The effect of highly effective modulator therapy on systemic inflammation in cystic fibrosis

Rosemary E Maher^{1*}, Urszula Cytlak-Chaudhuri^{2,3,4*}, Saad Aleem⁵, Peter J Barry^{4,5,6}, Daniel Brice^{2,3,4}, Eva Caamaño-Gutiérrez^{7,8}, Kimberley Driver⁶, Edward Emmott^{1,8}, Alexander Rothwell^{7,8}, Emily Smith⁶, Mark Travis^{2,3,4}, Dave Lee^{2,3,4}, Paul S McNamara⁸, Ian Waller⁶, Jaclyn A Smith^{4,5}, Andrew M Jones^{4,5,6}, Robert W Lord^{4,5,6**}

1. Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB.

2. Lydia Becker Institute for Immunology and Inflammation, University of Manchester, Manchester, M13 9NT.

3. Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT.

4. Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9NT.

5. Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT.

6. Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT.

7. Computational Biology Facility, Liverpool Shared Research Facilities, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB.

8. Department of Biochemistry & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB.

9. Department of Child Health (University of Liverpool), Institute in the Park, Alder Hey Children's Hospital, Eaton Rd, Liverpool, L12 2AP.

* Denotes equal contributions

** Corresponding author

Corresponding author: Robert Lord, Manchester Adult CF Centre, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT.

Email: robert.lord@mft.nhs.uk

Financial support: This research was funded by a project grant from the North West Lung Centre Charity.

Supplementary methods

Flow cytometry

For all donors, 1 ml blood was mixed with 1 ml Cytodelics whole blood cell stabiliser (Cytodelics AB, Sweden). Samples were incubated at room temperature (RT) for 10 minutes and then stored at -80°C. The Cytodelics whole blood stabiliser allows preservation of granulocytes following -80°C storage and is suitable for flow cytometric analysis of cell surface antigens. Thawing, red blood cell lysis and washing steps were performed according to the manufacture's description prior to staining for flow cytometry analysis.

To assure accurate immune cell count quantification, prior to antibody staining 25 µl of known concentration CountBright Absolute Counting Beads (Molecular Probes, USA) were added to each sample. To block unspecific staining, samples were suspended in human TruStain FcX blocking solution (Biolegend, USA) and incubated for 20 minutes at RT. Subsequently, an antibody cocktail for cell surface markers was added (Supplementary Table E1) and incubated in the dark for 30 minutes at RT. After washing with phosphate-buffered saline containing 2% fetal calf serum and 2 mM EDTA, samples were acquired using BD FACSymphony A5 cell analyser with BD FACSDiva software version v9.0 (BD Biosciences, USA). Obtained flow cytometry data were analysed with Flowjo software v.10.10 (BD Biosciences, USA) and statistical analysis performed using Prism 10 software (GraphPad Software Inc, USA).

Plasma proteomics

High Select Top14 protein depletion

The Thermo Scientific[™] High-Select[™] Top14 Abundant Protein Depletion Resin (ThermoFisher, A36372) employs antibody-based removal of 14 high-abundant proteins from human plasma: Albumin, IgA, IgD, IgE, IgG, IgG (light chains), IgM, Alpha-1-acid glycoprotein, Alpha-1-antitrypsin, Alpha-2-macroglobulin, Apolipoprotein A1, Fibrinogen, Haptoglobin and Transferrin. An optimised method was employed, combining 5 µL of human plasma with 300 µL of depletion resin into each well of a 96-well lo-bind PCR plate (Eppendorf, 0030129504). The mixture was incubated at RT (21°C) for 15 min with shaking at 1400 rpm before centrifuging through a 96-well filter plate (Agilent, 200957-100) for 2 min at 400 rcf at RT. The flow through was collected in a low-bind PCR plate at a total volume of 150 µL. Finally, SDS

(ThermoFisher, 1281-1680) was added to a final concentration of 1% (v/v) and the plate was heated to 95° C for 10 min without shaking.

