PT - JOURNAL ARTICLE AU - Shaw, Angus AU - Newman, Phillip AU - Witchalls, Jeremy AU - Hedger, Tristan TI - Externally Validated Machine Learning Algorithm Accurately Predicts Medial Tibial Stress Syndrome in Military Trainees; A Multi-Cohort Study AID - 10.1101/2023.01.19.23284808 DP - 2023 Jan 01 TA - medRxiv PG - 2023.01.19.23284808 4099 - http://medrxiv.org/content/early/2023/01/20/2023.01.19.23284808.short 4100 - http://medrxiv.org/content/early/2023/01/20/2023.01.19.23284808.full AB - Objectives Medial Tibial Stress Syndrome (MTSS) is a common musculoskeletal injury, both in sports and the military. There is no reliable treatment and reoccurrence rates are high. Prevention of MTSS is critical to reducing operational burden. Therefore, this study aimed to build a decision-making model to predict the individual risk of MTSS within officer cadets and test the external validity of the model on a separate military population.Design Prospective cohort study.Methods This study collected a suite of key variables previously established for predicting MTSS. Data was obtained from 107 cadets (34 females and 73 males). A follow-up survey was conducted at 3-months to determine MTSS diagnoses. Six ensemble learning algorithms were deployed and trained 5 times on random stratified samples of 75% of the dataset. The resultant algorithms were tested on the remaining 25% of the dataset and the models were compared for accuracy. The most accurate new algorithm was tested on an unrelated data sample of 123 Australian Navy recruits to establish external validity of the model.Results Random Forest modelling was the most accurate in identifying a diagnosis of MTSS; (AUC = 98%). When the model was tested on an external dataset, it performed with an accuracy of 94% (F1= 0.88).Conclusion This model is highly accurate in predicting those who will develop MTSS. The model provides important preventive capacity which should be trialled as a risk management intervention.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study did not receive any fundingAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Ethics approval was obtained from The Departments of Defence and Veterans' Affairs (DDVA) Human Research Ethics Committee (HREC) (167-19), and the University of Canberra HREC (20193336)I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data produced in the present study are available upon reasonable request to the authors