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Supplementary Methods 26 

Genetic instrumental variables (IVs) for insomnia 27 

We used single nucleotide polymorphisms (SNPs) identified by the largest genome-wide association 28 
study (GWAS) combining UK Biobank (UKB) with 23andMe participants(1) due to its sample size 29 
(N=709,986 women), provision of female-specific results and a low proportion (29%) of overlapped 30 
participants with UKB women to try to avoid winner’s curse.(2) This GWAS reported 83 female-31 
specific SNPs robustly associated with insomnia (P-value < 5×10-8). From these, we removed 3 SNPs 32 
that were correlated to other variants using MR-Base ‘clumping’ function (R2=0.01, referring to the 33 
European samples from the 1000 genomes project).(3) We extracted genotypes from UKB for the 34 
remaining 80 SNPs and derived an unweighted polygenic risk score (PRS), by adding up the number 35 
of insomnia risk-raising alleles. We used the PRS as the IV in one-sample Mendelian randomization 36 
(MR).  37 

Genetic IVs for height, body mass index (BMI), age at first live birth, education, frequency of 38 
alcohol intake and ever smoking    39 

We aimed to use GWAS conducted in only women of European descent which did not overlap with 40 
UKB. We searched for genome-wide significant (P-value < 5×10-8) SNPs and performed ‘clumping’ 41 
(R2=0.01, referring to the European samples from the 1000 genomes project) for those traits on MR-42 
Base, if their GWAS were included. The Genetic Investigation of Anthropometric Traits consortium 43 
identified 54 and 38 SNPs associated with female height (N=147,746, dataset ID ‘97’ on MR-Base)(4) 44 
and female BMI (N=171,977, dataset ID ‘974’ on MR-Base),(5) respectively. Social Science Genetic 45 
Association Consortium identified 6 and 19 SNPs associated with female age at first live birth 46 
(N=154,839, not on MR-Base)(6) and female year of schooling (N=182,286, dataset ID ‘1011’ on MR-47 
Base),(7) respectively. These four GWAS were conducted in non-UKB settings. Neale Lab’s GWAS 48 
identified 44 and 40 SNPs associated with frequency of alcohol intake (N=336,965, dataset ID ‘UKB-49 
a:25’ on MR-Base) and ever smoking (N=336,067, dataset ID ‘UKB-a:236’ on MR-Base) in UKB men 50 
and women.(8) We derived weighted PRS as IVs for one-sample MR using effect sizes reported by the 51 
corresponding GWAS as the weights. To minimize bias from internal weight,(9) we also followed 52 
previous MR studies(10, 11) to repeat our analyses using rs1229984 (ADH1B) and rs698 (ADH1C) for 53 
frequency of alcohol intake and rs6265 (BDNF) for ever smoking, which were identified in non-UKB 54 
settings.(12, 13) 55 

Exploring the role of population stratification    56 

Individual level data allow us to check for population stratification. We tested associations of 57 

insomnia PRS with maternal age at recruitment and birthplace (including longitude and latitude) and 58 

compared means of PRS across 22 UKB study centres using ANOVA. We also compared each non-59 

exposure trait association according to PRS using (i) a crude model, (ii) a model adjusting for genetic 60 

array and top 40 principal components (PCs), (iii) a model further adjusting for participants’ age at 61 

recruitment and birthplace, and (iv) a model adjusting for all these covariates plus UKB study 62 

centres. We obtained differences in mean non-exposure traits per allele increase in PRS from a linear 63 

regression, except for ever smoking where we applied logistic regression.  64 

Univariable MR to assess bias due to horizontal pleiotropy 65 

We used univariable MR to explore (i) the associations of the six non-exposure traits (W) with 66 

birthweight (Y), (ii) the causal directions between insomnia (X) and W, and (3) the association of X 67 

with Y for comparison. In one-sample setting, we applied two-stage least squares (TSLS).(14) In the 68 

first stage, the exposure (a continuous or binary variable, 𝑥𝑖) was regressed on its PRS (𝑧𝑖) in a linear 69 

model (equation 1). In the second stage, the outcome (a continuous or binary, 𝑦
𝑖
) was regressed on 70 
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the fitted values for exposure (𝑥𝑖̂) from the first stage in a linear model (equation 2). 𝜀𝑥𝑖
 and 𝜀𝑦𝑖

 71 

represented the independent error terms. We used a linear model rather than logit model (which 72 

would be more common with a binary exposure) to avoid non-collapsibility of odds ratio and difficult 73 

interpretation of the units (e.g. per doubling of probability of binary exposure).(15)  74 