Protein digestion

From each well, 50μ L of depleted plasma was reduced and alkylated by the addition of 10μ l of 60 mM TCEP (ThermoFisher, UI287564) and 240 mM CAA (Sigma-Aldrich, C0267), respectively and heated to 95° C for 5 min. To each well, 10μ L of Sera-Mag SpeedBeads A and B (GE Healthcare, 45152105050250 and 65152105050250), at equal ratio, were added, before the addition of 130μ L of 100% ethanol (v/v) (Honeywell, 34870). After a 10 min incubation at RT, the supernatant was discarded and the beads were washed 6x with 300μ L 80% ethanol (v/v). On-bead digestion was performed by incubating each sample with 300 ng of LysC (info) in 150μ l 100mM ammonium bicarbonate (Sigma-Aldrich, A6141) for 2 hours at $37 \,^{\circ}$ C with shaking at 1400 rpm before the addition of 300 ng of trypsin (Promega, V5280). Samples were incubated overnight (16h) at at $37 \,^{\circ}$ C with shaking at 1400 rpm. Digestion was stopped by the addition of 5μ L of 10% TFA (v/v) (info).

Proteomic analysis

A total peptide concentration of 2.5ug per sample was analysed by liquid chromatography mass spectrometry using an Evosep One (Evosep, EV-1000) coupled to an Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scientific) using the 30 sample per day Evosep liquid chromatography gradient and data independent acquisition (DIA) method consisting of a full scan at FAIMS CV -40, a DIA scan at -40, a full scan at -60, and a DIA scan at -60. Full scans were acquired in the m/z range 345-900 with 120 000 resolution, 300% normalised AGC target, automatically selected max IT, and in profile mode. Data-independent fragments were acquired in 42 fixed-length windows of 13 m/z in the m/z range 350-896 with no overlap, and with window placement optimization. A full scan was acquired after every 14 DIA scans, taking 3 full scans (with each CV) to fragment the ions in all 42 DIA windows. A full duty cycle consists of 6 MS1 scans and 84 MS2 scans. MS2 resolution was set to 15 000, NCE to 32%, AGC target to 1 000%. The m/z range of the fragmented ions and the max IT were both automatic. DIA data was recorded in profile mode.

Multiplex immunoassays

Cytokine analysis was performing using the MSD U-PLEX Biomarker Group 1 (human) 71-Plex kit (Meso Scale Discovery, K15081K-1) as per the manufacturer's instructions. Briefly, individual U-PLEX-coupled antibodies were created and used to coat each well of a 96-well plate. Calibrator standards were created and added to assigned wells, remaining wells were filled with 25 μ l of plasma. After the addition of a detection antibody solution and read buffer, plates were analysed by using a Methodical Mind software on MESO QuickPlex SQ 120MM (Meso Scale Discovery, Al1AA-0) instrument.

Statistical methods for plasma proteomics

Pre-processing

Proteins that had more than 20% of values missing were removed from analysis using missForest package (Stekhoven *et al.*, 2022). Variance Stabilisation Normalisation (VSN) (version 3.62.0) was performed separately within each plate. VSN requires untransformed data as an input as it includes a process similar to log transformation (Huber *et al.*, 2002). Batch effect was corrected across plates using ComBat from the sva R package (version 3.42.0) (Johnson *et al.*, 2007).

Statistical Analyses

All data pre-processing and statistical analyses were completed using R (version 4.1.1). The R package variancePartition (version 1.24.1) was used to establish the covariates that drove differences between pre- and post-ETI, and healthy and pre-ETI protein expression. This involves fitting a linear mixed model to each protein where categorical variables are modelled as random effects and continuous variables are models as fixed effects. Covariates baseline age, baseline FEV1%, baseline weight and time between first and second patient visit showed greater median variance explained across all models fit to each protein than the cohort that samples were part of. These covariates were selected for further analysis.

Differential expression (DE) analysis was performed using limma (version 3.50.3), an approach using linear models and empirical Bayes. Akaike Information Criterion (AIC) was calculated for each model where every combination of covariates being included in the model or not was fit i.e. a model was fit including age, FEV1%, weight and times between visits as covariates, and another model was fit including only age, FEV1%, weight, but not time between visits and so on. The model with the lowest resulting AIC, indicating best model fit, was the model that included no additional covariates. Therefore, no covariates were included for DE analysis. DE analysis was run between pre- vs post- ETI, pre- vs healthy controls, and post- vs healthy controls. DE proteins were identified using a Benjamini-Hochberg false discovery rate (FDR) threshold of 0.05.

