, October–December 2021. Geneva: World Health Organization, 2022. WHO reference number: WHO/UCN/GMP/MME/2022.02.