𝑥𝑖 =  𝛼0 +  𝛼1 × 𝑧𝑖 +  𝜀𝑥𝑖
 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 75 

𝑦𝑖 =  𝛽0 +  𝛽1 × 𝑥𝑖̂ + 𝜀𝑦𝑖
 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 76 

The unit of TSLS estimates correspond to difference in mean per one unit increase in the exposure. 77 

Specifically, the unit of birthweight is gram. We standardized height, BMI and age at first live birth to 78 

make their estimates comparable to each other, and 1 SD is equivalent to 6 cm in height, 5 kg/m2 in 79 

BMI and 5 years in age at first live birth. For education and frequency of alcohol intake, which are 80 

ordered categorical, one-unit increase represents one level change from a lower category to a higher 81 

category. For binary variables, one-unit increase in ever smoking represents comparing ever smokers 82 

to never smokers, and one-unit increase in insomnia represents comparing participants reporting 83 

that they “usually” experience insomnia to “sometimes/rarely/never”. We obtained differences in 84 

mean (or absolute differences in risk of binary variables) together with 95% confidence intervals 85 

using ‘ívreg’ package in R, which can give a correct standard error considering the uncertainty in 86 

both regression stages.  87 

We examined the strength of PRS via F-statistic in each first stage regression,(16) with results shown 88 

in Supplementary Table 3. For the effect of insomnia on birthweight, we assessed between SNP 89 

heterogeneity via Sargan test which is an ‘overidentifying’ test and need individual SNPs to be IVs in 90 

TSLS. Rejection of its null hypothesis suggests at least one invalid IV.(17) 91 

Since the GWAS of insomnia included UKB,(1) we followed a previous study that had the same 92 

problem(18) to conduct our two-sample MR. We randomly split our UKB women (N=208,171) into 93 

two sets (NA=104,041 and NB=104,130, see Supplementary Figure 1). In each dataset, we obtained 94 

SNP-specific associations with each trait (i.e. IVX-X, IVX-Y, IVX-W, IVW-X, IVW-Y and IVW-W) by running 95 

linear regressions. For W-Y associations, we used IVW-W from dataset A and IVW-Y from dataset B (A 96 

on B) and vice versa (B on A) in inverse variance weighted (IVW) analyses. Similarly, for W-X 97 

associations, we used IVW-W from dataset A and IVW-X from dataset B (A on B) and vice versa (B on 98 

A) in IVW; for X-W associations, we used IVX-X from dataset A and IVX-W from dataset B (A on B) and 99 

vice versa (B on A) in IVW; for the X-Y association, we used IVX-X from dataset A and IVX-Y from 100 

dataset B (A on B) and vice versa (B on A) in IVW. We used ‘TwoSampleMR’ package in R to conduct 101 

the IVW analyses. At last, we pooled the MR estimates from the two together for each association. 102 

For the effect of X on Y, we assessed between SNP heterogeneity via Cochran’s Q statistic via MR-103 

Base. 104 

In one- and two-sample MR, we included genetic array and top 40 PCs as covariates, given further 105 

adjustments for participants’ age, birthplace and study centre showed relatively similar associations 106 

in Figure 1. We conducted sensitivity analyses for age at first live birth to include those as covariates, 107 

with results shown in Supplementary Table 2. 108 

Multivariable MR to account for horizontal pleiotropy 109 

We would conduct multivariable MR of effects of (i) insomnia and age at first live birth, (ii) insomnia 110 

and education, (iii) insomnia and ever smoking, and (iv) insomnia, age at first live birth, education 111 

and ever smoking on birthweight. In one-sample setting, we used PRS for X and W as their IVs in 112 

TSLS, and their strengths were assessed via F-statistics (results shown in Supplementary Table 2).(19) 113 
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In two-sample setting, we conducted multivariable MR using IVX-X, IVX-W, IVW-W, IVW-X from dataset 114 

A and IVX-Y, IVW-Y from dataset B (A on B) and vice versa (B on A). Finally, we pooled the MR 115 

estimates from the two together for each insomnia-birthweight association.   116 

Sensitivity analyses    117 

In one-sample MR, we applied some invalid some valid instrumental variable estimator (sisVIVE) by 118 

using the ‘sisVIVE’ package in R.(20) The package requires our data in a matrix format with 3 columns 119 

(i.e. PRS, insomnia, birthweight) × 165,184 rows (i.e. the number of participants). sisVIVE can identify 120 

one invalid IV at a time and provide a difference in mean birthweight with correction for that. Since 121 

we have 80 variants for insomnia, sisVIVE provided 80 differences in mean birthweight with 122 

correction for 0, 1, 2 …… 78 and 79 invalid IVs (full results in Supplementary Data 2).   123 