Protein Set Enrichment Analyses

Proteins were mapped to gene symbols and the Fast Gene Set Enrichment Analysis (fsgea) R package (version 1.20.0) was used to evaluate pathway enrichment of expressed proteins in the pre- vs post- ETI groups using the corresponding gene symbols. Enrichment was calculated for hallmark MSigDB, Wikipathways, Reactome and KEGG gene sets retrieved from MSigDB.

Table E1. Antibody cocktails for cell surface markers

Target	Fluorophore	Clone	Concentration	Supplier	Catalogue No
CD66b	FITC	G10F5	1:100	Biolegend	305104
CD11c	PerCP-Cy5.5	3.9	1:50	Biolegend	301624
CD15	APC	W6D3	1:100	Biolegend	323008
CD16	AF700	3G8	1:100	Biolegend	302026
HLA-DR	APC-Cy7	L243	1:50	Biolegend	307618
CD206	BV421	15-2	1:200	Biolegend	321126
CD45	BV510	HI30	1:50	Biolegend	304036
CD193	BV605	5E8	1:100	Biolegend	310716
CD3	BV650	UCHT1	1:100	Biolegend	300468
CD19	BV711	HIB19	1:100	Biolegend	302246
CD20	BV711	2H7	1:100	Biolegend	302342
CD123	BV786	6H6	1:100	Biolegend	306032
CD14	PE	M5E2	1:50	Biolegend	301806
CD184 (CXCR4)	PE-CF594	12G5	1:50	Biolegend	306526
CD197 (CCR7)	PE-Cy7	G043H7	1:50	Biolegend	353226
CD101	BUV395	V7.1	1:100	BD	747544
CD56	BUV737	NCAM16.2	1:100	BD	612766
CD141	BUV737	1A4	1:100	BD	741867

ID	Time on therapy	Baseline modulator	Gene1	Gene2	Pancreatic status	Ps	BCC	Baseline FEV1	Baseline FEV1%	V2 FEV1	V2 FEV1%
2227	77	TEZ/IVA	F508del	F508del	Insufficient	Yes	Yes	2.34	64	2.74	75
2271	238	LUM/IVA	F508del	F508del	Insufficient	Yes	No	1.18	36	1.34	41
2324	161	None	F508del	F508del	Insufficient	Yes	No	1.64	57	1.94	67
2340	84	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	2.51	58	3.13	72
2420	152	None	F508del	R792X	Insufficient	Yes	No	1.7	61	2.05	74
2511	61	LUM/IVA	F508del	F508del	Insufficient	Yes	No	2.01	52	2.5	64
2652	203	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	1.8	58	1.8	58
2830	182	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	3.64	86	3.72	88
2833	56	TEZ/IVA	F508del	F508del	Insufficient	Yes	Yes	1.26	46	1.34	49
2888	84	TEZ/IVA	F508del	F508del	Insufficient	No	Yes	2.48	89	2.61	94
2899	203	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	2.86	96	3.46	117
3011	189	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	3.65	83	4.11	93
3033	189	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	1.56	39	NA	NA
3067	112	None	F508del	1517T	Insufficient	Yes	No	3.08	86	3.66	102
3118	229	TEZ/IVA	F508del	F508del	Insufficient	No	No	2.79	75	3.19	86
3125	70	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	2.77	67	2.81	67
3170	154	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	1.29	39	1.83	56
3280	126	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	1.89	61	2.75	88

Table E2. Individual clinical and demographic characteristics of CF participants

ID	Time on	Baseline	Gene1	Gene2	Pancreatic	Ps	BCC	Baseline	Baseline	V2	V2
	therapy	modulator			status			FEV1	FEV1%	FEV1	FEV1%
3405	96	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	1.92	50	2.54	66
3452	259	None	F508del	1154insTC	Insufficient	Yes	No	1.9	44	2.51	59
3599	112	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	2.47	71	2.84	82
4642	63	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	2.75	68	3.49	86
4763	105	None	F508del	2711delT	Insufficient	No	Yes	2.2	54	3.08	76
5076	196	None	F508del	117-1G-A	Insufficient	Yes	No	3.09	89	3.68	106
5116	112	TEZ/IVA	F508del	F508del	Insufficient	No	No	2.87	64	3.41	76
5117	63	TEZ/IVA	F508del	F508del	Insufficient	Yes	Yes	2.77	68	3.42	85
5181	63	None	F508del	R560T	Insufficient	No	No	2.5	65	NA	NA
5241	216	TEZ/IVA	F508del	F508del	Insufficient	No	No	2.29	55	3.74	91
5250	63	None	F508del	/621+1	Insufficient	Yes	No	3.2	64	3.64	73
5268	147	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	2.19	58	2.7	72
5270	70	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	1.79	59	1.52	50
5369	112	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	3.59	102	4.04	115
6013	201	LUM/IVA	F508del	F508del	Insufficient	Yes	No	2.62	77	3.06	91
6014	70	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	4.03	92	4.5	103
6015	87	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	1.59	35	2.4	53
6017	126	None	F508del	N1303K	Insufficient	No	No	2	47	2.33	55
6018	135	None	F508del	R553X	Insufficient	Yes	No	1.84	65	NA	NA

