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Supplementary Texts 

CGM-derived indices are effective in predicting coronary plaque vulnerability 

To characterize CGM-derived indices in estimating the risk of CAD, we examined Spearman’s 

correlation coefficients (r) between CGM-derived indices and the ratio of necrotic core to total 

plaque volume (%NC) (Fig. S1). %NC, a widely used parameter of plaque vulnerability, was 

assessed by VH-IVUS. We performed this analysis using a previously described cohort 

consisting of 8 individuals with normal glucose tolerance (NGT), 16 with IGT, and 29 with 

T2DM (Otowa-Suematsu et al., 2018). For comparison, we also investigated FBG, HbA1c, 

OGTT-derived indices, body mass index (BMI), triglycerides (TGs), low-density lipoprotein 

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), systolic blood pressure 

(SBP), and diastolic BP (DBP). 

We constructed a correlation network connecting relationships with Q < 0.05 (Fig. 

S1A). The Q values were calculated by Spearman’s correlation test followed by multiple testing 

adjustment using the Benjamini-Hochberg method. The correlation network showed that 

AC_Var was statistically significantly correlated with %NC (r = 0.35; 95% confidence interval 

[CI], 0.09–0.57) (Fig. S1A). By contrast, AC_Var displayed relatively weak correlations with 

other indices, including CGM_Mean (r = –0.02; 95% CI, –0.30–0.24) and CGM_Std (r = 0.15; 

95% CI, –0.14–0.43) (Fig. S1A, B).  

 Twelve CGM-derived indices, namely, ADRR, MAGE, JINDEX, CGM_Std (Std of 

glucose levels measured by CGM), CGM_Mean (mean glucose levels measured by CGM), 

GRADE, MVALUE, AC_Var, LI, HBGI, CONGA, and MODD, exhibited significant 

correlations with %NC (Fig. S1C). By contrast, with the exception of the insulinogenic index 

(I.I.), OGTT-derived indices, as well as other indices including FBG and HbA1c, displayed 

relatively weak correlations with %NC (Fig. S1C, blue, magenta, and green). Of note, this 

study enrolled individuals with well-controlled serum cholesterol and BP levels (Fig. S1D). 
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The weak correlations between cholesterol and BP-related indices and %NC (Fig. S1C) do not 

mean that cholesterol and BP are not associated with %NC. Consequently, our subsequent 

analysis focused primarily on indices unrelated to cholesterol and BP. Several relationships 

showed some linearity, including the association between ADRR and %NC (Fig. S2). 

To predict %NC and further assess the efficacy of CGM-derived indices in 

estimating %NC, we conducted multiple linear regression analyses including not only 

CGM_Mean, CGM_Std, and AC_Var but also other indices. Given that our study only enrolled 

individuals with well-controlled serum cholesterol levels and BP, as indicated in Figure S1D, 

we included only BMI, FBG, HbA1c, OGTT-derived indices, and CGM-derived indices as the 

input variables. 

We evaluated three distinct models: the first model included all variables as input 

variables (referred to as Full); the second model excluded CGM-derived indices (referred to as 

CGM-); and the third model included only CGM-derived indices as input variables (referred to 

as CGM-only). To assess the multicollinearity among the input variables, we examined the VIF 

for each variable. We removed variables with the highest VIF one by one until all variables had 

VIF values less than 10. This process resulted in 14 variables for the Full model (Fig. S3A), 7 

variables for the CGM- model (Fig. S3B), and 8 variables for the CGM-only model (Fig. S3C). 

AC_Mean and AC_Var were included within the 14 variables (Fig. S3A), and 8 variables (Fig. 

Fig. S3C), suggesting that AC_Mean and AC_Var exhibited relatively low multicollinearity 

with other indices.  