In two-sample MR, we used ‘TwoSampleMR’ package in R(3) to obtain estimates from MR-Egger,(21) 124 

weighted median(22) and weighted mode(23) approaches, ‘MRPRESSO’ package in R to obtain 125 

estimates from MR Pleiotropy RESidual Sum and Outlier method,(24) and ‘tryx’ package in R to obtain 126 

estimates from MR Treasure Your eXceptions.(25) In each method, we used IVX-X from dataset A and 127 

IVX-Y from dataset B (A on B) and vice versa (B on A), and finally meta-analysed the MR estimates 128 

from the two.  129 

  130 
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Supplementary Figure 1. The number of participants in one- and two-sample Mendelian randomization of our real data example 131 

  132 
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Supplementary Figure 2. Distributions of polygenetic risk score for insomnia across 22 UK Biobank assessment centres  133 

 134 

Boxplot shows median, interquartile range (IQR), minimum (25th percentile – 1.5*IQR), maximum (75th percentile + 1.5*IQR) and outliers.  135 



 

7 
 

Supplementary Figure 3. Scatter plots of two-sample Mendelian randomization for the effect of insomnia on birthweight using MR-Base 136 

(a) Dataset A on dataset B (IVW Q statistic = 101, P = 0.048; MR-Egger intercept = 0.275, SE = 0.797, P = 0.732) 137 

  138 
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(b) Dataset B on dataset A (IVW Q statistic = 157, P = 3.85×10-7; MR-Egger intercept = -0.315, SE = 1.041, P = 0.763) 139 

 140 

  141 
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Supplementary Figure 4. Scatter plots of two-sample Mendelian randomization for the effect of insomnia on birthweight using MR-TRYX 142 

(a) Dataset A on dataset B (Q statistic = 84 in the two outliers removed models and Q = 91 in the outlier adjusted model) 143 

  144 
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(b) Dataset B on dataset A (Q = 117 in the two outliers removed models and Q = 141 in the outlier adjusted model) 145 

 146 

  147 
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Supplementary Table 1. The UK Biobank data fields of variables used in this study 148 

Variable Field ID Code in this study N 

Exposure    
Maternal insomnia 1200 "Do you have trouble falling asleep at night or do you wake up in the middle of the night?", with 

answers “never/rarely”=0, “sometimes”=0 and “usually”=1. 
207,924 

Outcome    
Offspring birthweight 2744 "What was the birth weight of your first child in pounds? (do not include twins)", with answers ranging 

from 2 to 15. We converted its unit to grams.  
165,254 

Maternal characteristics 
Height 50 A continuous variable, mean≈163 cm, SD≈6 cm 207,704 
Body mass index 21001 A continuous variable, mean≈27 kg/m2, SD≈5 kg/m2 207,477 
Age at first live birth 2754 "How old were you when you had your FIRST child?" A continuous variable, mean≈25 years, SD≈5 years 140,503 
Education 6138 "Which of the following qualifications do you have? (You can select more than one)", with answers 

“College or University degree”=3, “A levels/AS levels or equivalent”=2, “O levels/GCSEs or equivalent”=1, 
“CSEs or equivalent”=1, “NVQ or HND or HNC or equivalent”=1, “Other professional qualifications eg: 
nursing, teaching”=2, “None of the above”=1. 

206,055 

Frequency of alcohol 
intake 

1558 "About how often do you drink alcohol?", with answers “Daily or almost daily”=6, “Three or four times a 
week”=5, “Once or twice a week”=4, “One to three times a month”=3, “Special occasions only”=2, 
“Never”=1.  

207,872 

Ever smoking 20116 “Never” = 0, “Previous” = 1, “Current” = 1. 207,281 
Covariates    
Assessment centre 54 A categorical variable 208,171 
Age  21003 A continuous variable 208,171 
Place of birth in UK 129, 130 Two continuous variables (longitude and latitude) 189,470 

We coded “Prefer not to answer” as missing. All phenotypic values in the analyses were no less than 0. Details of how these variables were assessed can be 149 

found on http://biobank.ctsu.ox.ac.uk/crystal/search.cgi.  150 

http://biobank.ctsu.ox.ac.uk/crystal/search.cgi
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Supplementary Table 2. Results for age at first live birth adjusting for genetic array, participants’ age and birthplace, and UK Biobank assessment centres 151 