ID	Time on	Baseline	Gene1	Gene2	Pancreatic	Ps	BCC	Baseline	Baseline	V2	V2
	therapy	modulator			status			FEV1	FEV1%	FEV1	FEV1%
6020	189	TEZ/IVA	F508del	F508del	Insufficient	No	Yes	2.88	90	3.94	124
6021	205	None	F508del	3659DelC	Insufficient	Yes	No	1.6	54	1.49	50
6052	76	TEZ/IVA	F508del	F508del	Insufficient	No	No	2.6	74	2.7	76
6053	348	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	2.18	53	2.28	55
6054	84	None	F508del	2184A	Insufficient	Yes	No	1.35	33	1.72	42
6057	156	None	F508del	3007∆G	Insufficient	Yes	No	2.43	53	NA	NA
6058	155	None	F508del	R560T	Insufficient	No	No	3.96	85	4.54	97
6059	126	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	NA	NA	NA	NA
6060	56	None	F508del	G542X	Insufficient	Yes	No	3.55	69	4.07	79
6063	58	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	1.88	48	3.21	83
6064	91	None	F508del	c1766+1G> A	Insufficient	Yes	No	2.86	53	3.79	71
6066	91	LUM/IVA	F508del	F508del	Insufficient	Yes	No	0.87	32	1.1	40
6067	322	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	2.52	54	2.94	63
6091	63	None	F508del	R553X	Insufficient	Yes	No	2.98	79	4.21	112
6092	168	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	2.64	77	NA	NA
6127	134	None	F508del	W1098R	Insufficient	Yes	No	3.25	74	4.39	100
6128	105	TEZ/IVA	F508del	F508del	Insufficient	Yes	No	2.51	55	3.11	68
6130	91	None	F508del	F508del	Insufficient	Yes	No	2.78	72	NA	NA
6131	91	None	F508del	F508del	Insufficient	Yes	No	3.19	76	3.72	90

ID	Time on	Baseline	Gene1	Gene2	Pancreatic	Ps	BCC	Baseline	Baseline	V2	V2
	therapy	modulator			status			FEV1	FEV1%	FEV1	FEV1%
6139	84	TEZ/IVA	F508del	F508del	Insufficient	No	No	3.68	82	4.13	93

Abbreviations: Pseudomonas aeruginosa (Ps), Burkholderia cepacia complex (Bcc), Percent predicted FEV1 (FEV1%), M (male), F(female), ivacaftor (IVA), lumacaftor (LUM), tezacaftor (TEZ), not available data (NA)

Table E3. U-PLEX Biomarker Group 1 (human) 71-Plex

СТАСК	I-309	IL-5	IL-17A	IL-27*	MIF	TRAIL
ENA-78	IFN-α2a	IL-6	IL-17A/F	IL-29/IFN-λ1*	MIP-1α	TSLP*
Eotaxin	IFN-β	IL-7	IL-17B	IL-31*	ΜΙΡ-1β	VEGF-A
Eotaxin-2	IFN-γ	IL-8	IL-17C	IL-33*	MIP-3α	YKL-40
Eotaxin-3	IL-1α	IL-9	IL-17D	IP-10	ΜΙΡ-3β	M-CSF
EPO	IL-1β	IL-10	IL-17E/IL-25*	I-TAC	MIP-5	
FLT3L	IL-1RA	IL-12/IL-23p40	IL-17F*	MCP-1	SDF-1a	
Fractalkine	IL-2	IL-12p70	IL-18	MCP-2	TARC	
G-CSF	IL-2Rα	IL-13	IL-21*	MCP-3	TNF-α	
GM-CSF	IL-3	IL-15	IL-22*	MCP-4	TNF-β	
GRO-α	IL-4	IL-16	IL-23*	MDC	TPO	