We predicted %NC using these 14 (Fig. S3A, D), 7 (Fig. S3B, E), and 8 (Fig. S3C, F) 

variables. The Akaike Information Criterion (AIC) of the CGM-only model (Fig. S3F) was 

found to be lower than that of both the CGM- model (Fig. S3E) and the Full model (Fig. S3D), 

indicating the effectiveness of CGM-derived indices in predicting %NC. Inclusion of SBP, DBP, 

TG, LDL-C, and HDL-C as the input variables in the Full model and the CGM- model did not 
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change the result that the AIC of these models (Fig. S3G-J) was higher than that of the CGM-

only model (Fig. S3F). 

To verify the reproducibility of the relationship among the input variables, we 

compared VIF values calculated from this dataset (VIFt) with those from previously reported 

datasets (VIFp1 (Sugimoto et al., 2023) and VIFp2 (Hall et al., 2018)). These analyses revealed 

significant correlations between VIFt and VIFp1 (Fig. S3K), as well as between VIFt and 

VIFp2 (Fig. S3L). Furthermore, the VIF values for AC_Mean and AC_Var consistently tended 

to be low, underscoring the reproducibility of our observation that AC_Mean and AC_Var show 

relatively low multicollinearity with other CGM-derived indices. 
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Supplementary Figures 

 

Figure S1. Relationship among clinical parameters.   

(A) A spring layout of the correlation network involving %NC (black), 14 CGM-derived 
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indices (red), 3 blood glucose level-related indices (magenta), 3 insulin sensitivity or secretion-

related indices (blue), and 6 other clinical indices (green) obtained from a single blood test or 

physical measurement. Connections denote relationships with Q < 0.05. The width of the edges 

is proportional to the corresponding correlation coefficient.  

(B) Scatter plots for AC_Var versus CGM_Mean (the left), and AC_Var versus CGM_Std (the 

right). Each point corresponds to the values for a single subject. Subjects were colored based 

on the value of %NC. r is Spearman’s correlation coefficient, and the value in parentheses is 

95% CI. 

(C) The absolute values of Spearman’s correlation coefficients between clinical parameters 

and %NC. Bars represent the 95% CIs.  

(D) Scatter plot for SBP and LDL-C. Gray shaded areas indicate the range of values for high 

SBP (>140 mmHg) or high LDL-C (>120 mg/dL). Each point corresponds to the values for a 

single participant. Green circles, red cross marks, and blue squares indicate normal glucose 

tolerance, IGT, and T2DM, respectively. 
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Figure S2. Relationship between the clinical indices and coronary plaque vulnerability 

(%NC).  

Scatter plots and fitted linear regression lines for each clinical index versus %NC. Each point 

corresponds to the values for a single subject. Gray shaded area indicates the 95% CI.  
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Figure S3. Multiple linear regression analyses for predicting %NC. 

(A-C) VIF for each variable remaining after iteratively removing the variable with the highest 

VIF until all VIF values were less than 10. The input variables in (A) included the following 

21 variables: BMI, FBG, HbA1c, PG120, I.I., composite index, oral DI, CGM_Mean, 

CGM_Std, CONGA, LI, JINDEX, HBGI, GRADE, MODD, MAGE, ADRR, MVALUE, MAG, 

AC_Mean, and AC_Var. Input variables in (B) included only those indices that excluded CGM-

derived indices from the above 21 variables. The input variables of (C) included only the CGM-

derived indices from the above 21 indices. 

(D-F) Scatter plots for predicted %NC versus measured %NC. The black diagonal lines 

represent y=x. The model in (D) used the 14 variables shown in Figure 2A. The model in (E) 

used the 7 variables shown in Figure 2B. The model in (F) used the 8 variables shown in Figure 

2C. Each point corresponds to the values for a single subject.  

(G, H) VIF of each variable remaining after removing the variables with the highest VIF one 

by one until the VIF of all variables are less than 10. The input variables of (G) include the 

following 26 variables: BMI, SBP, DBP, TGs, LDL-C, HDL-C, FBG, HbA1c, PG120, I.I., 

composite index, oral DI, CGM_Mean, CGM_Std, CONGA, LI, JINDEX, HBGI, GRADE, 

MODD, MAGE, ADRR, MVALUE, MAG, AC_Mean, and AC_Var. Only indices that 

excluded CGM-derived indices from the above 26 indices were included as the input variables 

in (H). 