Estimates are differences in mean outcome per unit increase in exposure. One unit of age at first live birth is 1 SD (5 years) in univariable Mendelian 152 

randomization and 1 year in multivariable Mendelian randomization. Education has 3 levels; being ever smokers and insomnia are binary. Model 1 adjusted 153 

for genetic array and top 40 principal components (presented in Figure 2), while Model 2 further adjusted for participants’ age, birthplace and assessment 154 

centre.  155 

  156 

Mendelian randomization Setting Model 1 Model 2 

Univariable    
Age at first live birth (SD)→ birthweight (grams) 1 85.2 (-11.0, 181.5) 96.1 (-5.1, 197.3) 

 2 87.4 (-9.5, 184.4) 91.2 (-7.7, 190.0) 
Age at first live birth (SD)→ insomnia 1 -0.084 (-0.166, -0.002) -0.077 (-0.163, 0.009) 

 2 -0.123 (-0.197, -0.056) -0.148 (-0.222, -0.073) 
Insomnia→ age at first live birth (SD) 1 -1.025 (-1.213, -0.838) -0.991 (-1.178, -0.804) 

 2 -0.826 (-1.048, -0.605) -0.769 (-0.982, -0.555) 
Multivariable    
Insomnia + age at first live birth→ birthweight (grams) 1 18.0 (-131.3, 167.2) 23.1 (-127.6, 173.8) 

 2 -111.9 (-255.7, 32.0) -99.4 (-244.1, 45.4) 
Insomnia + age at first live birth + education + being ever smokers→ birthweight (grams) 1 -37.5 (-224.4, 149.4) -56.5 (-243.0, 130.0) 

 2 -52.0 (-155.2, 51.2) -48.7 (-152.9, 55.4) 
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Supplementary Table 3. Strengths of polygenetic risk score (PRS) 157 

Mendelian randomization F-statistics a 

Univariable   
PRS of 54 variants→ height→ birthweight 9376 

PRS of 38 variants→ body mass index→ birthweight 1,946 
PRS of 6 variants→ age at first live birth→ birthweight 147 

PRS of 19 variants→ education→ birthweight 574 
PRS of 44 variants→ alcohol consumption frequency→ birthweight 1,264 

PRS of 2 variants→ alcohol consumption frequency→ birthweight 181 b 

PRS of 40 variants→ being ever smokers→ birthweight 604 
rs6265 (BDNF)→ being ever smokers→ birthweight 8 c 

PRS of 54 variants→ height→ insomnia 11,886 
PRS of 38 variants→ body mass index→ insomnia 2,668 

PRS of 6 variants→ age at first live birth→ insomnia 149 
PRS of 19 variants→ education→ insomnia 744 

PRS of 44 variants→ alcohol consumption frequency→ insomnia 1,590 
PRS of 2 variants→ alcohol consumption frequency→ insomnia 212 b 

PRS of 40 variants→ being ever smokers→ insomnia 777 
rs6265 (BDNF)→ being ever smokers→ insomnia 7 c 

PRS of 80 variants→ insomnia→ height 686 
PRS of 80 variants→ insomnia→ body mass index 682 
PRS of 80 variants→ insomnia→ age at first live birth 494 
PRS of 80 variants→ insomnia→ education 671 
PRS of 80 variants→ insomnia→ alcohol consumption frequency 690 
PRS of 80 variants→ insomnia→ being ever smokers 688 
PRS of 80 variants d → insomnia→ birthweight 591 
Multivariable Unconditional Conditional 

PRS1 + PRS2→ insomnia + age at first live birth→ birthweight   
PRS1 of 80 variants for insomnia 245 73 

PRS2 of 6 variants for age at first live birth 132 64 
PRS1 + PRS3→ insomnia + education→ birthweight   

PRS1 of 80 variants for insomnia 289 286 
PRS3 of 19 variants for education 299 368 

PRS1 + PRS4→ insomnia + being ever smokers→ birthweight   
PRS1 of 80 variants for insomnia 300 299 

PRS4 of 40 variants for being ever smokers 320 333 
PRS1 + PRS2 + PRS3 + PRS4→ insomnia + age at first live birth + 
education + being ever smokers→ birthweight 

  

PRS1 of 80 variants for insomnia 123 7 
PRS2 of 6 variants for age at first live birth 105 5 

PRS3 of 19 variants for education 150 5 
PRS4 of 40 variants for being ever smokers 127 25 

a F-statistics for the same PRS may be slightly different due to different sample sizes in the analyses. 158 
b Little evidence was found for a causal effect. 159 
c No further analyses were conducted using this instrumental variable due to its small F-statistic. 160 
d When 80 individual SNPs were used as instrumental variables in two-stage least squares, Sargan 161 

test suggests invalid IVs (P = 3×10-8).  162 
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