*Plate failed

Dataset	Variable	Change for F508del homozygote (median, IQR)	Change for F508del / minimal function	Fold difference	P value
Immune cells (cells/mm3)	Neutrophils	-761,166 (-2,182,950 to 898,112)	-1,641,397 (-3,170,437 to -427,365)	0.46	0.09
Neutrophil cell markers (MFI)	CD206	127 (76.00 to 214.75)	101 (62.00 to 156.00)	0.81	0.21
Neutrophil cell markers (MFI)	CD15	1750 (-702.25 to 4484.50)	1524 1011.00 to 3760.00)	0.87	0.40
Neutrophil cell markers (MFI)	CD16	661 (-555.00 to 1754.00)	1105 (-257.00 to 1669.00)	1.70	0.59
Neutrophil cell markers (MFI)	CD101	246 (15.50 to 557.25)	327 (21.00 to 581.00)	1.33	0.36
Neutrophil cell markers (MFI)	CD66b	1266 (-1866.75 to 3756.25)	0 (-781.00 1068.00)	NA	0.87
Neutrophil cell markers (MFI)	CXCR4	-108 (-321.25 to 102.50)	175 (-274.00 to 161.00)	0.67	0.80
Cytokines (pg/ml)	IL6	-3.12 (-8.47 to 1.39)	-5.28 (-14.21 to -0.50)	1.70	0.19
Cytokines (pg/ml)	IL8	-4.76 (-9.48 to 1.29)	-7.03 (-18.01 to 3.26)	1.50	0.12
Cytokines (pg/ml)	CXCL1	-81.65 (-350.92 to 69.60)	-118.11 (-241.29 to -48.52)	1.45	0.24
Cytokines (pg/ml)	CXCL5	-240.69 (-654.29 to 103.52)	-455.45 (-760.73 to -137.37)	1.89	0.30
Cytokines (pg/ml)	G-CSF	-35.37 (-86.37 to -12.91)	-45.56 (-87.68 to -23.50)	1.3	0.40

Table E4. Change in selected variables with ETI therapy stratified by genotype

Dataset	Variable	R correction	P value
Immune cells	Neutrophils	-0.236	0.096
(cells/mm3)	-		
Neutrophil cell	CD206	0.024	0.860
markers (MFI)			
Neutrophil cell	CD15	0.188	0.169
markers (MFI)			
Neutrophil cell	CD16	0.156	0.255
markers (MFI)			
Neutrophil cell	CD101	0.086	0.547
markers (MFI)			
Neutrophil cell	CD66b	0.251	0.064
markers (MFI)			
Neutrophil cell	CXCR4	-0.199	0.146
markers (MFI)			
Cytokines	IL6	-0.194	0.160
(pg/ml)			
Cytokines	IL8	-0.122	0.380
(pg/ml)			
Cytokines	CXCL1	-0.058	0.675
(pg/ml)			
Cytokines	CXCL5	-0.001	0.993
(pg/ml)			
Cytokines	G-CSF	-0.164	0.236
(pg/ml)			