(I) Scatter plots for predicted %NC versus measured %NC. The model included the 19 

variables shown in Figure S3G as the input variables. Each point corresponds to the values for 

a single subject.  

(J) Scatter plots for predicted %NC versus measured %NC. The model included the 12 

variables shown in Figure S3H as the input variables.  

(K) Scatter plot of the VIF of the indices measured in this study (VIFt) versus that of indices 
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measured in a previous study (VIFp1) (Sugimoto et al., 2023). r is Spearman’s correlation 

coefficient, and the value in parentheses is the 95% CI. 

(L) Scatter plot of the VIF of the indices measured in this study (VIFt) versus that of the indices 

measured in a previous study (Hall et al., 2018) (VIFp2). 
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Figure S4. LASSO regression analysis for predicting %NC including SBP, DBP, TGs, 

LDL-C, and HDL-C. 

(A) Relationship between regularization coefficients (lambda) and the MSE based on the leave-

one-out cross-validation in predicting %NC. Dotted vertical line indicates the optimal lambda 

that provides the least MSE. The optimal lambda was 0.849.  

(B) LASSO regularization paths along the lambda in predicting %NC. Cyan, magenta, and 

gray lines indicate the estimated coefficients of AC_Mean, AC_Var, and the other input 

variables, respectively. Dotted vertical line indicates the optimal lambda.  

(C) Estimated coefficients with the optimal lambda. Only variables with non-zero coefficients 

are shown. Input variables include the following 26 variables: BMI, SBP, DBP, TGs, LDL-C, 

HDL-C, FBG, HbA1c, PG120, I.I., composite index, oral DI, CGM_Mean, CGM_Std, 

CONGA, LI, JINDEX, HBGI, GRADE, MODD, MAGE, ADRR, MVALUE, MAG, AC_Mean, 

and AC_Var.   
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Figure S5. Factor analyses of the clinical parameters. 

Factor analyses after orthogonal rotation. The values were based on the factor loadings. The 

columns represent each factor. The rows represent input indices. The analyses with the 21 

variables (A), and the 26 variables (B).  
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Figure S6. Hierarchical clustering analysis of metabolic syndrome-related indices. 

(A) Relationship between the number of cluster and the silhouette coefficient. Dotted vertical 

line indicates the optimal cluster number which provides the best silhouette coefficient.  

(B) Hierarchical clustering analysis of the standardized metabolic syndrome-related indices 

using Euclidean distance as a metric with the Ward method. The columns represent the 

standardized value of each index. The rows represent individual subjects. The indices are 

grouped and sorted according to their degree of relatedness.  
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Figure S7. Factor analyses of the clinical parameters using the previous datasets. 

Factor analyses after orthogonal rotation. The values were based on the factor loadings. The 



16 

 

columns represent each factor. The rows represent input variables. The analyses used the 

Japanese data from a previous study (Sugimoto et al., 2023) (A), and the American data from 

a previous study (Hall et al., 2018) (B).  
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Figure S8. Factor analysis of continuous glucose monitoring (CGM)-derived indices using 

a previously reported dataset.  

(A) Factor analysis of the CGM-derived indices. The heat map shows the factor loadings, with 

columns representing each factor and rows representing the input variables. The analyses used 

data from 100 Chinese individuals from a previous study (Zhao et al., 2023).  

(B) Box plots comparing factors 1 (value), 2 (variability), and 3 (autocorrelation) between 

individuals without (-) and with (+) diabetic macrovascular complications. The boxes represent 

the interquartile range, with the median shown as a horizontal line. Mann–Whitney U tests 

were used to assess differences between groups, with P values < 0.05 considered statistically 

significant. 
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Figure S9. Infused glucose and parameters used in simulating glucose dynamics.  

