RT Journal Article SR Electronic T1 Dual exposure-by-polygenic score interactions highlight disparities across social groups in the proportion needed to benefit JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2024.07.29.24311065 DO 10.1101/2024.07.29.24311065 A1 Nagpal, Sini A1 Gibson, Greg YR 2024 UL http://medrxiv.org/content/early/2024/07/30/2024.07.29.24311065.abstract AB The transferability of polygenic scores across population groups is a major concern with respect to the equitable clinical implementation of genomic medicine. Since genetic associations are identified relative to the population mean, inevitably differences in disease or trait prevalence among social strata influence the relationship between PGS and risk. Here we quantify the magnitude of PGS-by-Exposure (PGSxE) interactions for seven human diseases (coronary artery disease, type 2 diabetes, obesity thresholded to body mass index and to waist-to-hip ratio, inflammatory bowel disease, chronic kidney disease, and asthma) and pairs of 75 exposures in the White-British subset of the UK Biobank study (n=408,801). Across 24,198 PGSxE models, 746 (3.1%) were significant by two criteria, at least three-fold more than expected by chance under each criterion. Predictive accuracy is significantly improved in the high-risk exposures and by including interaction terms with effects as large as those documented for low transferability of PGS across ancestries. The predominant mechanism for PGS×E interactions is shown to be amplification of genetic effects in the presence of adverse exposures such as low polyunsaturated fatty acids, mediators of obesity, and social determinants of ill health. We introduce the notion of the proportion needed to benefit (PNB) which is the cumulative number needed to treat across the range of the PGS and show that typically this is halved in the 70th to 80th percentile. These findings emphasize how individuals experiencing adverse exposures stand to preferentially benefit from interventions that may reduce risk, and highlight the need for more comprehensive sampling across socioeconomic groups in the performance of genome-wide association studies.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was supported by a grant from the U.S. National Institutes of Health to G.G. (R01-DK119991). Analyses using the UK Biobank Resource were performed under Institutional Review Board approved application number 17984.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Analyses using the UK Biobank Resource were performed under Institutional Review Board approved application number 17984.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.Yes