Table E5. Correlation between change with ETI therapy and duration on therapy

Table E6. Proteins in the leading edge Table

REACTOME_CELLULAR_RESPO NSES_TO_STIMULI	HBB, HBA2, HSP90B1, GSR, CAT, TALDO1, PSMA1, PSMA5, TLN1, GPX3, PSMB6, BLVRB, PSMA4	pre_vs_ post
REACTOME_CELLULAR_RESPO NSE_TO_CHEMICAL_STRESS	HBB, HBA2, GSR, CAT, TALDO1, PSMA1, PSMA5, GPX3, PSMB6, BLVRB, PSMA4	pre_vs_ post
REACTOME_COMPLEMENT_CA SCADE	CFP, C4BPA, C4BPB, CFHR5, C1R, CFH, F2, PROS1, CFI, C6, CFHR2, C7, CFHR4, C3, CFHR1, CRP, MASP1, C8G, C1S, C8A	pre_vs_ post
REACTOME_FORMATION_OF_ FIBRIN_CLOT_CLOTTING_CASC ADE	F13B, F10, KNG1, F2, KLKB1, PROS1, PRCP, F13A1, F5, F9, PROC, F7, F11, PROCR	pre_vs_ post
REACTOME_HEMOSTASIS	F13B, F10, KNG1, F2, KLKB1, PROS1, APOH, PRCP, F13A1, F5, PLG, F9, A1BG, PROC, F7, ITIH4, SELL, YWHAZ, F11, IGF2, TTN, PROCR	pre_vs_ post
REACTOME_INNATE_IMMUNE _SYSTEM	S100A9, LCN2, CFP, S100A7, CRISP3, S100A8, C4BPA, C4BPB, PGLYRP2, CFHR5, C1R, CFH, F2, PROS1, CFI, PRCP, C6, A1BG, LYZ, LRG1, CFHR2, C7, SAA1, FABP5, CFHR4, C3, CFHR1, JUP, CRP, SELL, MASP1, PRG2, CD14, C8G, C1S, DSP, C8A, CST3, CAMP, SERPINA3	pre_vs_ post
REACTOME_INTRINSIC_PATH WAY_OF_FIBRIN_CLOT_FORM ATION	F10, KNG1, F2, KLKB1, PROS1, PRCP, F9, PROC, F11	pre_vs_ post
REACTOME_FORMATION_OF_ THE_CORNIFIED_ENVELOPE	JUP, DSP, KRT5, KRT14, KRT1, KRT71, KRT3, KRT6A, KRT6B, DSG1, KRT10, KRT9, KRT2, KRT13, DSC2	pre_vs_ healthy
REACTOME_INNATE_IMMUNE _SYSTEM	LRG1, LYZ, CRP, S100A8, CFI, PRCP, S100A9, SAA1, SERPINA3, JUP, A1BG, DSP, C3, CFHR5, S100A7, RPS27A, HBB, CALML5, CAMP, CFB, GGH, CFHR3, B2M, CFHR1, KRT1, FCN3, HRNR, CST3, RNASE2, TXN, CPB2, CFH, DSG1, FABP5, CTSD, CD14, CD44, LBP, CRISP3, ITLN1, C4BPA, CFHR4, SERPING1	pre_vs_ healthy
REACTOME_KERATINIZATION	JUP, DSP, KRT5, KRT14, KRT1, KRT71, KRT3, KRT6A, KRT6B, DSG1, KRT10, KRT9, KRT2, KRT13, DSC2	pre_vs_ healthy
REACTOME_NEUTROPHIL_DEG RANULATION	LRG1, LYZ, S100A8, PRCP, S100A9, SERPINA3, JUP, A1BG, DSP, C3, S100A7, HBB, CALML5, CAMP, GGH, B2M, KRT1, HRNR, CST3, RNASE2, DSG1, FABP5, CTSD, CD14, CD44, CRISP3	pre_vs_ healthy

Table E7. Relationship of systemic neutrophilic inflammation with lung f	unction
--	---------

Dataset	Variable	Spearman Correlation	p value
Immune cells	Neutrophils	0.041	0.775
Neutrophil cell surface markers	CD101	0.056	0.713
Neutrophil cell surface markers	CD45	-0.270	0.058
Neutrophil cell surface markers	CXCR4*	-0.444	0.001
Neutrophil cell surface markers	HLA-DR*	-0.432	0.002
Neutrophil cell surface markers	CD206	-0.162	0.260
Neutrophil cell surface markers	CD15	-0.156	0.278
Neutrophil cell surface markers	CD16*	-0.311	0.028
Neutrophil cell surface markers	CCR7*	-0.349	0.013
Neutrophil cell surface markers	CD66b	-0.272	0.056
Cytokines	IL3	0.026	0.860
Cytokines	IL6	-0.144	0.322
Cytokines	IL8	-0.219	0.131
Cytokines	G-CSF	-0.132	0.368
Cytokines	CXCL5	0.252	0.081
Cytokines	CXCL1	0.009	0.951

Figure E1. Consort diagram for recruited patients

Figure E2. Immune profiles of pre-ETI CF subjects stratified by baseline modulator status. Absolute cell counts were measured by high-dimensional flow cytometry, with CF subjects stratified according to baseline modulator status (dual therapy vs modulator naïve). For each boxplot, individual cell count, together with median and interquartile ranges are plotted. Difference between cohorts are calculated by t-tests: **** = p < 0.0001, *** = p < 0.001, ** = p < 0.05.