(A) The amount of the external input of glucose 𝑓 (see Methods). (B) The parameters used in 

the simulation. The values of these parameters shown in red and gray correspond to the color 

of the simulated glucose dynamics shown in Figure 4A. Bars indicate the range of values for 

NGT individuals (De Gaetano and Arino, 2000).   
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Figure S10. Multiple regression analysis between Time in range (TIR) and factor scores 

in Figure 3. 

(A) Scatter plots for predicted TIR versus measured TIR. Each point corresponds to the values 

for a single subject.  

(B) Bars represent the 95% CIs of the coefficients of the regression model. 
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Table S1 Calculating formulae of the continuous glucose monitoring-derived indices. 

Name Formulae Variables 

CGM_Mean 1

𝑁
∑𝐺𝑛

𝑁

𝑛=1

 

𝐺 =glucose measured 

𝑁 =total number of readings 

CGM_Std 

√
1

𝑁 − 1
∑(𝐺𝑛 − �̅�)

𝑁

𝑛=1

 

𝐺 =glucose measured 

𝑁 =total number of readings 

CONGA 

√
1

𝑘 − 1
∑(𝐷𝑡 − �̅�)2

𝑡𝑘

𝑡=𝑡1

 

�̅� =
1

𝑘
∑ 𝐷𝑡

𝑡𝑘

𝑡=𝑡1

, 𝐷𝑡 = 𝐺𝑡 − 𝐺𝑡−60 

𝐺 =glucose measured 

𝑘 =number of observations with 

an observation 60 min ago 

𝑡 =time 

LI 

∑
(𝐺𝑛 − 𝐺𝑛+1)

2

𝑡𝑛+1 − 𝑡𝑛

𝑁−1

𝑛=1

 

𝐺 =glucose measured 

𝑁 =total number of readings 

𝑡 =time 

JINDEX 0.324 × (CGM_Mean + CGM_Std)2  

HBGI 

1

𝑁
∑rh(𝑥𝑖)

𝑁

𝑖=1

 

𝑥 = nonlinear transformation of 

glucose measured 

𝑁 =total number of readings 

rh =risk value associated with a 

high glucose 

GRADE median(425 × {log⁡[log⁡(𝐺𝑛)]

+ 0.16}2) 

𝐺 =glucose measured 

 

MODD 1

𝑘
∑|𝐺𝑡 − 𝐺𝑡−1440|

𝑡𝑘

𝑡=𝑡1

 

𝐺 =glucose measured 

𝑘 =number of observations with 
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an observation 24 h ago 

𝑡 =time 

MAGE 

∑
𝜆

𝑥
⁡⁡⁡𝑖𝑓⁡⁡𝜆 > 𝑣 

𝜆 = blood glucose changes from 

peak to nadir 

𝑥 =number of observations  

𝑣 =1 Std of mean glucose for 24 

h period 

ADRR 

1

𝑁
∑[LR + HR]

𝑁

𝑛=1

 

𝑁 =total number of readings 

LR =risk value attributed to low 

glucose 

HR =risk value attributed to high 

glucose 

M-value 

1

𝑁
∑ |10log⁡

18𝐺𝑡
IGV

|
3

𝑡𝑘

𝑡=𝑡1

 

𝐺 =glucose measured 

𝑘 = number of observations 

IGV=ideal glucose value 

𝑡 =time 

MAG 

1

𝑇
∑(𝐺𝑛 − 𝐺𝑛+1)

𝑁−1

𝑛=1

 

𝐺 =glucose measured 

𝑁 =total number of readings 

𝑇 =total time 

AC_Mean 1

30
∑AC𝑙

30

𝑙=1

 

AC =autocorrelation of glucose 

𝑙 =lag 

AC_Var 1

29
∑(AC𝑙 − AC_Mean)2
30

𝑙=1

 

AC =autocorrelation of glucose 

𝑙 =lag 
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