Figure E3. Immunophenotyping of neutrophils of pre-ETI subjects stratified by baseline modulator status. Median fluorescence intensity (MFI) was measured by high-dimensional flow cytometry. MFI values are plotted, with CF subjects stratified according to baseline modulator status (dual therapy vs modulator naïve). For each group, individual median cell marker MFI, together with median and interquartile ranges are plotted. Difference between cohorts are calculated by Mann Whitney: **** = p < 0.0001, *** = p < 0.001, ** = p < 0.01, * = p < 0.05.

Dual Modulator vs Treatment Naive

Figure E4. Cytokines stratified by baseline modulator status. Volcano plot for dual modulator versus treatment naive patients displaying fold change against adjusted p-values calculated by Mann Whitney. Dots are coloured by thresholds based on log-fold change and adjusted p value. Horizontal dashed line indicates cut off for adjusted p value < 0.05. Vertical dashed lined indicates positive and negative cut offs for absolute log2 fold change of 1.

Figure E5. Proteome stratified by modulator status. Volcano plot for dual modulator versus treatment naive patients displaying fold change as calculated by limma against adjusted p-values. Dots are coloured by thresholds based on log-fold change and adjusted p value. Horizontal dashed line indicates cut off for adjusted p value < 0.05. Vertical dashed lined indicates positive and negative cut offs for absolute log2 fold change of 1.

Supplementary E6. Effect on ETI on Immune cell populations. Absolute cell counts were measured by high-dimensional flow cytometry. (A) Stacked bar chart displaying median values of all circulating immune cells . (B) Box plots of the selected immune cells frequently implicated in CF lung disease pathology, with CF subjects stratified according to ETI status. (C) Box plots of the monocyte subsets. For each boxplot, individual cell count, together with median and interquartile ranges are plotted. Difference between cohorts are calculated by t-tests: **** = p < 0.0001, *** = p < 0.001, ** = p < 0.001, ** = p < 0.001, ** = p < 0.05

Figure E7. Immunophenotyping of classical CD14+ monocytes pre- and post- ETI. Median fluorescence intensity (MFI) was measured by high-dimensional flow cytometry. MFI values are plotted, with CF subjects stratified according to ETI status. For each group, individual median cell marker MFI, together with median and interquartile ranges are plotted. Difference between cohorts are calculated by Mann Whitney: **** = p < 0.0001, *** = p < 0.001, ** = p < 0.05.

Figure E8. Immunophenotyping of intermediate CD14+CD16+ monocytes pre- and post- ETI. Median fluorescence intensity (MFI) was measured by high-dimensional flow cytometry. MFI values are plotted, with CF subjects stratified according to ETI status. For each group, individual median cell marker MFI, together with median and interquartile ranges are plotted. Difference between cohorts are calculated by Mann Whitney: **** = p < 0.0001, *** = p < 0.001, *** = p < 0.05.

Figure E9. Quantitive profiling of cytokines and chemokines. For all those that were different at baseline between healthy and pre-ETI (adjusted p-value <0.05) the absolute concentrations are shown, with CF subjects stratified by ETI state. For each group, individual median cell marker MFI, together with median and interquartile ranges are plotted. Difference between cohorts are calculated by Mann Whitney: **** = p < 0.0001, *** = p < 0.001, ** = p < 0.01, * = p < 0.05.

Supplementary Figure E10. Quantative profiling of post-ETI systemic cytokines and chemokines. Volcano plot displaying post-ETI CF versus healthy controls with log2median fold change in cytokine abundance against adjusted p-value calculated by Mann-Whitney U tests. Dots are coloured by thresholds based on log-fold change and adjusted p value. Horizontal dashed line indicates cut off for adjusted p value < 0.05. Vertical dashed lined indicates positive and negative cut offs for absolute log2 fold change of 1.

Supplementary Figure E11. Principal component analysis of plasma cytokine and chemokine profiles. The entire data set (55 CF subjects (110 paired samples); 29 healthy controls (29 samples)) were analysed by multiplex immunoassay (61 proteins) and subjected to principal component analysis (PCA). Samples were colour-coded by clinical cohort.

Supplementary Figure E12. Principal component analysis of plasma protein profiles. The entire data set (50 CF subjects (100 paired samples) ; 27 healthy controls (27 samples)) were analysed by tandem mass spectrometry and subjected to principal component analysis. Samples were colour-coded by clinical cohort.